

Units, Dimensions, and Measurements Formulae for NEET & JEE

by AP Sir, Director Sakaar PCMB Classes

Formula /
Topic Name

Formula(e) & Expressions

Conditions & Usage Notes

1. Dimensional Analysis

Fundamental Quantities

Mass [M], Length [L], Time [T], Current [A],
Temp [K], Amount of Substance [mol],
Luminous Intensity [cd]

Base dimensions from which all
others are derived.

Order of Magnitude

Express number as $N = a \times 10^b$

Used to estimate the size of a
quantity.

If $a \leq \sqrt{10}$ (≈ 3.16), Order = b

Example: $4 \times 10^5 \rightarrow$ Since
 $4 > 3.16$, Order is 10^6 .

If $a > \sqrt{10}$, Order = $b + 1$

2. Significant Figures

Counting Rules

1. All non-zero digits are significant.

0.007 (1 SF)

2. Zeros between non-zeros are significant.

2.05 (3 SF)

3. Leading zeros are **never** significant.

2.500 (4 SF)

4. Trailing zeros with a decimal point are
significant.

1200 (Ambiguous, assume 2 unless
specified).

Rounding Off

- Digit > 5 : Round up

Example (= 5):

- Digit < 5 : No change

$2.45 \rightarrow 2.4$ (4 is even)

	- Digit = 5: Round to nearest even number.	2.35 → 2.4 (round up to even)
Arithmetic Operations	Add/Sub: Result has same decimal places as the least precise term.	Add: $12.11 + 18.0 = 30.1$ (1 dec. place)
	Mul/Div: Result has same sig figs as the least precise term.	Mul: $2.5 \times 1.25 = 3.1$ (2 SF)
3. Vernier Caliper		
Least Count (L.C.)	$L.C. = 1MSD - 1VSD$	Where N is total divisions on Vernier scale.
	Standard: $L.C. = \frac{1MSD}{N}$	Common L.C. = 0.1 mm or 0.01 cm.
Reading	$Reading = MSR + (VSR \times L.C.)$	MSR: Main Scale Reading immediately left of zero.
		VSR: Coinciding Vernier division.
Zero Error	True Reading = Observed – Zero Error	Negative Error Calculation:
	Positive: Zero of VS is right of MS zero.	Error $= -(N - \text{coinciding div}) \times L.C.$
	Negative: Zero of VS is left of MS zero.	
4. Screw Gauge		
Pitch	$Pitch = \frac{\text{Distance moved on Main Scale}}{\text{Number of full rotations}}$	Usually 1 mm or 0.5 mm. Distance screw moves in 1 rotation.
Least Count (L.C.)	$L.C. = \frac{\text{Pitch}}{\text{Total Circular Scale Divisions (CSD)}}$	Common L.C. = 0.01 mm or 0.001 cm.
Reading	$Reading = MSR + (CSR \times L.C.)$	MSR: Reading visible on linear scale.

CSR: Circular division coinciding with reference line.

Zero Error

Positive: Zero of CS is below reference line.

Always subtract the error (keeping signs in mind).

Negative: Zero of CS is above reference line.

BY AP Sir, Sakaar Classes

Topic: Vectors (Physics)

Formula Name / Topic	Formula(e)	Conditions / Usage
1. Magnitude of a Vector	If $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$:	Used to find the size/length of a vector from its Cartesian components.
	$ \vec{A} = \sqrt{A_x^2 + A_y^2 + A_z^2}$	
2. Unit Vector	$\hat{n} = \frac{\vec{A}}{ \vec{A} }$	Represents direction only. Magnitude is always 1.
3. Vector Addition (Parallelogram Law)	Resultant (R):	θ is the angle between \vec{A} and \vec{B} (tail-to-tail).
	$R = \sqrt{A^2 + B^2 + 2AB \cos \theta}$	$R_{max} = A + B$ (at 0°), $R_{min} = A - B $ (at 180°).
	Direction (α with \vec{A}):	
	$\tan \alpha = \frac{B \sin \theta}{A + B \cos \theta}$	
4. Vector Subtraction	Magnitude:	Used for relative velocity ($\Delta \vec{v}$). θ is the angle between original vectors.
	$ \vec{A} - \vec{B} = \sqrt{A^2 + B^2 - 2AB \cos \theta}$	
	Direction:	
	$\tan \alpha = \frac{B \sin \theta}{A - B \cos \theta}$	
5. Resolution of Components	$A_x = A \cos \theta$	θ is the angle made with the X-axis.

$$A_y = A \sin \theta$$

6. Direction Cosines $l = \frac{A_x}{A}, \quad m = \frac{A_y}{A}, \quad n = \frac{A_z}{A}$ l, m, n are cosines of angles with X, Y, Z axes.

$$l^2 + m^2 + n^2 = 1$$

7. Dot Product (Scalar) $\vec{A} \cdot \vec{B} = AB \cos \theta$ Result is Scalar.

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

Perpendicular if: $\vec{A} \cdot \vec{B} = 0$.

8. Angle Between Vectors $\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|}$ Vectors must be tail-to-tail.

9. Cross Product (Vector) **Magnitude:** $|\vec{A} \times \vec{B}| = AB \sin \theta$ Result is Vector \perp to \vec{A} and \vec{B} .

Parallel if: $\vec{A} \times \vec{B} = 0$.

Determinant Form:

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

10. Lami's Theorem $\frac{A}{\sin \alpha} = \frac{B}{\sin \beta} = \frac{C}{\sin \gamma}$ Only for 3 concurrent forces in equilibrium.

11. Relative Velocity $\vec{v}_{AB} = \vec{v}_A - \vec{v}_B$ Velocity of A w.r.t B.

12. Rain-Man Concept $\vec{v}_{rm} = \vec{v}_r - \vec{v}_m$ θ with vertical.

$$\tan \theta = \frac{v_m}{v_r}$$

13. River Boat: Min Time $t_{min} = \frac{d}{v_b}$ Head perpendicular to flow.

$$\text{Drift } x = v_r \times t_{min}$$

14. River Boat: Shortest Path $\sin \theta = \frac{v_r}{v_b}$ Head upstream at angle θ .

$$t = \frac{a}{\sqrt{v_b^2 - v_r^2}}$$
 Cond: $v_b > v_r$.

15. Area of Triangle $\text{Area} = \frac{1}{2} |\vec{A} \times \vec{B}|$ \vec{A}, \vec{B} are adjacent sides.

16. Area of Parallelogram Sides: $|\vec{A} \times \vec{B}|$

Diagonals: $\frac{1}{2} |\vec{d}_1 \times \vec{d}_2|$

17. Vol. of Parallelepiped $V = |\vec{A} \cdot (\vec{B} \times \vec{C})|$ Coplanar if Volume = 0.

$$V = \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$$

Motion in One Dimension - Important Formulae for NEET & JEE

BY AP Sir, Sakaar Classes

Topic / Formula Name	Formula(e)	Conditions / Notes
1. Average Velocity & Speed	$v_{avg} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$	Valid for any type of motion (uniform or non-uniform). Δx is displacement.
	$\text{Speed}_{avg} = \frac{\text{Total Path Length}}{\text{Total Time}}$	
Special Case: Equal Distances	$v_{avg} = \frac{2v_1 v_2}{v_1 + v_2}$	When a body covers equal distances with different speeds v_1 and v_2 . (Harmonic Mean)
Special Case: Equal Time Intervals	$v_{avg} = \frac{v_1 + v_2}{2}$	When a body travels for equal time intervals with different speeds v_1 and v_2 . (Arithmetic Mean)
2. Instantaneous Velocity & Speed	$\vec{v}_{inst} = \lim_{\Delta t \rightarrow 0} \frac{\Delta \vec{x}}{\Delta t} = \frac{d\vec{x}}{dt}$	$\text{vec}\{v\}_{inst}$
	$\text{Speed}_{inst} =$	
3. Instantaneous Acceleration	$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$	Used for variable acceleration. The form $v(dv/dx)$ is crucial when v is a function of x .
	$a = v \frac{dv}{dx}$	

4. Equations of Kinematics (Scalar Form)

1.

$$v = u + at$$

STRICTLY for Constant Acceleration ($a = \text{const.}$).

u : initial velocity, v : final velocity, a : acceleration, s : displacement, t : time.

2.

$$s = ut + \frac{1}{2}at^2$$

3.

$$v^2 = u^2 + 2as$$

4.

$$s = \left(\frac{u + v}{2} \right) t$$

5. Displacement in n^{th} Second

$$S_{n^{\text{th}}} = u + \frac{a}{2}(2n - 1)$$

Displacement covered strictly during the n^{th} second of motion. Only for constant acceleration.

6. Motion Under Gravity (Free Fall)

1.

$$v = u - gt$$

Sign Convention (Upward +ve):

$a = -g$, Displacement h is +ve if up, -ve if down.

2.

$$h = ut - \frac{1}{2}gt^2$$

For dropped object: $u = 0$.

3.

$$v^2 = u^2 - 2gh$$

7. Max Height & Time of Flight

$$H_{\max} = \frac{u^2}{2g}$$

For a particle thrown vertically upward with speed u returning to the same level.

$$T_{flight} = \frac{2u}{g}$$

8. Stopping Distance

$$d_{stop} = \frac{u^2}{2a}$$

Distance traveled before coming to rest ($v = 0$) with retardation a .

9. Relative Velocity in 1D

$$v_{AB} = v_A - v_B$$

Velocity/Acceleration of A with respect to B. Signs are crucial (+ve for one direction, -ve for opposite).

$$a_{AB} = a_A - a_B$$

10. Graphical Interpretations

1. Slope of $x - t$ graph = Velocity (v) Valid for all types of motion.

2. Slope of $v - t$ graph = Acceleration
(a)

3. Area under $v - t$ graph =
Displacement (Δx)

4. Area under Speed-time graph =
Distance

5. Area under $a - t$ graph = Change in
velocity (Δv)

11. Variable Acceleration (Integration)

$$v = \int a \, dt$$

Use definite integrals with limits when acceleration is a function of time ($a = f(t)$).

$$x = \int v \, dt$$

Key Tips for Solving Problems:

- **Sign Convention:** Always choose a positive direction (usually right or up). Any vector (displacement, velocity, acceleration) opposite to this is negative.

- **Vector Form:** For complex problems, use $\vec{v} = \vec{u} + \vec{a}t$.

