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Asymmetric Cell Division as a Mechanistic
Contributor to Cancer with a Focus on

Glioblastoma

Rebecca Golin'2, Genia Bekker2* and Hengrui Liu®4a*

Abstract

Asymmetric cell division (ACD) has a crucial role in normal cellutar differentiation and tissue homeostasis.
The mechanisms underlying ACD are highly intricate and involve coordinated molecular and cellular pro-
cesses. Dysregulation of ACD has been implicaied in various human cancers by contributing to malignant
tumor initiation, progression, metastasis, and treatment resistance. Although numerous studies have explored
the relationship between ACD and cancer, many questions remain unanswered. This literature review aims
io evaluate the potential biological significance of ACD in cancer with a focus on the diagnostic and prog-
nosiic relevance to glioblastoma, A comprehensive PubMed search was conducted from 2008 to the present
using keywords, such as “asymmetric cell division”, “cancer”, “glioblastoma”, and “tumorigenesis”. The
sclected articles were analyzed to assess ACD-related data and the clinical correlations. Special emphasis
was placed on glioblastomas. an aggressive brain tumor with limited improvement in patient survival over
recent years. The review underscores the crucial role of ACD in normal tissue homeostasis and ACD dysveg-
wlation in cancer initiation, progression, therapeutic resistance, and metastatic potential. Understanding how
ACD contributes to cancer heterogeneity may provide insights into innovative strategies for tumor detection,
monitoring, and treatment. Future research into the molecular mechanisms governing ACD could facilitate
the development of novel glioblastoma therapies aimed at restoring or modulating ACD processes to improve

patient outcomes.
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introduction

Cancer is characterized by uncontrolled
cell growth, invasion of surrounding tis-
sues, and in many cases, metastasis to
distant organs | 1]. For these reasons, can-
cer remains one of the most significant
challenges in modern medicine. Among
the diverse array of cancers, glioblastoma
(GBM) stands out as the most aggressive
and lethal primary brain tumor in adults
[2]. GBM is marked by rapid prolifera-
tion, extensive infiltration into surround-
ing brain tissue, resistance to conventional
therapies, and poor patient prognosis and is
classified as a World Health Organization
(WHO) grade TV glioma {3, 4].
Asymmetric cell division (ACD), a con-
served mechanism for generating cellular
diversity, has recently gained attention for
its role in GBM [5]. Dysregulated ACD
may contribute to germline stem cell per-
sistence [6], tumor growth [7], therapeutic
resistance [5, 8], and recurrence [9, 10}
ACD research has provided insights into
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tumor growth and treatment resistance and
highlighted potential therapeutic targets
|5]. This paper aims to close gaps in under-
standing the relationship between ACD
and tumorigenesis by focusing on abnor-
mal ACD mechanisms that contribute to
malignancies.

A literature review was performed
using PubMed publications from 2010 to
the present. The aim of the review was to
provide insights into potential therapeutic
strategies for GBM by analyzing regula-
tory control clements.

Narrative literature
review approach

A narrative literature search was performed
in PubMed to identify studies exploring
ACD mechanisms in GBM. The search
was limited to English-language articles
published between January 2010 and April
2025 using the keywords, “glioblastoma”
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AND “asymmetric cell division”. The initial query returned
12 records. Titles and abstracts were screened for relevance
to GBM-specific ACD pathways and regulatory proteins.
Studies lacking direct mechanistic data or focused solely
on non-glioma models were cxcluded. Five key articles that
provided insights into molecular regulators (e.g., TRIM3 and
BMP4-SMAD signaling) and their effects on GBM stem-
like cell division were selected for detailed discussion after
screening. A formal PRISMA flow diagram was not included
given the narrative review format. Instead, the selection pro-
cess described above to ensure transparency while allowing
focused, mechanistic synthesis of the most pertinent GBM-
ACD literature.

Discovery of ACD

Edwin Conklin (1863-1952), an American biologist, was
the first to observe that during the development of ascidian
embryos, a distinct yellow-colored cytoplasm is unevenly
distributed during cell division, leading to different cell fates
in the daughter cells [11]. This discovery provided the first
demonstration of ACD. This historical observation under-
scores the fundamental importance of cytoplasmic determi-
nants in cell fate decisions, a concept that has since been
recognized as a cornerstone in developmental biology [12].
Despite Conklin’s observations over a century ago, the
mechanistic understanding of ACD has progressed slowly.
While the detailed mechanisms of ACD are beyond the scope

Symmetric cell division

of this paper, the focus will be on the relevance of ACD to
cancer initiation, tumor growth, progression, and potential
therapeutic strategies. Understanding the relationship between
ACD and cancer is crucial because dysregulation has been
implicated in cancer stem cell (CSC) maintenance and thera-
peutic resistance, especially in aggressive cancers like GBM.

