
1

Project Phase 3 – Group 23
Group Members: Joseph Bernardin, Runyu Fang, Jainil Thakkar

I. INTRODUCTION

Our original dataset in phase one contained 4

tables. We dropped two of the tables because they

were too small to be usable in our queries and

unrelated to the two larger tables.

The data in these tables are very interesting as it

lets us get new insights into how to Ethereum

blockchain operates and the type of information you

can get from it. With online blockchain explorers, it

is not possible to see information like what we were

able to find through our queries on our database.

We have come up with ten interesting queries

regarding our data. We have queries that would be

useful in a forensics situation, queries that give you

insight into the massive amounts of money that are

transferred around on the Ethereum blockchain on a

regular basis and many others.

We put our queries through many optimizations in

order to make them as fast as possible so that getting

information that the user would want didn’t take

hours.

The queries we have are:

Query 1

 The first query was to get the top 10 addresses who

have sent the highest number of transactions.

Query 2

 The second query was for addresses containing

“eda7b6” that received deposits.

Query 3

 The third query we had was for addresses who

have sent the most Ethereum.

Query 4

 The fourth query we had was for information

about blocks between January 1st, 2020, and January

8th, 2020.

Query 5

 The next transaction was for average gas per

block.

Query 6

 Our sixth query returned information about

mining difficulty of blocks.

Query 7

 Our seventh query was the top 10 highest

transactions sent.

2

Query 8

 This query was our favourite query we made on

our database. It returns transaction records that have

the same sender and recipient addresses. This is

interesting because when the sender and recipient

addresses are the same, usually this is to cancel a

previous pending transaction.

Query 9

 Our second to last query was to find the month and

year that had the highest average transaction fees.

Query 10

 Our final query was to get the address of the

person who paid the most in transaction fees.

II. DATA

 Our biggest table, transactions, is 22.17GB and

contains 43,473,476 rows of data and has twelve

columns. The other table, blocks, is 486.37MB and

contains 439,334 rows of data and has 18 columns.

 The computer the database was hosted on has a

Ryzen 5825U (8 core, 16 thread) processor, 16GB of

4000MHz DDR4 RAM. The data was stored on a

PCIe 3.0 NVMe Drive and the operating system is

Fedora 36. The database management system used

for our queries was SQLite3 through the command

line.

III. EXPERIMENTS

Query 1

 This query took an average of 101.429 seconds to

return our results. To optimize the query, we created

an index on the from_address attribute and ran the

query again to see if there were any improvements.

Query 2

 The average time for this query to run was 58.844

seconds. Putting an index on the to_address attribute

was the only optimization we could find for this

query.

Query 3

 The query took 109.496 seconds on average. Our

first attempt at optimizing this query was to put an

index on from_address. Then we added value to the

index for our second attempt at optimizing it.

Query 4

 The query took 57.480 seconds to complete before

our optimizations. This query we had many theories

of ways to optimize it. First, we put an index on the

WHERE part of the query. Next, we tried to get the

number of transactions from joining the transaction

and block tables. Then we realized that all the

information being returned in this query was

available in the blocks table, so we rewrote the query

to be used purely on the blocks table, and then put an

index on it to improve it further.

3

Query 5

 This query took about 62 seconds to run before we

attempted to optimize it. Our optimization attempt

was to join transactions with blocks and get the

number of transactions from the blocks table instead

of counting.

Query 6

 This was a fast query to start with only taking 1.9

seconds, but we wanted to try to improve it. Seeing

as difficulty was used in all the aggregate functions,

we started by putting an index on only difficulty. Our

second optimization we attempted was to put the

other two attributes, miner and number into the index.

Query 7

 Our first optimization was to decrease the number

of attributes that were being returned. So, we

removed block_number and the hash. The other

proposed optimization we had for this query was to

put an index on the ORDER BY attribute.

Query 8

 With the query taking over a minute to run each

time, we wanted to optimize our favourite query a

little bit. So, we decided to put two indices on the

transactions table, one on from_address and one on

to_address.

Query 9

 This query took a long time considering how

simple it seemed, so we believed that we could

decrease the run time down from over 98 seconds.

Our idea was to put an index on the block_timestamp.

Query 10

 This query originally took over 100 seconds on

average so we believed that we could decrease this

significantly. Our attempt at optimization was to put

an index on from_address and see if that would be

better.

IV. ANALYSIS

Query 1

 After creating an index on the from-address

attribute, the average time went down to 6.408

seconds to return the results. The index on from-

address reduced our query’s run time by almost 94%.

Query 2

 The index on the to-address attribute resulted in an

88% decrease in the time to return our results. The

query only takes 6.657 seconds to run now.

Query 3

 Our first attempt optimizing this query did not

work out as we thought it would. We assumed since

the query was grouped by from_address, an index on

from_address would speed up the query. Instead, it

added on average 40 seconds to each run time. So, we

added the other attribute that the query returned,

value, to the index and ran it again. This time we saw

4

the improvement that we expected, bringing the run

time down to 7.154 seconds.

Query 4

 The first optimization we attempted was to put an

index on block_timestamp. This resulted in an 86%

decrease in running time. But we knew we could

improve the query even more. So, we tried to get the

number of transactions per block by joining the two

tables. In retrospect, we should’ve known this

would’ve resulted in a larger number of tuples for our

query to look through. This optimization backfired

and ended up taking over a minute longer. Finally,

realizing that all the information could be gathered

from the blocks table alone. After changing the query

to be only on the blocks table, the query now ran in

just under 3 seconds. Knowing we could improve this

further, we put an index on the timestamp of the block

table. Bringing the run time down to a staggering

0.316 seconds. This is over a 99% improvement in

run time.