- **Differentiation vs Integration:**

- $x \xrightarrow{\text{diff}} v \xrightarrow{\text{diff}} a$

- $a \xrightarrow{\text{int}} v \xrightarrow{\text{int}} x$

Motion in 2D and Projectile Motion

BY AP Sir, Sakaar Classes

Formula Name / Topic	Formula(e)	Conditions / Usage
----------------------	------------	--------------------

1. General Motion in 2D

Position Vector $\vec{r} = x\hat{i} + y\hat{j}$ Cartesian coordinates at time t

Velocity Vector $\vec{v} = \frac{d\vec{r}}{dt} = v_x\hat{i} + v_y\hat{j}$ Instantaneous velocity

Acceleration Vector $\vec{a} = \frac{d\vec{v}}{dt} = a_x\hat{i} + a_y\hat{j}$ Instantaneous acceleration

2. Projectile Motion (Ground to Ground)

Assumptions: Air resistance neglected, g is constant downwards.

Components of Initial Velocity $u_x = u \cos \theta$ θ is angle with horizontal

$$u_y = u \sin \theta$$

Motion Parameters (x & y) $a_x = 0, v_x = u \cos \theta$ (constant) x -motion is uniform; y -motion is under gravity

$$a_y = -g$$

Time of Flight (T) $T = \frac{2u \sin \theta}{g} = \frac{2u_y}{g}$ Projectile lands at same vertical level as launch

Maximum Height (H) $H = \frac{u^2 \sin^2 \theta}{2g} = \frac{u_y^2}{2g}$ Vertical component of velocity becomes zero at max height

Horizontal Range (R) $R = \frac{u^2 \sin 2\theta}{g} = \frac{2u_x u_y}{g}$ Distance between launch and landing point on same level

Condition for Max Range $\theta = 45^\circ \Rightarrow R_{max} = \frac{u^2}{g}$ For a given initial speed u

Relation between H and R

$$R \tan \theta = 4H$$

Useful for direct relation problems

Equation of Trajectory

$$y = x \tan \theta - \frac{gx^2}{2u^2 \cos^2 \theta}$$

To find y given x (eliminating t)

OR

$$y = x \tan \theta \left(1 - \frac{x}{R} \right)$$

Instantaneous Velocity

$$\vec{v} = u \cos \theta \hat{i} + (u \sin \theta - gt) \hat{j} \quad \text{\textbackslash vec\{v\}}$$

\$

Angle with Horizontal (α)

$$\tan \alpha = \frac{v_y}{v_x} = \frac{u \sin \theta - gt}{u \cos \theta}$$

Direction of motion at time t

3. Horizontal Projectile (From Tower)

Condition: Thrown horizontally ($u_y = 0$) from height h

Time of Flight

$$T = \sqrt{\frac{2h}{g}}$$

Time to reach ground

Horizontal Range

$$R = u \times T = u \sqrt{\frac{2h}{g}}$$

Horizontal distance covered

Velocity at Ground

$$v = \sqrt{u^2 + 2gh}$$

Conservation of energy or vector sum

4. Projectile on Inclined Plane

Incline angle α , Projection angle θ (w.r.t incline)

Time of Flight (Incline)

$$T = \frac{2u \sin \theta}{g \cos \alpha}$$

Component of g perpendicular to plane is $g \cos \alpha$

Range on Incline (R_{inc})

$$R_{inc} = \frac{2u^2 \sin \theta \cos(\theta + \alpha)}{g \cos^2 \alpha}$$

Projecting UP the incline

Range on Incline (R_{inc})

$$R_{inc} = \frac{2u^2 \sin \theta \cos(\theta - \alpha)}{g \cos^2 \alpha}$$

Projecting DOWN the incline

5. Relative Motion in 2D

Relative Velocity

$$\vec{v}_{AB} = \vec{v}_A - \vec{v}_B$$

Velocity of A with respect to B

Rain-Man Problem

$$\vec{v}_{rm} = \vec{v}_r - \vec{v}_m$$

\vec{v}_{rm} is how rain appears to the man

River-Boat: Crossing River

$$\vec{v}_{b,g} = \vec{v}_{b,r} + \vec{v}_{r,g}$$

$\vec{v}_{b,r}$ = velocity of boat in still water

Condition: Shortest Path

$$\sin \theta = \frac{v_r}{v_{br}} \text{ (upstream)}$$

Drift = 0 (Requires $v_{br} > v_r$)

Newton's Laws of Motion

BY AP Sir, Sakaar Classes

Formula Name / Topic	Formula(e)	Conditions / Usage
Newton's Second Law (General)	$\vec{F}_{ext} = \frac{d\vec{p}}{dt}$	Valid for all systems (even variable mass).
Newton's Second Law (Constant Mass)	$\vec{F}_{net} = m\vec{a}$	Valid only when mass m is constant and in an Inertial Frame.
Linear Momentum	$\vec{p} = m\vec{v}$	Quantity of motion contained in a body.
Impulse (J)	$\vec{J} = \int_{t_1}^{t_2} \vec{F}_{ext} dt = \Delta\vec{p}$	Used when a large force acts for a short time. $\Delta\vec{p} = \vec{p}_f - \vec{p}_i$.
	$\vec{J} = \vec{F}_{avg} \cdot \Delta t$	
Impulse-Momentum Theorem	Area under $F - t$ graph = Δp	Used to find change in momentum from a Force-Time graph.
Equilibrium of Forces	$\sum \vec{F} = 0 \implies \vec{a} = 0$	Body is at rest or moving with constant velocity.
Lami's Theorem	$\frac{F_1}{\sin \alpha} = \frac{F_2}{\sin \beta} = \frac{F_3}{\sin \gamma}$	Valid for 3 coplanar, concurrent forces in equilibrium.
Third Law (Action- Reaction)	$\vec{F}_{AB} = -\vec{F}_{BA}$	Action and reaction act on different bodies simultaneously.
Apparent Weight in Lift (Moving Up)	$N = m(g + a)$	Lift accelerating upwards with acceleration a .
Apparent Weight in Lift (Moving Down)	$N = m(g - a)$	Lift accelerating downwards with acceleration a ($a < g$).

Apparent Weight (Free Fall)

$$N = 0$$

Lift cable breaks ($a = g$).
Weightlessness.

Conservation of Linear Momentum

$$\vec{p}_{initial} = \vec{p}_{final}$$

Valid if net external force on the system is zero ($\vec{F}_{ext} = 0$).

$$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$$

Rocket Propulsion (Thrust & Accel)

$$F_{thrust} = u_{rel} \left(-\frac{dm}{dt} \right)$$

u_{rel} is exhaust speed relative to rocket.
 $-\frac{dm}{dt}$ is rate of fuel consumption.

$$a = \frac{u_{rel}}{m} \left(-\frac{dm}{dt} \right) - g$$

Rocket Velocity (at time t)

$$v = u_{rel} \ln \left(\frac{m_0}{m_t} \right) - gt$$

m_0 : initial mass, m_t : mass at time t .
Neglecting initial velocity v_0 .

Force by Liquid Jet (Thrust on Pipe)

$$F = v \frac{dm}{dt} = \rho A v^2$$

Reaction force on a pipe ejecting liquid of density ρ through area A .

Force by Liquid Jet (Striking Wall)

$$F = \rho A v^2$$

Force exerted by a jet striking a vertical wall normally.

(Stops)

$$F = 2\rho A v^2$$

(Reflects)

Connected Bodies (Atwood Machine)

$$a = \left(\frac{m_2 - m_1}{m_1 + m_2} \right) g$$

Massless, frictionless pulley and string.
 $m_2 > m_1$.

$$T = \left(\frac{2m_1 m_2}{m_1 + m_2} \right) g$$

Block on Smooth Inclined Plane

$$a = g \sin \theta$$

Sliding down a frictionless incline of angle θ .

$$N = mg \cos \theta$$

Static Friction (f_s)

$$f_s \leq \mu_s N$$

Self-adjusting force. Prevents relative motion. N is Normal reaction.

$$f_{s,max} = \mu_s N$$

(Limiting Friction)

Kinetic Friction (f_k)

$$f_k = \mu_k N$$

Opposes relative motion when bodies are actually sliding.

Angle of Friction (λ)

$$\tan \lambda = \mu_s$$

Angle between Normal reaction and Resultant of contact forces.

Angle of Repose (α)

$$\tan \alpha = \mu_s$$

Min angle of incline at which block starts sliding. ($\alpha = \lambda$).

Acceleration on Rough Incline (Down)

$$a = g(\sin \theta - \mu_k \cos \theta)$$

Block sliding down a rough inclined plane.

Acceleration on Rough Incline (Up)

$$a = g(\sin \theta + \mu_k \cos \theta)$$

Block pushed up a rough inclined plane (retardation).

Centripetal Force

$$F_c = \frac{mv^2}{r} = m\omega^2 r$$

Net radial force required for circular motion directed towards center.

Safe Turn on Level Road

$$v_{max} = \sqrt{\mu_s r g}$$

Vehicle turning on a flat horizontal road. Friction provides centripetal force.

Banking of Roads (Smooth)

$$\tan \theta = \frac{v^2}{rg}$$

Friction ignored. Ideal banking angle.

Banking of Roads (With Friction)

$$v_{max} = \sqrt{rg \left(\frac{\mu_s + \tan \theta}{1 - \mu_s \tan \theta} \right)}$$

Maximum safe speed on a banked rough road.

Bending of Cyclist

$$\tan \theta = \frac{v^2}{rg}$$

Cyclist leans inward to provide necessary centripetal force.

Pseudo Force

Applied to an object when observing

Work, Power, and Energy

BY AP Sir, Sakaar Classes

Formula Name / Topic	Formula	Condition / Notes
1. Work Done (Constant Force)	$W = \vec{F} \cdot \vec{S} = FS \cos \theta$	Force \vec{F} is constant. θ is angle between \vec{F} and displacement \vec{S} .
2. Work Done (Variable Force)	$W = \int_{x_1}^{x_2} F_x dx$ $W = \int \vec{F} \cdot d\vec{r}$	Force varies with position.
3. Work from Graph	$W = \text{Area under } F-x \text{ graph}$	Area between force curve and displacement axis (Area above axis is +, below is -).
4. Kinetic Energy (KE)	$K = \frac{1}{2}mv^2 = \frac{p^2}{2m}$	$p = mv$ is linear momentum. Relation between KE and Momentum is crucial.
5. Work-Energy Theorem	$W_{\text{net}} = \Delta K = K_f - K_i$	Valid for all frames (inertial/non-inertial). W_{net} is work by ALL forces (conservative, non-conservative, pseudo).
6. Gravitational Potential Energy (PE)	$U = mgh$	Near Earth's surface where g is constant. Ref level at ground ($U = 0$).
7. Spring Potential Energy	$U = \frac{1}{2}kx^2$	x is elongation or compression from natural length . k is spring constant.
8. Conservative Force & PE Relation	$F = -\frac{dU}{dx}$ $\Delta U = -W_{\text{conservative}}$	Only defined for conservative forces (Gravity, Electrostatic, Spring).