The mechanism underlying
ACD

A key principle of ACD is the establishment of distinct sib-
ling cell fates by mechanisms linked to mitosis (Figure 1).
Figure 1 illustrates the fundamental differences between
symmetric cell division (SCD) and ACD. SCD results in two
daughter cells with identical fates that is achieved through
the equal distribution of cell fate determinants, as shown
in panel (a). In contrast, panel (b) depicts ACD, in which
daughter cells inherit different amounts or compositions of
cell fate determinants, resulting in distinct cell fates {13].
Asymmetric fate can be established through exposure
to cell-extrinsic signaling cues. Alternatively, asymmetric
inheritance of cell-intrinsic cell fate determinants, such as
proteins or RNA, can induce asymmetric cell fate decisions
[14]. ACD, a process through which a single cell divides into
two distinct daughter cells, is critical for maintaining healthy
stem cell populations and tissue integrity. ACD is particu-
farly important within stem cell populations {15]. Stem cells
are specialized cells capable of dividing and differentiating

Asymmetric cell division

Cell Fate
Determinant

Identical Cell Fate

Stem Cell

Daughter Cells

Cell Fate Cell Fate
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Figure 1 Symmetric versus asymmetric cell division. During a SCD [43].
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into various cell types, which contributes to tissue renewal
and repair. Stem cells generate diverse cell types, such as
blood, bone, dand muscle cells, while simultaneously self-
renewing to maintain the stem cell population. Importantly,
stem cells have a crucial role in cancer treatment, especially
in hematologic malignancies like blood cancers, as well as in
regenerative medicine [ 16].

The discovery of diagnostic and therapeutic strategies
depends on unlocking the mechanisms underlying ACD
together with its cancer-related functions. Celil differentia-
tion, tissue homeostasis, and cancer development are inti-
matcly linked to the proper regulation of ACD. Dysregulation
of this process can lead to tumorigenesis and therapeutic
resistance, underscoring the importance of ongoing research
in this ficld.

Relevance of ACD and cancer

ACD and tumorigenesis

Cancer is a complex, multifaceted disease characterized by
uncontrolled cell growth and differentiation [17]. Cancer
arises through the stepwise acquisition of genetic mutations
that provide a survival advantage to affected cclls. The cell
cycle has been one of the most studied mechanisms in can-
cers 118, 19]. Many proteins well known for roles in cell

Histones H3.1/3.3-SNAP

cycle control and DNA repair, such as CDK2 [20} and
RADSI [21], as well as factors like CNIH4 [22] and AIMP1
[23] that influence signaling and trafficking, have more
recently been implicated in the regulation of ACD in can-
cer. Dysregulation of ACD in GBM stem-like cells is driven
by loss of the spindle-orientation regulator, TRIM3. BMP4-
mediated shifts in fate determinant localization and altered
distribution of receptors, such as EGFR and p75NTR, con-
tribute directly to tumor initiation, heterogeneity, and treat-
ment resistance {24]. ACD is critical for maintaining tissue
homeostasis and generating cellular diversity in normal tis-
sues [25]. Stem cells dynamically switch between SCD and
ACD under physiologic conditions to preserve homeostasis
[26]. This process requires highly coordinated intra- and
extra-cellular signaling events. When dysregulated, however,
ACD increases the risk of malignant transformation [27].

ACD in stem and progenitor cells

Stem and progenitor cells are defined by a self-renewal
capacity and ability to produce differentiated progeny
(Figure 2). A delicate balance between these processes is
essential for developmental ceillular diversity and adult tis-
sue maintenance [28}. Dysregulation of ACD disrupts this
balance, potentially driving tumorigenesis by producing
aggressive, fast-dividing daughter cell clones that are often
resistant to treatment.
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Emerging evidence supports the notion that ACD func-
tions as a tamor-suppressive mechanism. Disruption of ACD
in Drosophilc neuroblasts has been associated with abnormal
proliferation and genomic instability, suggesting a potential
role in early carcinogenesis {29]. Studies have indicated that
oncogenic mutations can hijack ACD pathways, disrupting
mechanisms responsible for cell proliferation, cycle progres-
sion, and genomic integrity.

