MDCAT MCQS WITH EXPLANATION.

CHAPTER HYDROCARBONS.

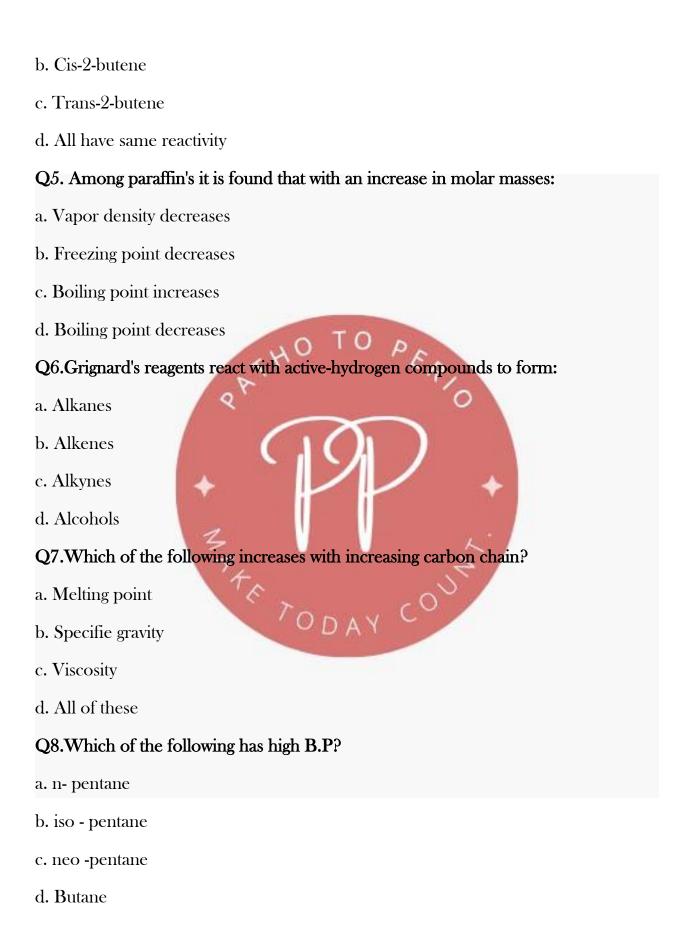
PART1 CHEMISTRY.

"MCQ's"

Q1. Combustion of alkanes in the presence of very limited oxygen produces:

- b. C
- c. CO2
- d. None of these

Q2. The small angles of cyclopropane indicate that overlap between orbitals is:

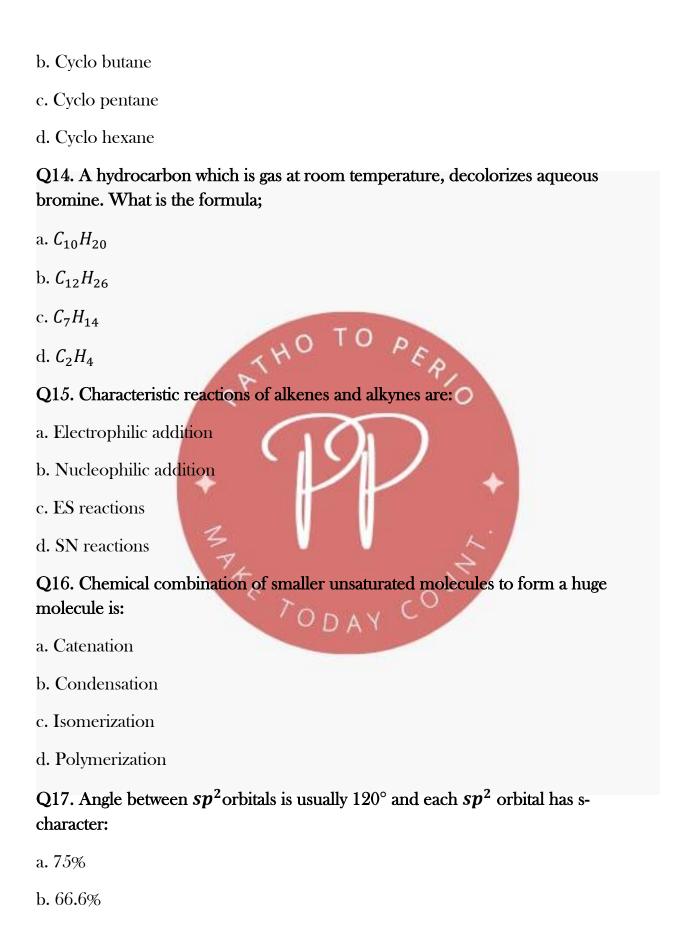

- a. Maximum
- b. Not maximum
- c. Normal
- d. None of these

Q3. Which one has the greatest angle strain?