9. Conservation of Mechanical Energy	$K_i + U_i = K_f + U_f$	Condition: Only conservative forces do work ($W_{ext} = 0, W_{nc} = 0$).
10. Work by Non-Conservative Forces	$W_{nc} = \Delta E_{mech} = (K_f + U_f) - (K_i + U_i)$	Used when friction or air resistance is present.
11. Average Power	$P_{avg} = \frac{\Delta W}{\Delta t}$	Total work done divided by total time taken.
12. Instantaneous Power	$P = \vec{F} \cdot \vec{v} = Fv \cos \theta$	Rate of work at a specific instant.
13. Vertical Circular Motion (Critical)	$v_{top} \geq \sqrt{gR}, v_{bottom} \geq \sqrt{5gR}$	Condition to complete a full vertical circle (String/Loop).
14. Vertical Circular Motion (Tension)	$T_{bottom} - T_{top} = 6mg$	Difference in tension between lowest and highest point.
15. Coefficient of Restitution (e)	$e = \frac{v_{sep}}{v_{app}} = \frac{v_2 - v_1}{u_1 - u_2}$	$e = 1$ (Elastic), $0 < e < 1$ (Inelastic), $e = 0$ (Perfectly Inelastic). Along Line of Impact.
16. Elastic Collision (1D)	$v_1 = \left(\frac{m_1 - m_2}{m_1 + m_2} \right) u_1 + \left(\frac{2m_2}{m_1 + m_2} \right) u_2$	Momentum and KE are conserved.
17. Perfectly Inelastic Collision	$V_{common} = \frac{m_1 u_1 + m_2 u_2}{m_1 + m_2}$	Bodies stick together ($e = 0$). Max loss of KE.
18. Loss in KE (Collision)	$\Delta K = \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} (u_1 - u_2)^2 (1 - e^2)$	General formula for KE loss in any head-on collision.
19. Equilibrium Conditions	Stable: $U'' > 0$, Unstable: $U'' < 0$, Neutral: $U'' = 0$	$U'' = d^2U/dx^2$. At equilibrium, Net Force is zero.
20. Chain Pulling Problem	$W = \frac{MgL}{2n^2}$	Work to pull a chain hanging $1/n$ th part off a table back onto the table.
21. Stopping Distance	$d_s = \frac{v^2}{2\mu g}$	Vehicle stopping distance with friction coefficient μ .

22. Power of a Pump/Motor $P = \frac{dm}{dt}gh + \frac{1}{2}\frac{dm}{dt}v^2$ Power to lift water rate dm/dt to height h and eject with velocity v .

23. Rebound Height $h_n = e^{2n}h_0$ Height after n^{th} bounce. Total distance $= h_0 \left(\frac{1+e^2}{1-e^2} \right)$.

24. Spring-Block (Sudden Release) $x_{max} = \frac{2mg}{k}$ If a block of mass m attached to a spring is released suddenly from natural length.

25. Bullet Penetration $F_{avg} \cdot d = \frac{1}{2}mv^2$ Work done by resistive force = Change in KE.

26. Oblique Collision $v \sin \alpha = u \sin \theta$ Comp. of velocity \perp to line of impact is unchanged. Along line of impact, use e .

CIRCULAR MOTION

BY AP Sir, Sakaar Classes

Formula / Topic
Name

Formula

Conditions / Usage

1. Kinematics of Circular Motion

Angular Velocity (ω)

$$\omega_{avg} = \frac{\Delta\theta}{\Delta t}$$

Rate of change of angular displacement.

$$\omega_{inst} = \frac{d\theta}{dt}$$

Linear Velocity (v)

$$v = r\omega$$

Relation between linear speed (v) and angular speed (ω) for a particle at radius r .

Angular Acceleration
(α)

$$\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$$

Rate of change of angular velocity.

Tangential Acceleration (a_t)

$$a_t = r\alpha = \frac{dv}{dt}$$

Responsible for changing the **magnitude** of velocity (speed). Zero in U.C.M.

Centripetal (Radial) Acceleration (a_c or a_r)

$$a_c = \frac{v^2}{r} = r\omega^2 = v\omega$$

Responsible for changing the **direction** of velocity. Always directs towards center.

Net Acceleration (a_{net})

$$a_{net} = \sqrt{a_c^2 + a_t^2}$$

Vector sum of radial and tangential acceleration.

Angle of Net Acceleration (ϕ)

$$\tan \phi = \frac{a_c}{a_t}$$

ϕ is the angle made by net acceleration with the tangential direction.

Equations of Circular Motion

$$\omega = \omega_0 + \alpha t$$

Condition: Only valid when Angular Acceleration (α) is **constant**.

$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega^2 = \omega_0^2 + 2\alpha\theta$$

2. Dynamics of Circular Motion

Centripetal Force (F_c)

$$F_c = \frac{mv^2}{r} = mr\omega^2$$

Real force required to keep a body in circular motion (provided by Tension, Friction, Normal, etc.).

Centrifugal Force (Pseudo Force)

$$F_{cf} = \frac{mv^2}{r}$$

Acts radially outward. **Condition:** Only applicable in a **rotating (non-inertial) reference frame**.

3. Banking of Roads & Turning

Bending of Cyclist

$$\tan \theta = \frac{v^2}{rg}$$

θ with vertical. Condition for no skidding while turning.

Car on Level Circular Road (No Banking)

$$v_{max} = \sqrt{\mu_s rg}$$

Maximum safe speed to avoid skidding. μ_s = coefficient of static friction.

Banked Road (Frictionless)

$$\tan \theta = \frac{v^2}{rg}$$

Optimum speed $v_{opt} = \sqrt{rg \tan \theta}$. No wear and tear on tires.

Banked Road (With Friction) - Max Speed

$$v_{max} = \sqrt{rg \left(\frac{\mu_s + \tan \theta}{1 - \mu_s \tan \theta} \right)}$$

Speed limit to avoid slipping **outwards** (up the incline).

Banked Road (With Friction) - Min Speed

$$v_{min} = \sqrt{rg \left(\frac{\tan \theta - \mu_s}{1 + \mu_s \tan \theta} \right)}$$

Speed limit to avoid slipping **inwards** (down the incline).

4. Conical Pendulum

Angular Velocity

$$\omega = \sqrt{\frac{g}{L \cos \theta}} = \sqrt{\frac{g}{h}}$$

L = length of string, h = vertical height of point of suspension from circle center.

Time Period (T)

$$T = 2\pi \sqrt{\frac{L \cos \theta}{g}} = 2\pi \sqrt{\frac{h}{g}}$$

Time for one complete revolution.

Tension in String

$$T_{tension} = \frac{mg}{\cos \theta} = mL\omega^2$$

5. Vertical Circular Motion (String)

Velocity at any point

$$v = \sqrt{u^2 - 2gh}$$

u = speed at bottom, h = height from bottom.

Tension at any point

$$T = \frac{mv^2}{r} + mg \cos \theta$$

θ is angle with vertical downward direction.

Critical Velocity (Top)

$$v_{top} = \sqrt{gR}$$

Minimum speed at top to keep string taut ($T_{top} \geq 0$).

Critical Velocity (Bottom)

$$v_{bottom} = \sqrt{5gR}$$

Minimum speed at bottom to complete the full circle.

Critical Velocity (Horizontal Point)

$$v_{mid} = \sqrt{3gR}$$

Speed at the point where string is horizontal.

Tension Difference

$$T_{bottom} - T_{top} = 6mg$$

Valid for any vertical circular motion under gravity.

Condition for Oscillation

$$0 < v_{bottom} \leq \sqrt{2gR}$$

Particle oscillates like a pendulum (doesn't reach horizontal level).

Condition for Leaving Circle

$$\sqrt{2gR} < v_{bottom} < \sqrt{5gR}$$

Particle leaves the circular path in the upper half (T becomes 0 before v).

6. Specific Formulae for Questions

"Death Well" (Rotor)

$$v_{min} = \sqrt{\frac{gR}{\mu}}$$

Min speed to prevent falling. Friction acts upwards balancing weight.

Vehicle on Convex Bridge

$$v_{max} = \sqrt{gR}$$

Max speed to maintain contact with the bridge (Normal reaction $N = 0$).

Radius of Curvature (Projectile)

$$R_{curv} = \frac{v^2}{a_{\perp}}$$

At top of trajectory:

$$R = \frac{u^2 \cos^2 \theta}{g}$$

Toppling of Car on Turn

$$v_{max} = \sqrt{\frac{gra}{h}}$$

$2a$ = distance between wheels (track width),
 h = height of Center of Mass. Condition:
Topples if $v > v_{max}$.

Rotational Motion

BY AP Sir, Sakaar Classes

Formula / Topic Name	Formula(e)	Conditions / When to use
1. KINEMATICS OF ROTATION		
Angular Displacement	$\theta = \frac{l}{r}$	Angle in radians, l = arc length.
Angular Velocity	$\omega_{avg} = \frac{\Delta\theta}{\Delta t}$	Rate of change of angular position.
	$\omega_{inst} = \frac{d\theta}{dt}$	
Angular Acceleration	$\alpha_{avg} = \frac{\Delta\omega}{\Delta t}$	Rate of change of angular velocity.
	$\alpha_{inst} = \frac{d\omega}{dt} = \omega \frac{d\omega}{d\theta}$	
Equations of Kinematics	<ol style="list-style-type: none"> $\omega = \omega_0 + \alpha t$ $\Delta\theta = \omega_0 t + \frac{1}{2}\alpha t^2$ $\omega^2 = \omega_0^2 + 2\alpha\Delta\theta$ $\theta_{nth} = \omega_0 + \frac{\alpha}{2}(2n - 1)$ 	Strictly valid only when angular acceleration (α) is CONSTANT.
Linear vs Angular Variables	$v = \omega r$	v is tangential velocity.
	$a_t = \alpha r$ (Tangential acc.)	a_t changes speed.
	$a_c = \omega^2 r$ (Centripetal acc.)	a_c changes direction (always exists if $\omega \neq 0$).

$$a_{net} = \sqrt{a_t^2 + a_c^2}$$

2. MOMENT OF INERTIA (MOI)

Discrete System $I = \sum m_i r_i^2$ r_i is perpendicular distance from the axis of rotation.

Continuous Bodies $I = \int r^2 dm$ Requires integration.

Radius of Gyration (k) $I = Mk^2 \Rightarrow k = \sqrt{\frac{I}{M}}$ Distance where total mass is theoretically concentrated to give same I .

Perpendicular Axis Theorem $I_z = I_x + I_y$ Valid ONLY for planar (2D) bodies (laminar objects). Axes x, y must be in the plane; z perpendicular to plane.

Parallel Axis Theorem $I_{axis} = I_{CM} + Md^2$ Valid for any 3D or 2D body.

d = perpendicular distance between parallel axes.