For example, Mukherjee et al. demonstrated that CSCs,
which drive tumor initiation and propagation, often rely on
symimetric divisions. Loss of ACD may thus result in tissue
dysregulation and contribute to the development and growth
of tumors. Aberrant ACD also promotes stem-like cell accu-
mulation and limits differentiation, which reinforces cancer
stemness [30, 31].

ACD and cancer treatment
resistance

Dysregulation of ACD not only skews the balance between
stem-like and differentiated progeny but also endows
one daughter cell with molecular features that drive treat-
ment resistance (Figare 1A,B). The PAR3-aPKC complex
becomes phosphorylated and localizes to the apical cortex
under normal ACD, which then activates Wnt/3-catenin
signaling and maintains stemness. The basal cortex con-
centrates Numb (inactivated by aPKC phosphorylation) and
Miranda, which recruit differentiation factors (Prospero and
Brat) to suppress stem-cell programs via transcriptional and
translational repression. Aberrant aPKC activation or loss of
cortical polarity proteins in cancer leads to missegregation
of these determinants; both daughters may inherit stem-
ness signals or conversely may not, which disrupts tissue
homeostasis.

Mislocalized PAR6/aPKC enhances Notch activity
through Numb inactivation in GBM CSCs, promoting
symmetric self-renewal and expanding the resistant pool.
Simultaneously, disruption of the p53-MDM2 axis, often
through upregulation of the p53-inhibitors PON or miR-34a,
impairs apoptosis in the basal daughter cell, further biasing
survival. Hitomi et al. directly demonstrated that ACD pro-
duces one daughter enriched for EGFR and p75NTR, which
exhibits heightened resilience to temozolomide and radia-
tion, while the sibling remains sensitive [27].

Moreover, key repair and cell-cycle regulators, such as
RADS! [21} and CDK2 [20], are preferentially retained in
the resistant daughter following spindle-orientation defects
driven by TRIM3 loss, equipping the resistant daughter with
superior DNA-damage response capacity and proliferative
drive. Thus, ACD dysregulation creates a self-reinforcing
loop of resistance; polarizing signals go awry, fate determi-
nants mispartition, survival pathways dominate, and resist-
ant clones expand.

Restoring ACD fidelity, whether by correcting corti-
cal polarity through TRIM3 restoration, modulating aPKC
activity to re-establish proper PAR3/Numb localization, or
leveraging BMP4 to bias divisions toward differentiation,
could rebalance cell-fate outcomes. Tracking asymmet-
ric distribution of EGFR/p7SNTR or nuclear p53 status at

the single-cell resolution may serve as early biomarkers of
emerging resistance. By targeting the molecular circuitry of
ACD, we may not only curb tumor heterogeneity but also
sensitize GBM and other solid tumors to existing therapies
(Figure 3).

Hitomi et al. discovered that ACD generates progeny with
increased growth factor receptor expression, such as EGFR
132, 33] and p75NTR [34], conferring greater therapeutic
resistance in glioblastoma CSCs. Similarly, resistance to
radiation therapy (RT) in head and neck cancers has been
linked to accelerated stem cell division and impaired ACD,
underscoring the relevance of ACD dysregulation in cancer
treatment resistance [27).

ACD in GBM

Despite these promising mechanistic insights, translating
“ACD therapy” into the clinic faces two major chalienges.
First, BMP4 is a large cytokine with poor blood~brain bar-
rier (BBB) permeability [35]. Strategies under investiga-
tion to enhance CNS delivery include convection-enhanced
delivery, nanoparticle carriers engincered for receptor-medi-
ated transcytosis, and focused ultrasound to transiently open
the BBB. Second, traditional cell lines fail to capture the
full heterogeneity of GBM. Patient-derived organoids and
orthotopic xenografts now serve as more faithful preclini-
cal platforms to evaluate ACD-modulating interventions.
These models allow assessment of intra-tumoral drug pen-
ctration, off-target effects, and cfficacy across diverse GBM
genetic backgrounds, bridging in vitro findings to in vivo
proof-of-concept.

