
C and C++ Combined Programming Syllabus

Module 1: Introduction to C and C++

Module 2: Basic Syntax and Data Types

Module 3: Control Flow and Functions

C/C++ Language
SecurePath Tech Institute

Contact : +91 9971000727 Instagram : @securepathtechinstitute LinkedIn : www.linkedin.com/in/securepathtechinstitute

1. Overview of C and C++
History and differences between C and C++
Why learn C and C++?
Applications of C and C++ in software development, embedded systems, game
development, etc.

2. Setting Up Development Environment
Installing C and C++ compilers (e.g., GCC, MinGW)
IDEs: Code::Blocks, Visual Studio, Dev-C++, Visual Studio Code, CLion

3. First Program in C and C++
Writing, compiling, and running a simple C program
Writing, compiling, and running a simple C++ program
Differences in syntax between C and C++

1. Variables, Constants, and Data Types
C: int, char, float, double
C++: New data types (bool, string, vector in C++)
Type modifiers (signed, unsigned, long, short)

2. Operators
C: Arithmetic, relational, logical, and bitwise operators
C++: In addition to C operators, C++ supports operator overloading
Assignment operators, increment/decrement operators

3. Input/Output in C and C++
C: printf(), scanf()
C++: cout, cin with the <<, >> operators
Formatting output in both C and C++

1. Control Flow Statements
Conditional statements: if, else, switch
Loops: for, while, do-while
C++: for-each loop (range-based loop)

2. Functions
C: Defining and calling functions, function overloading not supported
C++: Function overloading, default arguments, inline functions

Module 4: Arrays and Strings

Module 5: Pointers and Memory Management

Module 6: Object-Oriented Programming (OOP) in C++

Module 7: Advanced Topics in C and C++

Recursion
3. Function Pointers in C

C: Using function pointers for dynamic function calls
C++: Function pointers and lambda functions

1. Arrays
C: Defining and using arrays, multidimensional arrays
C++: Vectors (dynamic arrays), array bounds checking
Passing arrays to functions

2. Strings
C: C-style strings (character arrays) and functions (e.g., strcpy(), strlen(), strcmp())
C++: string class and its functions (e.g., concatenation, comparison, substr)

1. Pointers
C: Pointer basics, pointer arithmetic, arrays and pointers
C++: Pointers to objects, classes, functions, and dynamic memory management
Memory allocation: malloc(), calloc(), free() (C), new, delete (C++)

2. Dynamic Memory Allocation
C: Memory allocation with malloc(), calloc()
C++: new and delete operators, handling memory leaks with smart pointers (C++11
onwards)

1. Introduction to OOP
Differences between procedural and object-oriented programming
Key concepts: Classes, Objects, Encapsulation, Inheritance, Polymorphism, Abstraction

2. Classes and Objects
C: Using structures to simulate objects
C++: Classes, member functions, constructors, destructors
Access modifiers: private, public, protected

3. Inheritance and Polymorphism
C: Not applicable (only using structures)
C++: Single, multiple, and multilevel inheritance
Virtual functions, pure virtual functions, and abstract classes

4. Operator Overloading and Function Overloading
C++: Overloading operators like +, -, <<, >>
C++: Function overloading (same function name, different parameter types)

1. Memory Management in C and C++
C: Manual memory management with malloc(), free()
C++: Smart pointers (unique_ptr, shared_ptr, weak_ptr), RAII principle

Module 8: Advanced Data Structures and Algorithms

Module 9: Multithreading and Concurrency in C++

Module 10: Projects and Applications

Tools and IDEs

2. File Handling
C: File operations using fopen(), fclose(), fprintf(), fscanf(), and binary file handling
C++: File streams (fstream, ifstream, ofstream), file pointer manipulation

3. Exception Handling in C++
C: Error codes, errno, and error handling mechanisms
C++: try, catch, throw for exception handling

4. Templates
C: Not applicable
C++: Function templates, class templates, template specialization, and generic
programming

1. Data Structures
C: Arrays, linked lists, stacks, queues, trees, and graphs (implemented manually)
C++: Using Standard Template Library (STL) containers: vector, stack, queue, list, map,
set

2. Algorithms
Searching: Linear search, binary search (C and C++)
Sorting: Bubble sort, selection sort, quicksort, mergesort, and using STL sort in C++
Graph algorithms: BFS, DFS, Dijkstra's algorithm (C and C++)

1. Introduction to Multithreading
C: Not supported natively, external libraries required (e.g., POSIX threads)
C++: Multithreading using std::thread, synchronization with mutex, lock_guard, and
condition_variable

2. Lambda Expressions in C++
Using anonymous functions (lambdas) for short-term functional operations

3. Concurrency and Synchronization
Handling concurrent execution, avoiding deadlocks, race conditions

1. Bank Management System (using C++)
2. Library Management System (using C++)
3. Tic-Tac-Toe Game (using C)
4. Simple File Compression Tool (C and C++)
5. Student Record Management System (C and C++)
6. Inventory System using OOP (C++)
7. Sorting and Searching Algorithms Visualizer (C++)
8. Multithreaded Web Scraper (C++)

Compilers: GCC (C and C++), MinGW, Visual Studio, Clang
IDEs: Code::Blocks, Dev-C++, Visual Studio, CLion, Eclipse, VS Code

Debugger: GDB