One axis MUST pass through Center of Mass (CM).

3. MOI OF STANDARD BODIES

(Axis through Center, unless specified)

Ring / Hollow Cylinder $I = MR^2$ Axis perpendicular to plane (Ring) or along geometrical axis (Cylinder).

Disc / Solid Cylinder $I = \frac{MR^2}{2}$ Axis perpendicular to plane (Disc) or along geometrical axis (Cylinder).

Thin Rod	$I = \frac{ML^2}{12}$ (Center)	Axis perpendicular to length.
	$I = \frac{ML^2}{3}$ (End)	
Solid Sphere	$I = \frac{2}{5}MR^2$	Axis along diameter.
Hollow Sphere (Shell)	$I = \frac{2}{3}MR^2$	Axis along diameter.
Rectangular Plate	$I = \frac{M(a^2+b^2)}{12}$	Axis perpendicular to plate, through center.
4. TORQUE (τ)		
Vector Definition	$\vec{\tau} = \vec{r} \times \vec{F}$	$\backslash\tau$
	\$	
Newton's 2nd Law (Rotation)	$\vec{\tau}_{net} = I\vec{\alpha}$	Valid for rigid bodies rotating about a fixed axis or about CM.
	$\vec{\tau}_{net} = \frac{d\vec{L}}{dt}$	
Couple	$\tau = F \times d$	Two equal and opposite forces. Torque is independent of the choice of origin.
Rotational Equilibrium	$\sum \vec{F}_{ext} = 0$ AND $\sum \vec{\tau}_{ext} = 0$	Body is neither accelerating translationally nor rotationally.
5. ANGULAR MOMENTUM (L)		
Point Mass	$\vec{L} = \vec{r} \times \vec{p} = m(\vec{r} \times \vec{v})$	About a specific origin.
	$L = mvr_{\perp}$	

Rigid Body (Fixed Axis)	$L = I\omega$	Axis must be fixed or passing through CM.
Combined Motion (Rolling)	$\vec{L} = \vec{L}_{CM} + \vec{L}_{aboutCM} = M(\vec{r}_{cm} \times \vec{v}_{cm}) + I_{cm}\vec{\omega}$	General formula for a body moving and rotating.
Conservation of Angular Momentum	$I_1\omega_1 = I_2\omega_2$	Condition: Net external torque on the system is ZERO ($\tau_{ext} = 0$).

6. WORK, POWER, ENERGY

Rotational Kinetic Energy	$K_{rot} = \frac{1}{2}I\omega^2$	Pure rotation about an axis.
Work Done	$W = \int \tau d\theta = \vec{\tau} \cdot \vec{\Delta\theta}$	Analogous to $W = \vec{F} \cdot \vec{d}$.
Power	$P = \vec{\tau} \cdot \vec{\omega}$	Instantaneous power delivered by torque.
Work-Energy Theorem	$W_{ext} = \Delta K = K_f - K_i$	Work done by all torques equals change in Rotational KE.

7. ROLLING MOTION

Condition for Pure Rolling	$v_{cm} = \omega R$	Velocity of the bottom-most point (contact point) is zero relative to ground.
Total Kinetic Energy	$K_{total} = K_{trans} + K_{rot}$	Useful factor $\beta = (1 + \frac{k^2}{R^2})$.
	$K_{total} = \frac{1}{2}Mv_{cm}^2 + \frac{1}{2}I_{cm}\omega^2$	Ring: $\beta = 2$, Disc: $\beta = 1.5$, Solid Sphere: $\beta = 1.4$.

8. ROLLING ON INCLINED PLANE	(Specific Question Formulae)	Body rolling down from rest without slipping.
-------------------------------------	-------------------------------------	--

Acceleration
$$a = \frac{g \sin \theta}{1 + \frac{I}{MR^2}} = \frac{g \sin \theta}{\beta}$$

Standard NEET/JEE result.
Solid sphere accelerates
fastest (lowest β).

Velocity at bottom
$$v = \sqrt{\frac{2gh}{1 + \frac{k^2}{R^2}}}$$

Depends only on height h
and shape factor $\frac{k^2}{R^2}$, not
Mass or Radius.

Time to reach bottom
$$t = \sqrt{\frac{2L(1 + \frac{k^2}{R^2})}{g \sin \theta}}$$

L = length of incline. Ring
takes max time, Solid
sphere takes min time.

Min Friction Coefficient
$$\mu_{min} = \frac{\tan \theta}{1 + \frac{MR^2}{I}}$$

Condition to prevent
slipping while rolling down.

9. COLLISION & TOPPLING

Angular Impulse (J)
$$J = \int \tau dt = \Delta L$$

Change in Angular
Momentum.

Rod hit by particle
$$L_i = L_f$$
 (about hinge/pivot)

Use Conservation of
Angular Momentum about
the pivot point to find ω
after impact.

$$mvx = \left(\frac{ML^2}{3} + mx^2 \right) \omega$$

Centre of Mass and Collisions

BY AP Sir, Sakaar Classes

Formula Name / Topic	Formula(e)	Conditions / Usage
1. Position of COM (Two Particles)	$X_{cm} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$	System of two point masses m_1, m_2 at positions x_1, x_2 .
2. Position Vector of COM (Discrete)	$\vec{R}_{cm} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + \dots + m_n \vec{r}_n}{M_{total}}$	General system of n discrete particles.
3. Coordinate Formulae (3D)	$X_{cm} = \frac{\sum m_i x_i}{\sum m_i}$	To find specific coordinates (x, y, z) of the COM.
	$Y_{cm} = \frac{\sum m_i y_i}{\sum m_i}$	
	$Z_{cm} = \frac{\sum m_i z_i}{\sum m_i}$	
4. COM of Continuous Bodies	$X_{cm} = \frac{1}{M} \int x \, dm$	Used for rigid bodies (rods, discs, etc.) where mass is distributed continuously.
	$Y_{cm} = \frac{1}{M} \int y \, dm$	
5. Linear Mass Density (λ)	$dm = \lambda \, dx$	Used for 1D objects like rods/wires.
6. Areal Mass Density (σ)	$dm = \sigma \, dA$	Used for 2D objects like plates/discs/shells.

**7. Volumetric
Mass Density (ρ)**

$$dm = \rho dV$$

Used for 3D objects like spheres/cones.

**8. COM: Uniform
Semi-Circular
Ring**

$$Y_{cm} = \frac{2R}{\pi}$$

Center of base is at origin.
Symmetric axis is Y-axis.

**9. COM: Uniform
Semi-Circular
Disc**

$$Y_{cm} = \frac{4R}{3\pi}$$

Center of base is at origin.

**10. COM: Hollow
Hemisphere**

$$Y_{cm} = \frac{R}{2}$$

From the center of the base.

**11. COM: Solid
Hemisphere**

$$Y_{cm} = \frac{3R}{8}$$

From the center of the base.

**12. COM: Hollow
Cone**

$$Y_{cm} = \frac{h}{3}$$

From the center of the base.

**13. COM: Solid
Cone**

$$Y_{cm} = \frac{h}{4}$$

From the center of the base.

**14. COM: Cavity
Problems
(Negative Mass)**

$$\vec{r}_{cm} = \frac{M_{original}\vec{r}_1 - M_{removed}\vec{r}_2}{M_{original} - M_{removed}}$$

When a part is removed from a rigid body. \vec{r}_1 is COM of original, \vec{r}_2 is COM of removed part.

**15. Velocity of
COM**

$$\vec{v}_{cm} = \frac{m_1\vec{v}_1 + m_2\vec{v}_2 + \dots}{M_{total}}$$

Velocity of the system's center of mass.

**16. Acceleration
of COM**

$$\vec{a}_{cm} = \frac{\vec{F}_{ext}}{M_{total}}$$

Newton's 2nd Law applied to the whole system.

**17. Momentum
Conservation
(System)**

$$\vec{P}_{initial} = \vec{P}_{final}$$

Valid ONLY if **External Force** (\vec{F}_{ext}) on the system is **Zero**.

**18. Displacement
of COM**

$$\Delta\vec{r}_{cm} = \frac{m_1\Delta\vec{r}_1 + m_2\Delta\vec{r}_2}{M}$$

If $\vec{F}_{ext} = 0$ initially at rest, then $\Delta\vec{r}_{cm} = 0$. (e.g., Boat & Dog problems).

19. Impulse (\vec{J})

$$\vec{J} = \int \vec{F} dt = \Delta \vec{P} = \vec{P}_f - \vec{P}_i$$

Change in momentum caused by a large force over a short time.

20. Coefficient of Restitution (e)

$$e = \frac{\text{Velocity of Separation}}{\text{Velocity of Approach}} = \frac{v_2 - v_1}{u_1 - u_2}$$

Defined along the **Line of Impact**. $0 \leq e \leq 1$.

21. Head-on Elastic Collision ($e = 1$)

$$v_1 = \left(\frac{m_1 - m_2}{m_1 + m_2} \right) u_1 + \left(\frac{2m_2}{m_1 + m_2} \right) u_2$$

Final velocity of mass 1.
Conservation of KE & Momentum holds.

22. Head-on Elastic Collision ($e = 1$)

$$v_2 = \left(\frac{m_2 - m_1}{m_1 + m_2} \right) u_2 + \left(\frac{2m_1}{m_1 + m_2} \right) u_1$$

Final velocity of mass 2.

23. Elastic Collision: Equal Masses

$$v_1 = u_2, \quad v_2 = u_1$$

If $m_1 = m_2$, velocities are exchanged.

24. Perfectly Inelastic Collision ($e = 0$)

$$V_{common} = \frac{m_1 u_1 + m_2 u_2}{m_1 + m_2}$$

Particles stick together and move with common velocity.
Max KE loss.

25. Inelastic Collision ($0 < e < 1$)

$$v_1 = \frac{m_1 u_1 + m_2 u_2 - m_2 e(u_1 - u_2)}{m_1 + m_2}$$

General formula for 1D collision.

26. Loss in KE (Head-on)

$$\Delta K = \frac{1}{2} \left(\frac{m_1 m_2}{m_1 + m_2} \right) (u_1 - u_2)^2 (1 - e^2)$$

Energy dissipated as heat/sound. Zero if $e = 1$ (Elastic).

27. Oblique Collision (2D)

Along Line of Impact (LOI):

$$e = \frac{v_{2n} - v_{1n}}{u_{1n} - u_{2n}}$$

Momentum is conserved along LOI and Tangential axis (if smooth). Restitution eq applies ONLY along LOI.

28. Rocket Propulsion (Thrust)

$$F_{thrust} = v_{rel} \left(-\frac{dm}{dt} \right)$$

Force on rocket due to ejected gas. v_{rel} is velocity of gas w.r.t rocket.

