💲 🖉 ROS Learning Guide

Code the Future of Robotics.

3

4

5

6

Beginner: ROS Basics

Start with the fundamentals of ROS, including installation, core concepts, and basic commands. Work through introductory tutorials and set up your first ROS workspace.

Simulation Practice

Use simulators like Gazebo to test and refine your ROS robotics skills. Practice building and deploying complete robotic systems in a simulated world.

Further Learning

Explore ROS 2, participate in the ROS community, and contribute to open-source projects to deepen your robotics expertise.

CodingAl

ROS Navigation

Learn about ROS topics, services, messages, and how to control robot movements. Explore ROS navigation stacks and integrate a simulated robot in a virtual environment.

Advanced: Perception & Manipulation

Tackle advanced ROS topics such as machine vision, sensor integration, and robotic arm manipulation. Work on realworld projects with sensors and actuators.

Capstone Project

Apply your ROS knowledge in a project setting by designing, programming, and testing a robotic system from start to finish.

+91 98660 30123 (India) +1 216.777.0334 (USA)

contact@CodingAl.tech www.CodingAl.tech/ROS

Week 1: Introduction to ROS

Session 1: What is ROS? History, applications, and ecosystem Session 2: Setting up Ubuntu & installing ROS (Noetic or ROS 2 Humble)

Week 2: ROS Basics

Session 3: ROS architecture – nodes, topics, messages, master Session 4: Writing your first publisher and subscriber in Python

Week 3: ROS File System & Tools

Session 5: Understanding ROS packages, workspaces, and catkin/colcon build

Session 6: Using core ROS tools: rosrun, roslaunch, rosnode, rostopic

Week 4: Communication & Visualization

Session 7: Custom messages and services Session 8: Visualizing data with RViz

Week 5: Simulations with Gazebo

Session 9: Introduction to Gazebo simulation environment Session 10: Spawning robots and controlling basic movement in simulation

Week 6: Working with Sensors

Session 11: Subscribing to LIDAR, camera, and IMU data Session 12: Intro to sensor fusion basics

Week 7: Robot Control and Navigation

Session 13: Writing basic motion commands (Twist messages) Session 14: Intro to ROS Navigation Stack (localization & mapping concepts)

Week 8: Mini Project & Community

Session 15: Build a mini-project (e.g., TurtleSim obstacle avoidance or line follower)

Session 16: Exploring ROS community resources, repositories, and career paths