
MECENG 100 Final Project Fall 2024

The SmartCycle

By: Team Astro

, ,Nathan Luis Saldana Larry Bermudez Rayme Aquino

mailto:cadshuicho1219@berkeley.edu
mailto:larrybermudez.10@berkeley.edu
mailto:aquinorayme@berkeley.edu

Table of Contents

1 Introduction 2

2 System Design 3

3 Design Methodology 4

4 Communication Protocols 6

5 Outcome and Conclusions 7

6 Code 8

7 Project Video and Presentation 9

8 References 10

1

1 Introduction

More than half of the world's population is unable to ride a bike, especially one that requires

manual gear changes. Despite being more user-friendly, electric bikes with advanced equipment

can be excessively costly with an average price of $1,000. Additionally, commuting with gears

can be dangerous, and bike theft is a common issue on campuses and in urban areas. By offering

non-electric bikes an inexpensive modification that makes them trackable, safe, and simple to

operate, the SmartCycle project tackles these issues. The primary objective of the SmartCycle

project is to use the Internet of Things to develop a smart system that will improve a user’s

safety, convenience, and accessibility. By integrating multiple sensors and actuators including an

OLED Display, accelerometer, GPS Module, keypad, and several DC Motors, the SmartCycle

provides the user with real-time data and automated responses which improves the cycling

experience for all.

2

2 System Design

The SmartCyle uses a multitude of sensors to achieve our goals. Each component was selected

based on accuracy, resolution and performance. Below is a comprehensive list of the components

that were used as well as their individual use:

1. 3 ESP32 Feather V2 microcontroller boards per each member. The first ESP32 was

responsible for controlling a DC Motor to automatically shift the gears of the bike

depending on the incline angle measured by an LSM6DSO accelerometer that was used

as a gyroscope. The accelerometer also sends temperature and the incline angle measured

to the second ESP32

2. The second ESP32’s main function was the UI that used an SSD1306 OLED Screen to

display various data readings. It also controlled the GPS Module so that the user is able to

see their speed, the date, and time on the OLED Screen as well as flashed a red LED light

indicating the incline angle has been exceeded and so a gear shift has occurred. It is also

possible to display the latitude and longitude coordinates obtained from the GPS. Both

the OLED and GPS Module had their own library ensuring its compatibility with the

ESP32 and MicroPython.

3. The last ESP32 was responsible for our locking mechanism controlled by another DC

Motor that incorporated a keypad as well as an email sendout depending on whether the

code to unlock/lock the mechanism was correct. The Keypad also contained its own

library.

3

3 Design Methodology

To demonstrate the SmartCycle we decided on the following considering the limitations imposed

upon us:

- For the locking mechanism we used a 0.96 OLED I2C screen,a 4x4 keypad, DC Motor

with Encoder, and a CAD Design that took the rotational motion of the motor and turned

it into translational motion to clamp onto the wheel. We also have a feature that sends

emails to the user(s) when the bike is unlocked, locked, or an incorrect code is inputted.

- The smaller OLED screen fit perfectly on the breadboard and was still large

enough to show a user what passcode was being inputted. By using I2C we were

able to only use 4 pins and allow for a much simpler design.

- The DC Motor was supplied with a 12V battery that provided the power

necessary to operate the locking mechanism. A smaller motor, and smaller power

source would not have been sufficient to open/lock the mechanism.

- We originally wanted to attempt to implement a fingerprint sensor that would

unlock the device, however, after much consideration, we decided upon the

keypad because it allowed us to have 16 input values and only use 8 GPIO pins.

Furthermore, if were to manufacture the SmartCycle in a commercial setting this is what we

would change or improve:

- Ideally, we would combine the functionality of the keypad and OLED into a single larger

OLED screen. This OLED screen would have a touch screen capability, working

similarly to a phone’s lock screen.

4

- The CAD design for the clamping mechanism would be redesigned to be smaller and fit

better around tires. Instead of it being completely 3D printed, we would use different

manufacturing processes as well as different materials such as aluminum so that there is a

balance between strength, manufacturability, cost, and also durability.