29. Rocket

Velocity at time t (ignoring

ELASTICITY

BY AP Sir, Sakaar Classes

Formula Name / Topic	Formula	Condition / Context / Use Case
Normal Stress (σ)	$\sigma = \frac{F_{\perp}}{A}$	Restoring force (F_{\perp}) acting per unit area perpendicular to the cross-section.
Tangential / Shear Stress (σ_t)	$\sigma_t = \frac{F_{\parallel}}{A}$	Force (F_{\parallel}) acting parallel to the surface area. Causes shape change without volume change.
Longitudinal Strain (ε_l)	$\varepsilon_l = \frac{\Delta L}{L}$	Change in length per unit original length (Tensile or Compressive).
Shearing Strain (ϕ)	$\phi \approx \tan \phi = \frac{x}{L}$	Relative displacement (x) between parallel layers separated by distance L .
Volumetric Strain (ε_v)	$\varepsilon_v = -\frac{\Delta V}{V}$	Change in volume per unit original volume. Negative sign indicates decrease in volume with pressure increase.
Hooke's Law	Stress \propto Strain Stress = $E \times$ Strain	Valid only within the Proportional Limit . E is the Modulus of Elasticity.
Young's Modulus (Y)	$Y = \frac{\text{Longitudinal Stress}}{\text{Longitudinal Strain}}$ $Y = \frac{FL}{A\Delta l} = \frac{mgL}{\pi r^2 \Delta l}$	Used for solids (wires, rods) undergoing length change. Specific for a material.
Bulk Modulus (B or K)	$B = \frac{-P}{\Delta V/V} = -V \frac{\Delta P}{\Delta V}$	Relates volume change to pressure change. Applicable to solids, liquids, and gases.
Compressibility (K)	$K = \frac{1}{B}$	Reciprocal of Bulk Modulus.

Modulus of Rigidity / Shear Modulus (η or G)

$$\eta = \frac{\text{Shear Stress}}{\text{Shear Strain}} = \frac{F}{A\phi}$$

Resistance to change in shape.
Only for solids.

Poisson's Ratio (σ)

$$\sigma = -\frac{\text{Lateral Strain}}{\text{Longitudinal Strain}}$$

Theoretical limits: -1 to 0.5.

$$\sigma = \frac{\Delta D/D}{\Delta L/L}$$

Practical limits: 0 to 0.5.

Work Done in Stretching (Strain Energy U)

$$U = \frac{1}{2} \times F \times \Delta l$$

Total potential energy stored in a stretched wire.

$$U = \frac{1}{2} \times \text{stress} \times \text{strain} \times \text{Volume}$$

Energy Density (u)

$$u = \frac{1}{2} \times \text{stress} \times \text{strain}$$

Energy stored per unit volume.

$$u = \frac{1}{2} Y (\text{strain})^2 = \frac{(\text{stress})^2}{2Y}$$

Elongation due to Self Weight

$$\Delta l = \frac{MgL}{2AY} = \frac{\rho g L^2}{2Y}$$

Extension of a hanging rod/wire due to its own gravity. M =mass, ρ =density. Note the factor 2 in denominator (acts at Center of Mass).

Thermal Stress

$$\sigma_{\text{thermal}} = Y\alpha\Delta T$$

Rod fixed between rigid supports.

Force $F = Y A \alpha \Delta T$

α = coeff. of linear expansion,
 ΔT = temp change.

Analogy with Spring Constant (k)

$$k = \frac{YA}{L}$$

Treating a wire as a spring ($F = kx$). Useful for series/parallel combination of wires.

Wires in Series

$$\frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2}$$

Composite wire with same Force/Tension acting on both segments.

$$\Delta l_{\text{net}} = \Delta l_1 + \Delta l_2$$

Wires in Parallel	$k_{eq} = k_1 + k_2$	Composite wire where extensions are forced to be equal ($\Delta l_1 = \Delta l_2$).
	$F_{net} = F_1 + F_2$	
Interatomic Force Constant (k_a)	$k_a = Y \times r_0$	r_0 is the equilibrium interatomic distance.
Depression of a Beam (Cantilever)	$\delta = \frac{WL^3}{3YI_g}$	Beam fixed at one end, loaded (W) at the other. I_g is Geometrical Moment of Inertia.
Depression of Beam (Supported at ends)	$\delta = \frac{WL^3}{48YI_g}$	Beam supported at both ends, load W in the center.
Torsion of a Cylinder	$C = \frac{\pi\eta r^4}{2L}$	Restoring couple per unit twist (Torsional rigidity).
Breaking Stress	Breaking Force = Breaking Stress $\times A$	Breaking stress depends on material, not dimensions. Breaking Force depends on area.
Relation: Y, B, σ	$Y = 3B(1 - 2\sigma)$	Relates Young's, Bulk Modulus and Poisson's ratio.
Relation: Y, η, σ	$Y = 2\eta(1 + \sigma)$	Relates Young's, Rigidity Modulus and Poisson's ratio.
Relation: Y, B, η	$\frac{9}{Y} = \frac{1}{B} + \frac{3}{\eta}$	Useful when σ is not given.
Relation: σ in terms of B, η	$\sigma = \frac{3B - 2\eta}{6B + 2\eta}$	Calculation of Poisson's ratio from moduli.

Quick Tips for Numerical Questions (NEET/JEE)

- Wire Cut into n parts:** If a wire of Young's Modulus Y is cut into n equal parts, the Young's Modulus of each part remains Y (Material property), but the spring constant becomes nk .
- % Change questions:** If strain is small ($< 5\%$), use $\frac{\Delta R}{R} \times 100$. For volume of wire $V = A \times L$ (constant), $\frac{\Delta A}{A} = -\frac{\Delta L}{L}$ (ignoring σ effects for simple resistance type q's) or use conservation of volume $A_1 L_1 = A_2 L_2$.
- Adiabatic vs Isothermal Modulus:**

Fluid Mechanics & Surface Tension

BY AP Sir, Sakaar Classes

Fluid Properties & Hydrostatics

Formula Name / Topic	Formula	Condition / Note
Density & Relative Density (RD)	$\rho = \frac{m}{V}$	$\rho_{\text{water}} = 1000 \text{ kg/m}^3$. RD has no units.
	$\text{RD} = \frac{\rho_{\text{substance}}}{\rho_{\text{water at } 4^\circ\text{C}}}$	
Pressure at Depth	$P = P_0 + h\rho g$	P_0 : Atmospheric Pressure
		h : Depth below free surface.
Gauge Pressure	$P_g = P_{\text{absolute}} - P_{\text{atm}} = h\rho g$	Pressure due to fluid column only.
Pascal's Law	$\frac{F_1}{A_1} = \frac{F_2}{A_2}$	Pressure applied to enclosed fluid is transmitted undiminished.
Force on Vertical Dam Wall	$F = \frac{1}{2}\rho g w H^2$	w : Width, H : Depth. Force acts at $H/3$ from bottom.
Archimedes' Principle	$F_B = V_{\text{in}} \cdot \rho_L \cdot g$	V_{in} : Submerged volume
		ρ_L : Density of Liquid.
Condition for Floatation	$mg = F_B$	Body floats if $\rho_S \leq \rho_L$. Weight of body = Weight of fluid displaced.
	$\frac{V_{\text{in}}}{V_{\text{total}}} = \frac{\rho_S}{\rho_L}$	
Accelerated Fluid (Horizontal)	$\tan \theta = \frac{a}{g}$	θ : Angle of free surface with horizontal.
Accelerated Fluid (Vertical)	$P = P_0 + h\rho(g_{\text{eff}})$	$g_{\text{eff}} = g + a$ (up), $g_{\text{eff}} = g - a$ (down).

Rotating Fluid (Vortex) $y = \frac{\omega^2 x^2}{2g}$ Parabolic meniscus shape.

Fluid Dynamics

Formula Name / Topic	Formula	Condition / Note
Equation of Continuity	$A_1 v_1 = A_2 v_2$	Conservation of Mass. Incompressible, non-viscous flow.
Bernoulli's Principle	$P + \rho gh + \frac{1}{2} \rho v^2 = \text{Constant}$	Conservation of Energy per unit volume. Ideal fluid.
Torricelli's Law	$v = \sqrt{2gh}$	h : Depth of hole from top.
Horizontal Range of Efflux	$R = 2\sqrt{h(H-h)}$	$R_{\max} = H$ when hole is at $H/2$.
Time to empty tank	$t = \frac{A}{a} \sqrt{\frac{2}{g}} (\sqrt{H_1} - \sqrt{H_2})$	A : Tank area, a : Hole area.
Venturimeter	$Q = A_1 A_2 \sqrt{\frac{2gh}{A_1^2 - A_2^2}}$	h : Height diff in manometer.

Viscosity

Formula Name / Topic	Formula	Condition / Note
Newton's Law of Viscosity	$F = -\eta A \frac{dv}{dx}$	η : Coeff. of viscosity, $\frac{dv}{dx}$: Velocity gradient.
Stoke's Law	$F = 6\pi\eta rv$	Viscous drag on sphere of radius r .
Terminal Velocity	$v_T = \frac{2}{9} \frac{r^2(\rho - \sigma)g}{\eta}$	Constant max velocity. ρ : sphere, σ : fluid.
Poiseuille's Equation	$Q = \frac{\pi P r^4}{8\eta l}$	Volume flow rate in capillary tube.
Reynolds Number	$R_e = \frac{\rho v d}{\eta}$	$R_e < 1000$: Laminar, $R_e > 2000$: Turbulent.

Surface Tension

Formula Name / Topic	Formula	Condition / Note
----------------------	---------	------------------

Surface Tension	$T = \frac{F}{L}$	Force per unit length.
Surface Energy	$U = T \times \Delta A$	ΔA : Change in area.
Work done (Liquid Drop)	$W = T \cdot 4\pi(r_2^2 - r_1^2)$	Single surface.
Work done (Soap Bubble)	$W = T \cdot 8\pi(r_2^2 - r_1^2)$	Two surfaces (inner & outer).
Excess Pressure (Drop)	$\Delta P = \frac{2T}{R}$	Pressure inside > outside.
Excess Pressure (Bubble)	$\Delta P = \frac{4T}{R}$	Two free surfaces.
Capillary Rise	$h = \frac{2T \cos \theta}{r \rho g}$	Jurist's Law. θ : Contact angle.
Force to lift wire frame	$F = 2Tl + mg$	Surface tension acts on both sides.
Force to lift Ring	$F \approx 4\pi r T + mg$	Ring of radius r .
Splitting of Drops	$\Delta U = 4\pi R^2 T(n^{1/3} - 1)$	Energy absorbed (Temp falls).
Coalescence of Drops	$E_{\text{released}} = 4\pi T(nr^2 - R^2)$	Energy released (Temp rises).

