Qno. 1

0 1	Figure 1 sho	ws how the Na	ational Grid con	nects a power sta	ation to con	sumers.
			Figure 1			
			Transmission	cables		
18	er station	X		Tra	ansformer	Consumers
0 1.1	Complete the	e sentences.				[2 marks]
	Transformer	X causes the μ	ootential differe	nce to		·
	Transformer	X causes the c	current to			_8
	Use the Phys	sics Equations	Sheet to answe	er questions 01.2	and 01.3 .	
0 1 . 2	Which equat	on links currer	nt (1), power (P)	and resistance (R)?	
	Tick (✓) one	box.				[1 mark]
	$P = \frac{I}{R}$					
	$P = \frac{I}{R^2}$					
	$P = I^2 R$					
	P= IR					

0 1 . 3	A transmission cable has a power loss of 1.60×10^9 W.	Do not wi outside to box
	The current in the cable is 2000 A.	
	Calculate the resistance of the cable. [3 marks]	
	Resistance =Ω	
	Use the Physics Equations Sheet to answer questions 01.4 and 01.5.	
0 1 . 4	Write down the equation which links efficiency, total energy input and useful energy output. [1 mark]	
0 1.5	The total energy input to the National Grid from one power station is 34.2 GJ. The National Grid has an efficiency of 0.992	
	Calculate the useful energy output from this power station to consumers in GJ. [3 marks]	
	Useful energy output = GJ	10

Qno.2

0 1

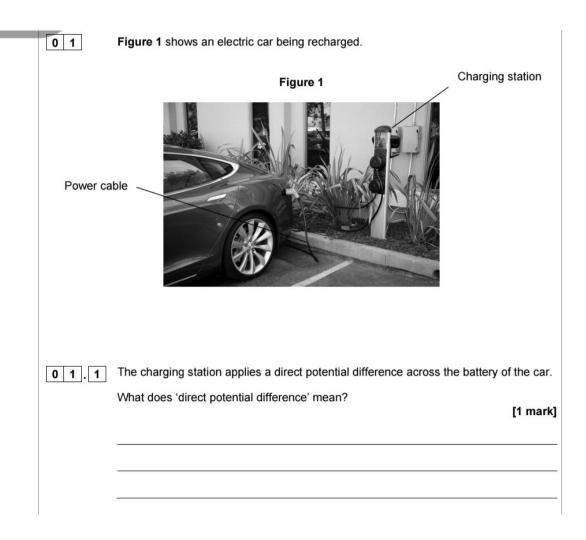
Figure 1 shows a large wind farm off the coast of the UK.

Figure 1

The mean power output of the wind farm is 696 MW, which is enough power for $580\,000$ homes.

0 1 . 1

Calculate the mean power needed for 1 home.


Give your answer in watts.

[2	m	ar	KS
----	---	----	----

Mean power needed for 1 home = _____ W

1 . 2	On one day the demand for electricity in the UK was 34 000 MW.	
	Suggest two reasons why wind power was not able to meet this demand. [2 marks	s]
	1	_
		<u> </u>
	2	
		- 8
	·	_
1 . 3	Some of the energy from the wind used to rotate a wind turbine is wasted. An engineer oils the mechanical parts of a wind turbine.	
	Explain how oiling would affect the efficiency of the wind turbine.	
	[3 marks	s]
		— :
		-18
1 . 4	In most homes in the UK there are many different electrical devices.	
	Explain why people should be encouraged to use energy efficient electrical devices. [2 marks	s]
		_
		- 1

Qno.3

0 1.2	Which equation links energy transferred (E), power (P) and time (t)?	[1 mark]	Do not v outside box
	Tick (✓) one box.		
	energy transferred = $\frac{\text{power}}{\text{time}}$		
	energy transferred = $\frac{\text{time}}{\text{power}}$		
	energy transferred = power × time		
	energy transferred = power² × time		
0 1 . 3	The battery in the electric car can store 162 000 000 J of energy.		
	The charging station has a power output of 7200 W.		
	Calculate the time taken to fully recharge the battery from zero.	[3 marks]	
			
	Time taken =	s	

0 1.4	Which equation links current (<i>I</i>), potential difference (<i>V</i>) and resistance (<i>R</i>)? [1 mark]	Do not write outside the box
	Tick (✓) one box.	
	$I = V \times R$	
	$I = V^2 \times R$	
	$R = I \times V$	
	$V = I \times R$	
0 1.5	The potential difference across the battery is 480 V. There is a current of 15 A in the circuit connecting the battery to the motor of the electric car.	
	Calculate the resistance of the motor. [3 marks]	
	Resistance = Ω	

J

0 1.6	Different charging systems use different electrical currents.	Do not write outside the box
	Charging system A has a current of 13 A.	
	Charging system B has a current of 26 A.	
	 The potential difference of both charging systems is 230 V. 	
	How does the time taken to recharge a battery using charging system A compare with the time taken using charging system B ? [1 mark] Tick (✓) one box.	
	Time taken using system A is half the time of system B	
	Time taken using system A is the same as system B	
	Time taken using system A is double the time of system B	10