- a. Cycloprpane
- b. Cyclobutane
- c. Cyclopentane
- d. Cyclohexane

Q4. Which of the following is least reactive?

a. 1 - butene



Q9. Which one has maximum angle strain? a. Cyclopentane b. Cyclobutane c. Cyclopropane d. Cyclohexane Q10. Methane, ethane, propane, butane are: a. Gases b. Solids c. Liquids d. Only methane is gas organic compound. Q11. Furan is _ a. Homocyclic b. Aromatic c. Heterocyclic d. Acyclic Q12. As the number of carbon atoms in the homologous series of alkane increases, will be decrease?

- a. Density
- b. Enthalpy change of vapourization
- c. Number of isomers
- d. Vapour Pressure

Q13. Which of the following is more stable?

a. Cyclo propane

- c. 50%
- d. 33.3%

Q18) The order in the ease of dehydration of alcohol is:

- a. Tertiary> Secondary > Primary
- b. Primary Secondary > Tertiary
- c. Secondary > Primary > Tertiary
- d. Primary > Tertiary > Secondary

Q19. The order of reactivity of halogens towards alkene is:

a.
$$F_2 > I_2 > Cl_2 > Br_2$$

b.
$$I_2 > Br_2 > Cl_2 > F_2$$

c.
$$F_2 > Cl_2 > Br_2 > I_2$$

d.
$$Cl_2 > Br_2 > I_2 > F_2$$

Q20. Which of the following test is used for location of C = C bond in alkene.

- a. Br_2 Test
- b. Ozonolysis reaction
- c. Both of these
- d. None of these

Q21. Point out the most reactive Hydrocarbon:

- a. Alkane
- b. Alkene
- 6. Alkyne
- d. All of them.

Q22. The isomers of a substance must have same:

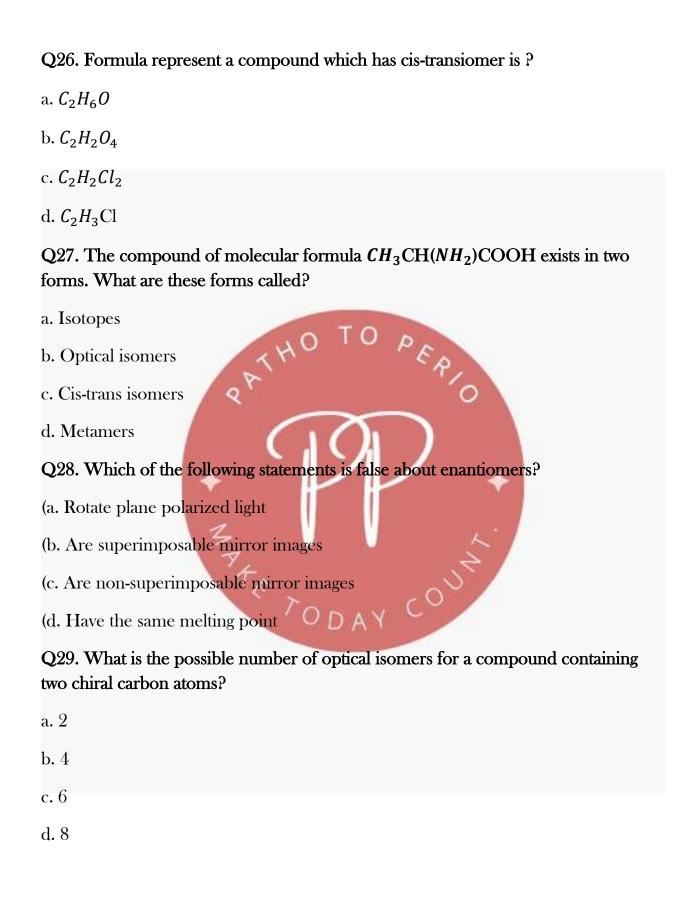
- a. Chemical properties
- b. Molecular mass
- e. Structural formula
- d. Functional groups

Q23. What is the possible number of optical isomers for a compound containing "n" dissimilar asymmetric carbon atoms?