Query 5

 Attempting to optimize the query by joining

transactions with blocks ended up not working as

well as we thought. Joining the two tables together

increased the number of tuples the query had to

check, which lead to an increase of 10 seconds in run

time.

Query 6

 The first optimization of an index on difficulty

didn’t work out, its improvement was less than 1%

which is not noticeable. We chalked this

improvement up to being related to the conditions of

the computer the queries were running on. The next

optimization we tried was to add miner and number

onto the index, this resulted in a improvement to 33%

of the original time. Bringing the query down to 0.629

seconds.

Query 7

 By removing block_number and hash from the

selection part of our query, it improved the runtime

by about 5%, but this was within our margin of error

on original run times, so we discarded this

improvement. We then went to the index

optimization. By placing an index on the order by

attribute, we were able to make the query basically

instant. Taking only 10ms to return our information.

This was by far the biggest improvement we saw

from a query. This type of run time for a query was

amazing to us. Being able to get information out of a

22.17GB table and have it output to us within 10ms,

an unnoticeable amount of time, was amazing.

Query 8

 Our optimizations of this query were

underwhelming. We put an index on from_address

and to_address thinking the WHERE condition

would be sped up significantly, but it’s run time was

5

only brought down by about 50% to the 30 second

range.

Query 9

 Our attempt at optimizing this query did not work.

Putting an index on block_timestamp increased the

time the query took to almost two minutes. This was

unexpected which led us to analyze the query further.

Looking at the query, it is ordered by an aggregate

function. So, we think that is why the index did not

improve the time since, like we learnt in class,

aggregate functions generally require a table scan and

maintaining running info.

 Since the index didn’t work to optimize the query,

we did some analysis on how the query was

structured.

 It takes 3 attributes and does a table scan.

For each row of data, the query converts the

block_timestamp into a year and month.

 The group by clause then groups the rows

together if they have the same year and month.

Since the time span is 20 months, there are 20

groups that need to be stored in memory.

Assuming month and year are 2 bytes each, and

the cumulative sum of transaction fees is 8

bytes (floating point), and the number of

transactions to be 2 bytes. Each group will take

up (2 + 2 + 8 + 2) = 14 bytes. For 20 groups, 20

x 14 = 280 bytes. Finally, within each group,

the average transaction cost is calculated.

 The order by clause then sorts these groups

in descending order based on highest average

transaction cost.

Query 10

 To optimize our last query, we put an index on

from_address. The optimization was slightly

underwhelming, since it decreased the run time to 70

seconds, which is still unreasonably long for someone

to wait for information. We think this because, like

query 9, query 10 is ordered by an aggregate function

causing the query to require a table scan.

V. DISCUSSION

 One thing we wondered about was in our

optimization for query 8. Since SQLite uses B+ trees

for its indices and our WHERE condition was an

equality. We think if we could do a hash index on the

same two attributes would’ve resulted in a bigger

improvement in runtime. If using the figures provided

to us in class of an average of 1.2 I/Os for finding

records using a hash index and 3 I/Os for a B+ tree,

we think this could’ve brought the runtime of this

query down further to about 12 seconds.

 Since none of our queries had complex WHERE

conditions on them, one thing we wondered about

was trying to convert a query into conjunctive normal

form and seeing what kind of improvement we could

see like that. So, we ran an extra query.

 The extra query we ran returned all the columns

from transactions where the block number was in a

6

range, or the gas was in a range. We ran this query

five times in the form of (A and B) or (C and D) and

the average time was around 13.5 seconds. Then we

converted the query into conjunctive normal form

and ran it again. The average time decreased to

around 13 seconds. Normally, I would assume that

the difference could be disregarded and assume that

with more trials the numbers would converge. But

knowing that the DBMS converts the query into

conjunctive normal form to begin with, this may be a

real improvement that we saw here.

 It is interesting to see how just changing how the

query is written changes how fast the query takes to

return results.

 While analyzing the queries, we wondered how

our system used buffer pages. Since our test computer

has 16GB of RAM, and if 70% of the memory can be

used as buffer space for the queries, we say that

11.2GB of memory is available to use as buffer pages.

If each page is 4KB, then the amount of buffer pages

we have is 16GB/4KB = 2,800,000 buffer pages. This

is significantly larger than the number of buffer pages

we used for examples in class.

 Overall, we optimized seven out of our ten

queries, with query 7 being the best example of our

optimizations.

VI. REFERENCES

“Conjunctive normal form,” Wikipedia, 23-Dec-

2022. Available:

https://en.wikipedia.org/wiki/Conjunctive_norma

l_form.

“Insight into the SQL server buffer cache,” SQL

Shack - articles about database auditing, server

performance, data recovery, and more, 29-Oct-

2020. Available:

https://www.sqlshack.com/insight-into-the-sql-

server-buffer-cache/.

M. A.I., “Ethereum blockchain,” Kaggle, 03-Jul-

2021. Available:

https://www.kaggle.com/datasets/buryhuang/ethe

reum-blockchain.

SQLite, “Sqlite/sqlite: Official git mirror of the

sqlite source tree,” GitHub. Available:

https://github.com/sqlite/sqlit