Importantly, TRIM3, a brain-enriched E3 ubiquitin ligase,
has emerged as a GBM-specific regulator of ACD. Whereas
TRIM3 expression is markedly reduced in > 80% of primary
GBM specimens, the TRIM3 levels remain comparatively
stable in most non—-CNS tumors {36, 37]. Loss of TRIM3
disrupts mitotic spindle orientation in glioma stem-like cells,
skewing divisions toward symmetric self-renewal and driv-
ing tumor expansion. Restoration of TRIM3 expression in
GBM models re-establishes proper ACD, diminishes stem-
ness marker expression, and suppresses tumor growth. This
tumor-selective vulnerability underscores the therapeutic
promise of targeting TRIM3-mediated ACD pathways in
GBM (Figure 4).

Prospective and future
directions

Molecular mechanisms of ACD

Future research should focus on elucidating the intricate
molecular signaling pathways that regulate ACD, including
the roles of polarity proteins, spindle orientation, and cell-
fate determinants.
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Figure 3 Regulatory mechanisms of ACD in CSCs and the impact on tumor progression {27].

ACD in CSCs

Investigating the relationship between ACD and CSCs could
provide insights into tumor initiation, progression, and resist-
ance to therapies. Identifying molecular signatures of ACD
dysregulation in CSCs may lead to novel diagnostic markers.

Therapeutic targeting of ACD

Developing therapeutic strategies to modulate ACD, such as
restoring ACD in CSCs, holds promise for cancer treatment
[38, 39]. For example, targeting regulators like TRIM3 or
using BMP4-based therapies could be explored further.
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ng/mi., with GAPDH serving as a loading control. BMP4, bone morphogenetic protein 4; PE, phycoerythrin.

ACD dynamics across cancer types

Comparative studies across different cancer types can
uncover cancer-specific and universal aspects of ACD dys-
regulation, potentially leading to broad-spectrum or tailored
therapeutic approaches.

Clinical translation

Translating findings from preclinical models to clinical
applications requires systematic investigation, including the
development of biomarkers for ACD activity and patient
stratification for personalized therapies [40].

Single-cell multi-omics profiling
of ACD heterogeneity and
Al-driven data augmentation

Single-cell RNA sequencing (scRNA-seq) has become a cor-
nerstone of cancer research [41], enabling high-resolution

profiling of tumor heterogeneity and the elucidation of mech-
anisms like ACD in GBM stem-like cells. Leveraging paired
scRNA-seq and single-cell ATAC-seq will enable concurrent
mapping of transcriptomic states and chromatin accessibility
in individual GBM stem-like cells undergoing SCD versus
ACD. This integrative approach can identify gene regulatory
networks and epigenetic modulators that govern division fate,
reveal subpopulations of GSCs with distinct ACD profiles,
and uncover correlations between ACD heterogeneity and
microenvironmental cues [27]. Emerging spatial multi-omics
platforms further allow these analyses to be performed within
intact tumor architecture, enhancing translational relevance
in patient-derived organoid and orthotopic xenograft models.

In addition to these mechanistic and translational priori-
ties, emerging Al-driven strategies, such as generative adver-
sarial networks (GANSs), hold great promise for overcoming
current data limitations in GBM ACD research. GANs can
be trained on scarce RNA-seq datasets to produce realistic
synthetic expression profiles, effectively generating inter-
mediate phenotypic states that are rarely captured in patient
samples and bypassing the ethical and privacy constraints
of human data {42]. By integrating these synthetic profiles
with genuine single-cell ATAC-seq and proteomic datasets,
it becomes possible to train multi-modal GAN architectures
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that reveal the regulatory networks driving SCD versus
ACD in GBM stem cells. Embedding known biological
priors into the GAN training process and validating gen-
erated samples in patient-derived organoid or orthotopic
xenograft models would ensure relevance and reproducibil-
ity. Incorporating GAN-based augmentation into our future
GBM ACD studies thus offers a scalable, standardized
framework for biomarker discovery, mechanistic hypothesis
testing, and ultimately, the development of predictive signa-
tures of treatment response.

Summary

ACD is fundamental to maintaining tissue homeostasis
and cellular diversity [13]. Dysregulation of this process
is implicated in GBM initiation, progression, and treat-
ment resistance. A deeper understanding of ACD molecular
underpinnings may facilitate the development of innovative
diagnostic tools and therapeutic interventions, potentially
improving outcomes in GBM. By prioritizing these research
areas proposed in this paper, scientists can further uncover
the critical roles of ACD in cancer biology and develop inno-
vative strategies to combat malignancies more effectively.
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