"Success is the sum of small efforts, repeated day in and day out."

Oscillations (Simple Harmonic Motion)

BY AP Sir, Sakaar Classes

Formula / Topic Name	Formula(e)	Conditions / Notes
1. Standard Equation of SHM	$\frac{d^2x}{dt^2} + \omega^2 x = 0$	Differential equation condition for any particle executing SHM.
2. Displacement	$x = A \sin(\omega t + \phi)$	General displacement from mean position. or ϕ : Initial phase (epoch).
	$x = A \cos(\omega t + \phi)$	Use sin if starts from mean, cos if from extreme.
3. Angular Frequency	$\omega = \frac{2\pi}{T} = 2\pi f = \sqrt{\frac{k}{m}}$	ω : Angular frequency (rad/s). Depends on system properties (k, m), not amplitude.
4. Velocity (v)	$v = \frac{dx}{dt} = A\omega \cos(\omega t + \phi)$ $v = \pm \omega \sqrt{A^2 - x^2}$	$v_{max} = A\omega$ (at mean position, $x = 0$). $v_{min} = 0$ (at extreme position, $x = \pm A$).
5. Acceleration (a)	$a = \frac{dv}{dt} = -\omega^2 A \sin(\omega t + \phi)$ $a = -\omega^2 x$	Direction is always towards mean position. $a_{max} = \omega^2 A$ (at extreme). $a_{min} = 0$ (at mean).

6. Restoring Force	$F = -kx$	Linear SHM condition. Force is proportional to displacement and opposite in direction.
	$F = -m\omega^2 x$	
7. Phase Difference	$\Delta\phi = \phi_2 - \phi_1$	Time diff $\Delta t = \frac{T}{2\pi} \Delta\phi$.
		Path diff $\Delta x = \frac{\lambda}{2\pi} \Delta\phi$ (Wave context).
8. Kinetic Energy (KE)	$K = \frac{1}{2}mv^2 = \frac{1}{2}m\omega^2(A^2 - x^2)$	Max at mean position ($K_{max} = \frac{1}{2}kA^2$).
	$K = \frac{1}{2}kA^2 \cos^2(\omega t + \phi)$	Zero at extreme position.
9. Potential Energy (PE)	$U = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2 x^2$	Assuming $U = 0$ at mean position.
	$U = \frac{1}{2}kA^2 \sin^2(\omega t + \phi)$	Max at extreme ($U_{max} = \frac{1}{2}kA^2$).
10. Total Energy (TE)	$E = K + U = \frac{1}{2}m\omega^2 A^2 = \frac{1}{2}kA^2$	TE is constant (conserved) in undamped SHM.
		$E \propto A^2$ and $E \propto f^2$.
11. Average Energies	$\langle K \rangle_{cycle} = \langle U \rangle_{cycle} = \frac{1}{4}kA^2$	Over one complete cycle of oscillation.
	$\langle E \rangle_{cycle} = \frac{1}{2}kA^2$	
12. Spring-Mass System (Horizontal/Vertical)	$T = 2\pi \sqrt{\frac{m}{k}}$	Period is independent of g and amplitude.
		k : Spring constant.
13. Springs in Series	$\frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2} + \dots$	End-to-end connection. Force is same, extension adds up.
14. Springs in Parallel	$k_{eq} = k_1 + k_2 + \dots$	Side-by-side or mass between two fixed springs. Extensions are same.

15. Cutting a Spring

$$k \cdot l = \text{constant} \implies k \propto \frac{1}{l}$$

If spring of length l is cut into n equal parts, stiffness of each part becomes nk .

**16. Two Block System
(Reduced Mass)**

$$T = 2\pi \sqrt{\frac{\mu}{k}}$$

Where reduced mass $\mu = \frac{m_1 m_2}{m_1 + m_2}$.

Blocks oscillate relative to center of mass.

17. Simple Pendulum

$$T = 2\pi \sqrt{\frac{l}{g_{eff}}}$$

For small angular amplitude ($\theta < 5^\circ$).

l : Length from pivot to CM of bob.

18. Pendulum in Lift

Accelerating Up: $g_{eff} = g + a$

If lift falls freely ($a = g$), $g_{eff} = 0$, $T \rightarrow \infty$ (No oscillation).

$$T = 2\pi \sqrt{\frac{l}{g+a}}$$

Accelerating Down: $g_{eff} = g - a$

$$T = 2\pi \sqrt{\frac{l}{g-a}}$$

**19. Pendulum in
Truck/Car**

$$g_{eff} = \sqrt{g^2 + a^2}$$

Truck moving horizontally with acceleration a . Mean position shifts by $\tan \theta = a/g$.

$$T = 2\pi \sqrt{\frac{l}{(g^2+a^2)^{1/2}}}$$

**20. Pendulum with
Charged Bob**

$$g_{eff} = g + \frac{qE}{m}$$
 (E field down)

Electric field E applied vertically.

$$g_{eff} = g - \frac{qE}{m}$$
 (E field up)

21. Pendulum of Infinite Length

$$T = 2\pi \sqrt{\frac{1}{g(\frac{1}{l} + \frac{1}{R_e})}}$$

If $l \approx R_e$ (Earth's radius).

If $l \rightarrow \infty$,
 $T = 2\pi \sqrt{\frac{R_e}{g}} \approx 84.6 \text{ min.}$

22. Second's Pendulum $T = 2$ seconds Length $l \approx 0.993$ m (on Earth).

23. Physical Pendulum $T = 2\pi\sqrt{\frac{I}{mgd}}$ I : Moment of Inertia about pivot.

24. Torsional Pendulum $T = 2\pi\sqrt{\frac{I}{C}}$ d : Distance between pivot and Center of Mass.

25. Superposition (Same freq) $x_{res} = A \sin(\omega t + \theta)$ I : MOI of disc/body.

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2 \cos \delta}$$

C : Torsional constant (Nm/rad) of the wire.

26. Liquid in U-Tube $T = 2\pi\sqrt{\frac{h}{g}}$ or $T = 2\pi\sqrt{\frac{L}{2g}}$ h : Height of liquid column in one arm at equilibrium.

L : Total length of liquid column.

27. Body Floating in Liquid $T = 2\pi\sqrt{\frac{m}{A\rho g}} = 2\pi\sqrt{\frac{h_{submerged}}{g}}$ A : Cross-sectional area. ρ : Density of liquid.

Slightly depressed and released.

28. Tunnel through Earth $T = 2\pi\sqrt{\frac{R_e}{g}} \approx 84.6$ min Particle dropped in a tunnel along diameter or chord. (Assuming uniform density).

29. Ball in Concave Dish $T = 2\pi\sqrt{\frac{R-r}{g}}$ R : Radius of curvature of dish. r : Radius of ball.

For small oscillations ($r \ll R$, $T \approx 2\pi\sqrt{R/g}$).

30. Piston in Cylinder $T = 2\pi\sqrt{\frac{mV}{PA^2}}$ V : Volume, P : Pressure, A : Area of piston.

(Adiabatic process usually considered, add factor γ in denominator for adiabatic).

21. Amplitude with

$$A' = A \cdot f^n \text{ where } f > 1$$

If amplitude decays by a constant

Wave Motion (Mechanical Waves)

BY AP Sir, Sakaar Classes

1. Basics of Wave Motion & Progressive Waves

Formula / Topic Name	Formula	Conditions / Usage Notes
----------------------	---------	--------------------------

General Plane

Progressive Wave

Equation

$$y = A \sin(\omega t \pm kx + \phi)$$

y

: Displacement,

A

: Amplitude,

ω

: Angular freq,

k

: Propagation constant.

(-) sign: Wave moving in $+x$ direction.

(+) sign: Wave moving in $-x$ direction.

Angular Frequency (ω)

$$\omega = 2\pi f = \frac{2\pi}{T} \quad f$$

: Frequency (Hz),

T

: Time period.

Propagation Constant (k)

$$k = \frac{2\pi}{\lambda}$$

 λ

: Wavelength. Represents phase change per unit length.

Wave Velocity (v)

$$v = f\lambda = \frac{\omega}{k}$$

Speed at which the disturbance travels through the medium.

Particle Velocity (v_p)

$$v_p = \frac{\partial y}{\partial t} = \omega A \cos(\omega t \pm kx)$$

Velocity of a particle oscillating about its mean position.

Relation: Particle vs Wave Velocity

$$v_p = -v \times (\text{slope of y-x graph})$$

Used to find the direction of particle motion if the wave shape is known.

$$v_p = -v \left(\frac{\partial y}{\partial x} \right)$$

Particle Acceleration (a_p)

$$a_p = \frac{\partial^2 y}{\partial t^2} = -\omega^2 y$$

Maximum acceleration

$$a_{max} = \omega^2 A$$

occurs at extreme positions (

$$y = \pm A$$

).

Phase Difference ($\Delta\phi$)

$$\Delta\phi = \frac{2\pi}{\lambda} \Delta x$$

Relation between Phase difference and Path difference (Δx) or Time difference (Δt).

$$\Delta\phi = \frac{2\pi}{T} \Delta t$$

2. Speed of Waves in Media

Formula / Topic Name

Formula

Conditions / Usage Notes

Speed of Transverse Wave on String

$$v = \sqrt{\frac{T}{\mu}}$$

: Tension in string,

μ

: Linear mass density (

$$m/L$$

).

Imp: Ensure

μ

is mass per unit length, not volume density.

Speed of Sound (General)

$$v = \sqrt{\frac{E}{\rho}}$$

: Modulus of Elasticity,

ρ

: Density of medium.

Speed in Solids (Rod)

$$v = \sqrt{\frac{Y}{\rho}}$$

: Young's Modulus.

Speed in Fluids (Liquids/Gases)

$$v = \sqrt{\frac{B}{\rho}}$$

: Bulk Modulus.

Newton's Formula (Gases)

$$v = \sqrt{\frac{P}{\rho}}$$

Assumed Isothermal process. (Incorrect historically, gives lower value).

Laplace Correction (Gases)

$$v = \sqrt{\frac{\gamma P}{\rho}} = \sqrt{\frac{\gamma RT}{M}}$$

Assumed Adiabatic process.

$$\gamma = C_p/C_v$$

(Adiabatic index).

$$T$$

: Temp in Kelvin,

$$M$$

: Molar mass.

Effect of Temperature on Sound Speed

$$v \propto \sqrt{T}$$

Speed increases with temperature.

$$\frac{v_1}{v_2} = \sqrt{\frac{T_1}{T_2}}$$

Effect of Humidity

$$v_{moist} > v_{dry}$$

Moist air is less dense than dry air (

$$\rho_{moist} < \rho_{dry}$$

), so speed increases.