- Instead of sending an email, ideally we would have a method to send push/notifications

to a phone, asking to receive verification confirmation messages.

5

4 Communication Protocols

The communication protocols between the ESP32’s were learned completely from the course.

Implementing ESPNOW that was introduced from Lab 4, we set up the Sender and Receiver

ESP32 program between the ESP32 detecting the movement of the accelerometer and the other

that was displaying information on the OLED Screen. The ESP32 that is connected to the

accelerometer sends information on the incline detected and its surrounding temperature every

second. The ESP32 connected to the OLED screen then receives this information and displays it

in the OLED and updates in real time as new data is received. The ESP32 controlling our locking

mechanism uses SMTP (Simple Mail Transfer Protocol) to communicate with the user(s) based

on the code input. When a specific passcode is inputted into the keypad of the ESP32 it will send

an email to the user stating whether the bike was locked, unlocked, or incorrect code was

inputted.

6

5 Outcome and Conclusions

After successfully implementing and debugging our code, 3D-Printing the locking mechanism

and assembling each ESP32 onto the bike we went outside to test each component ensuring the

OLED Screen updated in real time according to the GPS Data and the data being received by the

accelerometer mentioned earlier. It was also crucial that our locking mechanism functioned

properly and so it needed to be mounted strategically to ensure it did not move while operating

as that was causing us some issues. These issues could have been because of the lead screw we

used to convert rotational movement into translational movement through the motor. The lead

screw was also 3D-Printed along with the slider that moved forward and black to close the

mechanism. By 3D-Printing threads as opposed to having them machined and the hole tapped, it

may have caused issues with the sliding motion. Although we were able to successfully mount

and test it, in the future we may invest more time into designing a new motor housing and

mounting structure for it. The gear shifter worked very nicely and did make riding the bike much

easier when going up inclines through the automatic upshifts as well as going downhill with the

downshifts. We were also able to demonstrate our knowledge of course material through the

implementation of techniques learned through the labs such as ESPNow Communication, I2C, as

well as DC Motor control and encoding. Overall we were all extremely happy and proud of our

work as we were able to create a project we thought of and designed completely ourselves and

believe it could be an even better project given more resources.

7

7 Project Video and Presentation

Project Slides

8

https://docs.google.com/presentation/d/1QzeoA4OWFuwQnAD5E9xOus5ZQRHsdjY1xb4_vYivsYY/edit?usp=sharing

8 References

[1] Luiz. (2024, August 15). MicroPython: ESP32 with NEO-6M GPS module. Random Nerd
Tutorials. https://randomnerdtutorials.com/micropython-esp32-neo-6m-gps/

[2] Festing, D., Santos, S., Maximiliano, Aart, Charles, Javi, Wouters, M., & Diego. (2023,
January 26). MicroPython send emails with esp32/ESP826. Random Nerd Tutorials.
https://randomnerdtutorials.com/micropython-send-emails-esp32-esp826/

[3] Medienverbinder, Santos, S., Ng, M., 9a3xz, M., Filip, Dehmel, M., Caneda, E., Tim, Michal,
Paul, S., Escasa, D., Till, Maurizio, Antonella, Eyal, Cyril, Paul, Serhii, Ezekiel, … Sina. (2023,
July 5). MicroPython: OLED display with esp32 and ESP8266. Random Nerd Tutorials.
https://randomnerdtutorials.com/micropython-oled-display-esp32-esp8266/

[4] PyPI · the python package index. (n.d.). https://pypi.org/project/micropython-simple-keypad/

9

https://randomnerdtutorials.com/micropython-esp32-neo-6m-gps/
https://randomnerdtutorials.com/micropython-send-emails-esp32-esp826/
https://randomnerdtutorials.com/micropython-oled-display-esp32-esp8266/
https://pypi.org/project/micropython-simple-keypad/