- a. n^2
- b. 2^{n}
- c. n+1
- d. n+2

Q24. What is the number of isomers of $C_2H_2Br_2$ including cis-trans isomers?

- a. L
- b. 2
- **c.** 3
- d. 4


Q25. (See the pic)

25.

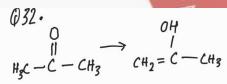
Number of optical isomers of tartaric ocid will be:

Tartaric acid has the structure

- A) 2
- **B** 4
- ©5
- Ø 8

Q30. (See the pic)

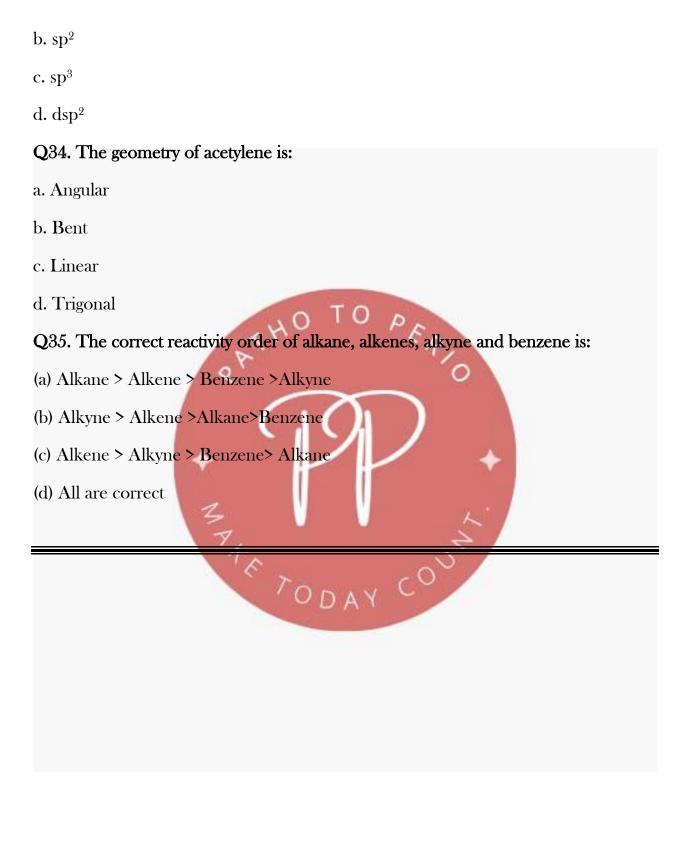
Q30. Which of the following is optically active?


a.

- b. CHCI3.
- c. CH3 CH2 COOH
- d. CH3 CH2 OH

Q31. Isomerism exhibited by acetic acid and $HCOOCH_3$ is:

- a. Positional
- b. Geometrical
- c. Chain
- d. Functional


Q32. (See the pic)

are example of

- a. Optical isomerism
- b. Metameism
- c. Tautomerism
- d. Geometric isomerism

Q33. The molecule of acetylene possess which hybridization?

"EXPLANATION OF MCQ's"

MCQ's	Correct	EXPLANATION
No	Option	
1.	В	Combustion of alkane in very limited supply of oxygen produces
		carbon paste, H ₂ O and heat.
		Alkane+ $O_2C \rightarrow H_2O$ +heat.
2.	В	Small angle in cyclopropane means large angle strain. Due to
		large angle straw orbitols do not overlap effectively and
		cyclopropane molecule is unstable.
3.	A	Cyclopropane has maximum angle strain.
4.	С	Trans-2-butene is more stable and least reactive. It produces the
		least heat of combustion.
<i>5</i> .	С	As the molar masses increases, the length of the chain increases
		and more attractive forces develop in them thus its boiling point
		increases. Straight change paraffin's have higher boiling point than branched.
6.	A	point than branched.
7.	D	With the increase of carbon chain, the molecule weight as well as
/.	D	force of attraction is increase therefore melting point, specific
		gravity and viscocity are reagularly increased.
8.	A	n-alkane has higher boiling point as compared to iso-alkane and
		neo-alkane because in n alkane the area of contact is very high
		due to which the force of attraction is very high and hence have
		high boiling pont as compared to iso and neo-alkane.
9.	C	Due to small ring size the deviation of angle value is more than
		the normal angle value (109.5") therefore it shows maximura
		angle strain.
10.	A	The first four member of alkanes are gaseous in nature. C_4 to C_{18}
	6	are liquids and C_{18} onwards are solids.
11.	С	It is a heterocyclic compound because it contains one hetero
		atom (oxygen) in the ring.
		Foran
12	A	Vapor pressure decreases as the number of carbon atoms
		increased in alkane molecules due to increase in molecular