3. Superposition & Interference

Formula / Topic Name

Formula

Conditions / Usage Notes

Resultant Amplitude (

A_{res})

$$A_{res} = \sqrt{A_1^2 + A_2^2 + 2A_1A_2 \cos \phi}$$

ϕ

is the phase difference between two interfering waves.

Resultant Intensity (

I_{res})

$$I_{res} = I_1 + I_2 + 2\sqrt{I_1I_2} \cos \phi$$

Since

$$I \propto A^2$$

**Constructive
Interference (Maxima)**

Condition:

Where

$$\phi = 2n\pi$$

$$n = 0, 1, 2, \dots$$

Path diff

$$\Delta x = n\lambda$$

$$A_{max} = A_1 + A_2$$

$$I_{max} = (\sqrt{I_1} + \sqrt{I_2})^2$$

**Destructive
Interference (Minima)**

Condition:

Where

$$\phi = (2n - 1)\pi$$

$$n = 1, 2, 3, \dots$$

Path diff

$$\Delta x = (2n - 1)\frac{\lambda}{2}$$

$$A_{min} = |A_1 - A_2|$$

$$\text{\$\$I_{min} = (\sqrt{I_1} - \sqrt{I_2})}$$

Ratio of Intensities

$$\frac{I_{max}}{I_{min}} = \left(\frac{A_1 + A_2}{A_1 - A_2} \right)^2$$

Useful for questions given
amplitude ratio

$$r = A_1/A_2$$

4. Stationary (Standing) Waves

Formula / Topic Name	Formula	Conditions / Usage Notes
General Equation	$y = 2A \sin(kx) \cos(\omega t)$	Or $y = 2A \cos(kx) \sin(\omega t)$
		Amplitude of particle at x is
		$A(x) = 2A \sin(kx)$
Nodes & Antinodes	Nodes: Zero amplitude points. Antinodes: Max amplitude points.	Distance between consecutive Node & Node or Antinode & Antinode = $\lambda/2$
		Distance between Node & Antinode = $\lambda/4$
String Fixed at Both Ends	$f_n = \frac{nv}{2L} = n \left(\frac{1}{2L} \sqrt{\frac{T}{\mu}} \right)$	$n = 1, 2, 3\dots$ (Number of loops).
		$n = 1$
		: Fundamental/1st Harmonic.

$$n = 2$$

: 2nd Harmonic/1st Overtone.

All harmonics are present.

String Fixed at

One End

$$f_n = \frac{(2n-1)v}{4L} \quad n = 1, 2, 3\dots$$

Only odd harmonics are present (

$$f_1, 3f_1, 5f_1\dots$$

).

Sonometer Law

$$f \propto \frac{1}{L}$$

Used for comparing frequencies when length or tension changes.

$$f \propto \sqrt{T}$$

$$f \propto \frac{1}{\sqrt{\mu}}$$

5. Organ Pipes (Sound Columns)

Formula / Topic
Name

Formula

Conditions / Usage Notes

Open Organ Pipe

$$f_n = \frac{nv}{2L}$$

Open at both ends.

Similar to string fixed at both ends.

All harmonics present (

$$1 : 2 : 3\dots$$

).

Closed Organ Pipe

$$f_n = \frac{(2n-1)v}{4L}$$

Closed at one end.

Similar to string fixed at one end.

Only odd harmonics present (

1 : 3 : 5...

).

End Correction (e)

$$e \approx 0.6r \quad r$$

: Radius of pipe.

Antinode forms slightly outside the open end.

Corrected Lengths

Open Pipe:

Use these lengths in frequency formulas for precise calculation.

$$L_{eff} = L + 2e$$

Closed Pipe:

$$L_{eff} = L + e$$

Resonance Tube

$$v = 2f(L_2 - L_1) \quad L_1$$

: First resonance length ($\lambda/4$).

$$L_2$$

: Second resonance length ($3\lambda/4$).

Eliminates end correction error.

6. Beats & Doppler Effect

Formula / Topic Name	Formula	Conditions / Usage Notes
Beat Frequency (f_b)	$f_b = f_1 - f_2 $	Number of beats per second.
		Requires
		$f_1 \approx f_2$
		.
Tuning Fork Loading/Filing	Waxing (Loading): Mass	Used to determine unknown frequency based on change in beat frequency.
	↑	
	, Freq	
		↓
		.
	Filing: Mass	
		↓
	, Freq	
		↑
		.
Doppler Effect (General)	$f' = f_0 \left(\frac{v \pm v_o}{v \mp v_s} \right)$	f' : Apparent freq,
		f_0
		: Source freq.
		v

: Speed of sound.

v_o

: Observer velocity.

v_s

: Source velocity.

Doppler Sign Convention

Numerator (v_o): (+) if Observer moves TOWARDS source.

"Towards" tends to increase frequency.

Denominator (v_s): (-) if Source moves TOWARDS observer.

"Away" tends to decrease frequency.

Effect of Wind (v_w)

$$f' = f_0 \left(\frac{(v \pm v_w) \pm v_o}{(v \pm v_w) \mp v_s} \right)$$

Add

v_w

to

v

if wind blows Source → Observer.

Subtract if wind blows Observer → Source.

7. Intensity & Energy Density

Formula / Topic Name

Formula

Conditions / Usage Notes

Intensity (I)

$$I = 2\pi^2 f^2 A^2 \rho v$$

Power per unit area.

Depends on square of frequency and amplitude.

Intensity vs Distance

Point Source:

Spherical wavefronts vs Cylindrical wavefronts.

Thermal Expansion and Calorimetry

BY AP Sir, Sakaar Classes

Formula Name / Topic	Formula(e)	Conditions / Notes
Linear Expansion	$\Delta L = L_0\alpha\Delta T$	Valid for small temperature changes (ΔT). α is the coefficient of linear expansion.
	$L_f = L_0(1 + \alpha\Delta T)$	
Superficial (Area) Expansion	$\Delta A = A_0\beta\Delta T$	β is the coefficient of superficial expansion.
	$A_f = A_0(1 + \beta\Delta T)$	
Volume Expansion	$\Delta V = V_0\gamma\Delta T$	γ is the coefficient of volume expansion.
	$V_f = V_0(1 + \gamma\Delta T)$	
Relation between Coefficients	$\alpha : \beta : \gamma = 1 : 2 : 3$	strictly valid for isotropic solids (properties same in all directions).
	$\beta = 2\alpha, \gamma = 3\alpha$	
Anisotropic Expansion	$\gamma = \alpha_x + \alpha_y + \alpha_z$	For non-isotropic solids where α differs along x, y, z axes.
Variation of Density	$\rho' = \frac{\rho_0}{1+\gamma\Delta T} \approx \rho_0(1 - \gamma\Delta T)$	Approximation valid when $\gamma\Delta T \ll 1$. ρ' decreases as T increases.
Thermal Stress	Stress = $Y\alpha\Delta T$	Rod held between rigid supports preventing expansion. Y is Young's Modulus.
	Force = $YA\alpha\Delta T$	
Pendulum Clock (Time Period)	New Period: $T' = T(1 + \frac{1}{2}\alpha\Delta\theta)$	Due to length change $L' = L(1 + \alpha\Delta\theta)$. $\Delta\theta$ is temp change.

Time Lost/Gained (Pendulum)	$\Delta t = \frac{1}{2}\alpha\Delta\theta \times t$ $\text{Loss/day} = \frac{1}{2}\alpha\Delta\theta \times 86400$	If temp increases, clock expands, slows down (Loses time). If temp drops, gains time.
Bimetallic Strip	$R \approx \frac{d}{(\alpha_1 - \alpha_2)\Delta T}$	Radius of curvature R when two strips of thickness d bend. $\alpha_1 > \alpha_2$.
Expansion of Liquids	$\gamma_{real} = \gamma_{app} + \gamma_{vessel}$	γ_{real} is actual expansion; γ_{app} is what we see in a container.
	$\gamma_{app} = \gamma_{real} - 3\alpha_{vessel}$	
Barometer Correction	$H_0 = H_{obs}[1 - (\gamma_{Hg} - \alpha_{scale})\Delta T]$	H_0 is true height at $0^\circ C$. Corrects for both Hg expansion and scale expansion.
Specific Heat Capacity	$Q = ms\Delta T$ or $Q = mc\Delta T$	Heat required to change temp without phase change. s or c is specific heat.
Molar Heat Capacity	$Q = nC\Delta T$	n = number of moles. C = Molar heat capacity.
Heat Capacity (Thermal Capacity)	$H = ms$ or $H = \frac{Q}{\Delta T}$	Heat required to raise temp of the <i>whole body</i> by $1^\circ C$.
Latent Heat (Phase Change)	$Q = mL$	Used during melting (L_f) or boiling (L_v). Temp remains constant.
Water Equivalent	$W = ms$	Mass of water that absorbs same heat as the body for same ΔT . (Unit: grams/kg)
Principle of Calorimetry	Heat Lost = Heat Gained	System must be isolated (no heat loss to surroundings).
	$\sum m_i s_i (T_i - T_{mix}) = \sum m_j s_j (T_{mix} - T_j)$	
Mixture Temperature	$T_{mix} = \frac{m_1 s_1 T_1 + m_2 s_2 T_2}{m_1 s_1 + m_2 s_2}$	For mixing two substances of same state (e.g., liquid + liquid).

Steam + Ice Mixture	Check heat available vs heat required step-by-step.	1. Heat released by steam to 100° water (mL_v). 2. Heat to cool water. Compare with ice melting req.
Newton's Law of Cooling (Exact)	$\frac{T - T_s}{T_0 - T_s} = e^{-kt}$	T_s = Surroundings temp. T_0 = Initial temp. T = Temp at time t .
Newton's Law (Approx)	$\frac{T_1 - T_2}{t} = K \left[\frac{T_1 + T_2}{2} - T_s \right]$	Valid only when temp difference $(T - T_s)$ is small (approx $< 30^\circ C$).
Stefan's Law	$E = \sigma A e T^4$	Rate of energy radiated. e = emissivity ($0 \leq e \leq 1$).
Net Rate of Heat Loss (Radiation)	$\frac{dQ}{dt} = \sigma A e (T^4 - T_s^4)$	Body at temp T placed in surroundings at temp T_s . If $T > T_s$, heat is lost.
Growth of Ice (Ice Formation Time)	$t = \frac{\rho L}{2K\theta} (x_2^2 - x_1^2)$	Time taken to increase thickness from x_1 to x_2 . θ = temp difference (Air - $0^\circ C$). K = Thermal conductivity.

