Qno.1 | Question | Answers | Extra information | Mark | AO /
Spec. Ref. | |----------|----------|-----------------------|------|--------------------| | 01.1 | increase | must be in this order | 1 | AO1
4.2.4.3 | | | decrease | | 1 | 4.2.4.0 | | Question | Answers | Extra information | Mark | AO /
Spec. Ref. | |----------|------------|-------------------|------|--------------------| | 01.2 | $P = I^2R$ | | 1 | AO1
4.2.4.1 | | Question | Answers | Extra information | Mark | AO /
Spec. Ref. | |----------|--|-------------------|------|--------------------| | 01.3 | 1.60 × 10 ⁹ = 2000 ² × R | | 1 | AO2
4.2.4.1 | | | $R = \frac{1.60 \times 10^9}{2000^2}$ | | 1 | | | | R = 400 (Ω) | | 1 | | | Question | Answers | Extra information | Mark | AO /
Spec. Ref. | |----------|--|-------------------|------|--------------------| | 01.4 | efficiency = useful energy output total energy input or efficiency = useful output energy transfer total input energy transfer | | 1 | AO1
4.1.2.2 | | Question | Answers | Extra information | Mark | AO /
Spec. Ref. | |----------|--|--|------|--------------------| | 01.5 | $0.992 = \frac{\text{useful energy output}}{34.2}$ | | 1 | AO2
4.1.2.2 | | | useful energy output
= 0.992 × 34.2 | | 1 | | | | useful energy output
= 33.9 (GJ) | allow a correct answer given to more than 3 s.f. | 1 | | | Total Question 1 | 10 | |------------------|----| |------------------|----| | Question | Answers | Extra information | Mark | AO /
Spec. Ref. | |----------|---------------------|---|------|--------------------| | 01.1 | P = 696 000 000 (W) | | 1 | AO2
4.1.3 | | | P = 1200 (W) | allow an answer consistent with their incorrectly / not converted value of <i>P</i> | 1 | | | Question | Answers | Extra information | Mark | AO /
Spec. Ref. | |----------|--|--|------|--------------------| | 01.2 | any 2 from: wind is unreliable wind turbines don't turn when the wind is too strong/weak there are not enough wind turbines (in the UK) | allow it was not windy (on that day) | 2 | AO2
4.1.3 | | | | allow some wind turbines may
be offline for maintenance
allow energy from wind may not
be enough (to generate 34 000
MW) | | | | | | ignore weather conditions unqualified | | | | Question | Answers | Extra information | Mark | AO /
Spec. Ref. | |----------|---|-----------------------------------|------|--------------------| | 01.3 | the efficiency would increase | | 1 | AO3 | | | because the percentage /
proportion / amount of energy
usefully transferred would
increase
or | ignore more electricity generated | 1 | AO1 | | | because the percentage /
proportion / amount of energy
wasted would decrease | allow less energy wasted | | AO1
4.1.2.1 | | | (because) less (work is done against) friction | | 1 | 4.1.2.2 | | Question | Answers | Extra information | Mark | AO /
Spec. Ref. | |----------|--|---|------|-------------------------| | 01.4 | more efficient devices waste
less energy
or
more efficient devices need a
lower energy input (for the same
energy output) | ignore use less electricity | 1 | AO3
4.1.2.2
4.1.3 | | | which would minimise the electricity / energy demand or | allow less electricity needs to be
generated
allow lower energy / electricity
bill | 1 | | | | which would minimise the environmental impact from (fossil fuel) electricity generation | allow examples of environmental impact e.g. lower CO ₂ emissions | | | | | | ignore 'better for the
environment' unless qualified | | | | | | ignore answers that discuss
'saving energy' unless qualified | | | | | | ignore answers that discuss
alternative methods of
generating electricity | | | ## Qno.3 | Question | Answers | Extra information | Mark | AO /
Spec. Ref. | |----------|--|--|------|---------------------------| | 01.1 | the polarity (of the supply) does
not change | allow potential difference in one direction (only) | 1 | AO1
4.2.3.1 | | 01.2 | energy transferred = power × time | | 1 | AO1
4.1.1.4
4.2.4.2 | | 01.3 | 162 000 000 = 7200 × t | | 1 | AO2
4.1.1.4 | | | $t = \frac{162\ 000\ 000}{7200}$ | | 1 | 4.2.4.2 | | | t = 22 500 (s) | | 1 | | | 01.4 | $V = I \times R$ | | 1 | AO1
4.2.1.3 | | 01.5 | 480 = 15 × R | | 1 | AO2
4.2.1.3 | | | $R = \frac{480}{15}$ | | 1 | | | | R = 32 (Ω) | | 1 | | | 01.6 | time taken using system A is double the time of system B | | 1 | AO3
4.2.4.1 | | Total | | | 10 | |