		weight greater attractive forces develop between them and vapour
		$\frac{1}{intermolecular\ covalent\ forces}$
13.	С	Due to very small ring strain in cyclohexane, it is very stable. As
		the ring size increases the angle strain decreases.
14.	D	The first three members of hydrocarbons belonging to alkene
		family are gaseous in nature while higher are liquids and solids.
		So, in the given hydrocarbons only C_2H_4 , is gascous in nature and
		decolorized bromine water due to presence of double bond.
15.	A	Unsaturated compounds like alkenes and alkynes undergo
		electrophilic.
16.	D	The process in which the monomer molecules reacting together
		to form polymer chain or three-dimensional network is called
1 =	.	polymerization.
17.	D	sp ² orbital has 33.3% s character.
18.	A	The rate of dehydration is related to the ease of formation of
		carbocation the ease of formation of carbocation is
		Tertiary > Secondary > Primary, so the alcohal which produces
		tertiary carbocation undergo dehydration easily then secondary
		and then tertiary, So the ease of dehydration of alcohal is 3° alcohal > 2° alcohal > 1° alcohal.
19.	С	The reactivity of halogen towards alkene decreases down the
13.		group. Fluorine is the most reactive and iodine is least reactive.
20.	В	By studying the product of ozonalysis we can determine the
_ = 0 0		position of double bond in alkene.
21.	В	Alkene is most reactive due to the presence of weak localized r-
		bond as compared to r-bond of alkyne and strong
		sigma bond in alkane.
22.	В	Isomers must have same molecular mass due to presence of
		same number of atoms, same nature of atoms.
23.	В	The total number of possible optical isomers containing "n"
		dissimilar asymmetric carbon atoms can be
		determined by formula 2^n .

24.	С	Br $C = C$ H Br $C = C$ H Br H
		Cis - 1,2- dibromo trans 1,2 dibromo ethene H 1,2-dibromo ethene
25.	В	According to the " 2^n " rule it form four isomers because in tartanic acid there are two chiral carbon so $n = 2$ according to formula $2^n = 2^2 = 4$ isomers.
26.	C	For cis-trans isomerism two conditions must be satisfied(i) There must be restricted rotation about doublebond-(ii) there must be two non-identical groups on each double bonded carbon atom. These two conditions only satisfied by $C_2H_2Cl_2$. Q26- $C_1 \longrightarrow C_2 \longrightarrow C_3$ $C_2 \longrightarrow C_4 \longrightarrow C_4$ $C_3 \longrightarrow C_4 \longrightarrow C_5$ $C_4 \longrightarrow C_4 \longrightarrow C_5$ $C_5 \longrightarrow C_6 \longrightarrow C_6$ $C_6 \longrightarrow C_7$ $C_7 \longrightarrow C_7$
27.	В	The compound CH_3 CH(NH_2)COO contain an asymetric carbon and hence will show optical isomerim

		COOH R NH2 Mirror
28.	В	Enantiomers are sterio isomers that are mirror images of each other which are non-superimposable.
29.	В	According to the formula 2^n total number of optical isomers having number of chiral carbon two is $2^n = 2^2 = 4$.
30.	A	Q 30. Due to the presence of chiral carbon in OH It is optically active.
31.	D	Acetic acid has — C—OH functional group and ester has — C—O—R functional group. They have same molecular but different functional group.
32.	С	It is keto-enol isomerism in which the two isomers are in dynamic equilibrium.
33.	A	The molecule of acetylene undergo sp hybridizaion according to the formula. Hybridization Lone pair number of atoms attach to the central atom =2+0=2. The correct option is sp.
34.	С	As in acetylene the carbon atom is sp hybridized. So the geometry of acetylene is linearH—C=C—H.

35.	С	Among alkane, alkyne, alkene and benzene, alkane is less
		reactive because it contains only sigma bond which is stronger
		and difficult to break. While alkene and alkyne contains localized
		zr-bond. Benzene contain delocalized r-bond, that makes it least
		reactive. The bond of alkyne is stronger than the r-bond of
		alkene. So the correct order of reactivity is Alkene Alkyne >
		Benzene > Alkane.