Kinetic Theory of Gases and Thermodynamics

BY AP Sir, Sakaar Classes

1. Kinetic Theory of Gases (KTG) & Gas Laws

Formula Name / Topic	Formula(e)	Conditions / specific usage
Ideal Gas Equation	$PV = nRT$	General Ideal Gas Law.
	$PV = \frac{m}{M}RT$	n : moles, m : mass, M : Molar mass, ρ : density, N : number of molecules, k_B : Boltzmann constant ($1.38 \times 10^{-23} J/K$).
	$P = \rho \frac{RT}{M}$	
	$PV = Nk_B T$	
Boyle's Law	$P \propto \frac{1}{V} \implies P_1 V_1 = P_2 V_2$	Constant Temperature (T) (Isothermal).
		Graph P vs $1/V$ is a straight line through origin.
Charles's Law	$V \propto T \implies \frac{V_1}{T_1} = \frac{V_2}{T_2}$	Constant Pressure (P) (Isobaric).
		T must be in Kelvin.
Gay-Lussac's Law	$P \propto T \implies \frac{P_1}{T_1} = \frac{P_2}{T_2}$	Constant Volume (V) (Isochoric).
		Pressure Law. T must be in Kelvin.
Avogadro's Law	$V \propto n \implies \frac{V_1}{n_1} = \frac{V_2}{n_2}$	Constant P and T.
		Equal volumes of gases contain equal number of molecules.

Dalton's Law of Partial Pressure

$$P_{total} = P_1 + P_2 + \dots + P_n$$

For non-reacting gas mixture.

$$P_i = x_i P_{total}$$

$$x_i = \frac{n_i}{n_{total}} \text{ (Mole fraction).}$$

Graham's Law of Diffusion

$$r \propto \frac{1}{\sqrt{M}} \implies \frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}} = \sqrt{\frac{\rho_2}{\rho_1}}$$

r : Rate of diffusion/effusion.

Lighter gases diffuse faster.

At const P and T .

Pressure of an Ideal Gas

$$P = \frac{1}{3} \rho v_{rms}^2$$

v_{rms} : Root Mean Square speed.

$$P = \frac{1}{3} \frac{mN}{V} v_{rms}^2$$

Pressure depends on density and square of RMS speed.

$$P = \frac{2}{3} E \text{ (where } E \text{ is K.E. per unit volume)}$$

E : Total translational K.E. per unit volume.

Root Mean Square Speed (v_{rms})

$$v_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3k_B T}{m_{molecule}}} = \sqrt{\frac{3P}{\rho}}$$

Speed effective in calculating kinetic energy.

Note: T must be in Kelvin, M in kg/mol.

For mixture:

$$v_{rms(mix)} = \sqrt{\frac{n_1 M_1 v_1^2 + n_2 M_2 v_2^2}{n_1 M_1 + n_2 M_2}}$$

Average Speed (v_{avg})

$$v_{avg} = \sqrt{\frac{8RT}{\pi M}} = \sqrt{\frac{8k_B T}{\pi m}}$$

Arithmetic mean of speeds.

$$v_{avg} \approx 0.92 v_{rms}$$

Most Probable Speed (v_{mp})

$$v_{mp} = \sqrt{\frac{2RT}{M}} = \sqrt{\frac{2k_B T}{m}}$$

Speed possessed by maximum fraction of molecules.

Ratio

$$v_{mp} : v_{avg} : v_{rms} = \sqrt{2} : \sqrt{8/\pi} : \sqrt{3}$$

Kinetic Energy (Translational)	Per molecule: $K.E. = \frac{3}{2}k_B T$	depends ONLY on Temperature (T).
	Per mole: $K.E. = \frac{3}{2}RT$	Independent of nature of gas.
Degrees of Freedom (f)	Monoatomic: $f = 3$ (3 trans)	Used to calculate internal energy and C_v .
	Diatomeric (rigid): $f = 5$ (3 trans + 2 rot)	Note: For NEET/JEE, unless specified "high temp", take Diatomic $f = 5$.
	Diatomeric (vib at high T): $f = 7$	
	Triatomic (linear): $f = 5$ (rigid) / 7 (vib)	
	Triatomic (non-linear): $f = 6$	
Law of Equipartition of Energy	Energy associated with each D.O.F = $\frac{1}{2}k_B T$ (per molecule)	Total Internal Energy (U) depends on f .
Internal Energy (U)	$U = \frac{f}{2}nRT$	For an ideal gas, U is a function of T only.
		Change: $\Delta U = \frac{f}{2}nR\Delta T = nC_v\Delta T$
Mean Free Path (λ)	$\lambda = \frac{1}{\sqrt{2\pi d^2 n_v}}$	d : diameter of molecule, n_v : number density (N/V).
		$\lambda \propto \frac{T}{P}$ (since $n_v = P/k_B T$).
Mixture of Gases	$M_{mix} = \frac{n_1 M_1 + n_2 M_2}{n_1 + n_2}$	Used when non-reacting gases are mixed.
	$C_{v(mix)} = \frac{n_1 C_{v1} + n_2 C_{v2}}{n_1 + n_2}$	
	$\gamma_{mix} = \frac{C_{p(mix)}}{C_{v(mix)}}$	

2. Thermodynamics

Formula Name / Topic	Formula(e)	Conditions / specific usage
First Law of Thermodynamics (FLOT)	$dQ = dU + dW$ $Q = \Delta U + W$	Conservation of Energy. Sign Convention (Chemistry opposite for W): Heat added to system: $Q > 0$
		Work done BY gas (expansion): $W > 0$
		Internal Energy increases: $\Delta U > 0$
Work Done (General)	$W = \int_{V_1}^{V_2} P \, dV$	Area under P-V curve on Volume axis gives Work Done.
Mayer's Relation	$C_P - C_V = R$	Valid for Ideal Gas (per mole).
		$C_P > C_V$ because work is done in isobaric expansion.
Specific Heat Ratio (γ)	$\gamma = \frac{C_P}{C_V} = 1 + \frac{2}{f}$	Monoatomic $\gamma = 5/3 = 1.67$ Diatomeric $\gamma = 7/5 = 1.4$
		Triatomic $\gamma = 4/3 = 1.33$
Bulk Modulus of Gas (B)	General: $B = -V \frac{dP}{dV}$	Resistance to compression.
	Isothermal (B_T): $B_T = P$	Adiabatic elasticity is γ times Isothermal elasticity ($B_S = \gamma B_T$).
	Adiabatic (B_S): $B_S = \gamma P$	Isobaric ($P=\text{const}$): $B = 0$.

		Isochoric ($V=\text{const}$): $B = \infty$.
Isochoric Process ($V = \text{const}$)	$W = 0$	Volume constant ($\Delta V = 0$).
	$Q = \Delta U = nC_V\Delta T$	Gay-Lussac's Law holds.
	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$	
Isobaric Process ($P = \text{const}$)	$W = P(V_2 - V_1) = nR(T_2 - T_1)$	Pressure constant.
	$Q = nC_P\Delta T$	Charles's Law holds.
	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$	Fraction of heat into internal energy: $1/\gamma$.
		Fraction of heat into work: $1 - 1/\gamma$.
Isothermal Process ($T = \text{const}$)	$W = nRT \ln\left(\frac{V_2}{V_1}\right) = 2.303nRT \log\left(\frac{V_2}{V_1}\right)$	Temperature constant ($\Delta T = 0$).
	$W = nRT \ln\left(\frac{P_1}{P_2}\right)$	Internal energy change is zero for ideal gas.
	$\Delta U = 0 \implies Q = W$	Boyle's Law ($P_1V_1 = P_2V_2$).
Adiabatic Process ($Q = 0$)	Equation: $PV^\gamma = \text{const}$	No heat exchange ($dQ = 0$).
	$TV^{\gamma-1} = \text{const}$	Occurs suddenly/quickly or in insulated containers.
	$P^{1-\gamma}T^\gamma = \text{const}$	
Work in Adiabatic Process	$W = \frac{P_1V_1 - P_2V_2}{\gamma-1} = \frac{nR(T_1 - T_2)}{\gamma-1}$	Since $Q = 0$, $W = -\Delta U$.

		Expansion causes cooling ($T_2 < T_1$).
Slope of P-V Graph	Isothermal Slope: $\frac{dP}{dV} = -\frac{P}{V}$	Adiabatic curve is steeper than Isothermal by a factor of γ .
	Adiabatic Slope: $\frac{dP}{dV} = -\gamma \frac{P}{V}$	
Polytropic Process	$PV^x = \text{const}$	General process.
		Molar Heat Capacity: $C = C_V + \frac{R}{1-x}$
		Work: $W = \frac{nR(T_1 - T_2)}{x-1}$
Cyclic Process	$\Delta U_{net} = 0$	Work = Area enclosed by the loop.
	$Q_{net} = W_{net}$	Clockwise = +ve Work (Engine).
		Anticlockwise = -ve Work (Refrigerator).
Efficiency of Heat Engine (η)	$\eta = \frac{\text{Work Output}}{\text{Heat Input}} = \frac{W}{Q_{in}}$	Q_{in} : Heat absorbed from source.
	$\eta = 1 - \frac{Q_{out}}{Q_{in}}$	Q_{out} : Heat rejected to sink.
Carnot Engine	$\eta = 1 - \frac{T_{sink}}{T_{source}}$	Maximum theoretical efficiency.
		T must be in Kelvin.
		Valid for reversible cycle only.

Refrigerator (COP - β) $\beta = \frac{\text{Heat Extracted}}{\text{Work Input}} = \frac{Q_{cold}}{W}$ Coefficient of Performance.

$$\beta = \frac{Q_{cold}}{Q_{hot} - Q_{cold}} = \frac{T_{cold}}{T_{hot} - T_{cold}}$$

Relationship with efficiency:
 $\beta = \frac{1-\eta}{\eta}$

Entropy (ΔS) $\Delta S = \int \frac{dQ_{rev}}{T}$ Measure of disorder.

Ideal Gas:
 $\Delta S = nC_v \ln\left(\frac{T_2}{T_1}\right) + nR \ln\left(\frac{V_2}{V_1}\right)$

Adiabatic Reversible: $\Delta S = 0$
(Isentropic).

Phase Change: $\Delta S = \frac{mL}{T}$

Free Expansion $W = 0, Q = 0, \Delta U = 0, \Delta T = 0$ Expansion against vacuum ($P_{ext} = 0$).

Neither isothermal nor
adiabatic in strict sense, but
 $\Delta T = 0$ for ideal gas.

Note from AP Sir:

- Always check units: Pressure in Pa (N/m^2), Volume in m^3 , Temperature in Kelvin (K).
- $R = 8.314 \text{ J}/(\text{mol} \cdot \text{K})$ when using SI units.
- $R = 0.0821 \text{ (L} \cdot \text{atm})/(\text{mol} \cdot \text{K})$ when Pressure is atm and Volume is Liters.