

Newton's Laws of Motion

BY AP Sir, Sakaar Classes

Formula Name / Topic	Formula(e)	Conditions / Usage
Newton's Second Law (General)	$\vec{F}_{ext} = \frac{d\vec{p}}{dt}$	Valid for all systems (even variable mass).
Newton's Second Law (Constant Mass)	$\vec{F}_{net} = m\vec{a}$	Valid only when mass m is constant and in an Inertial Frame.
Linear Momentum	$\vec{p} = m\vec{v}$	Quantity of motion contained in a body.
Impulse (J)	$\vec{J} = \int_{t_1}^{t_2} \vec{F}_{ext} dt = \Delta\vec{p}$	Used when a large force acts for a short time. $\Delta\vec{p} = \vec{p}_f - \vec{p}_i$.
	$\vec{J} = \vec{F}_{avg} \cdot \Delta t$	
Impulse-Momentum Theorem	Area under $F - t$ graph = Δp	Used to find change in momentum from a Force-Time graph.
Equilibrium of Forces	$\sum \vec{F} = 0 \implies \vec{a} = 0$	Body is at rest or moving with constant velocity.
Lami's Theorem	$\frac{F_1}{\sin \alpha} = \frac{F_2}{\sin \beta} = \frac{F_3}{\sin \gamma}$	Valid for 3 coplanar, concurrent forces in equilibrium.
Third Law (Action- Reaction)	$\vec{F}_{AB} = -\vec{F}_{BA}$	Action and reaction act on different bodies simultaneously.
Apparent Weight in Lift (Moving Up)	$N = m(g + a)$	Lift accelerating upwards with acceleration a .
Apparent Weight in Lift (Moving Down)	$N = m(g - a)$	Lift accelerating downwards with acceleration a ($a < g$).

Apparent Weight (Free Fall)

$$N = 0$$

Lift cable breaks ($a = g$).
Weightlessness.

Conservation of Linear Momentum

$$\vec{p}_{initial} = \vec{p}_{final}$$

Valid if net external force on the system is zero ($\vec{F}_{ext} = 0$).

$$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$$

Rocket Propulsion (Thrust & Accel)

$$F_{thrust} = u_{rel} \left(-\frac{dm}{dt} \right)$$

u_{rel} is exhaust speed relative to rocket.
 $-\frac{dm}{dt}$ is rate of fuel consumption.

$$a = \frac{u_{rel}}{m} \left(-\frac{dm}{dt} \right) - g$$

Rocket Velocity (at time t)

$$v = u_{rel} \ln \left(\frac{m_0}{m_t} \right) - gt$$

m_0 : initial mass, m_t : mass at time t .
Neglecting initial velocity v_0 .

Force by Liquid Jet (Thrust on Pipe)

$$F = v \frac{dm}{dt} = \rho A v^2$$

Reaction force on a pipe ejecting liquid of density ρ through area A .

Force by Liquid Jet (Striking Wall)

$$F = \rho A v^2$$

Force exerted by a jet striking a vertical wall normally.

(Stops)

$$F = 2\rho A v^2$$

(Reflects)

Connected Bodies (Atwood Machine)

$$a = \left(\frac{m_2 - m_1}{m_1 + m_2} \right) g$$

Massless, frictionless pulley and string.
 $m_2 > m_1$.

$$T = \left(\frac{2m_1 m_2}{m_1 + m_2} \right) g$$

Block on Smooth Inclined Plane

$$a = g \sin \theta$$

Sliding down a frictionless incline of angle θ .

$$N = mg \cos \theta$$

Static Friction (f_s)

$$f_s \leq \mu_s N$$

Self-adjusting force. Prevents relative motion. N is Normal reaction.

$$f_{s,max} = \mu_s N$$

(Limiting Friction)

Kinetic Friction (f_k)

$$f_k = \mu_k N$$

Opposes relative motion when bodies are actually sliding.

Angle of Friction (λ)

$$\tan \lambda = \mu_s$$

Angle between Normal reaction and Resultant of contact forces.

Angle of Repose (α)

$$\tan \alpha = \mu_s$$

Min angle of incline at which block starts sliding. ($\alpha = \lambda$).

Acceleration on Rough Incline (Down)

$$a = g(\sin \theta - \mu_k \cos \theta)$$

Block sliding down a rough inclined plane.

Acceleration on Rough Incline (Up)

$$a = g(\sin \theta + \mu_k \cos \theta)$$

Block pushed up a rough inclined plane (retardation).

Centripetal Force

$$F_c = \frac{mv^2}{r} = m\omega^2 r$$

Net radial force required for circular motion directed towards center.

Safe Turn on Level Road

$$v_{max} = \sqrt{\mu_s r g}$$

Vehicle turning on a flat horizontal road. Friction provides centripetal force.

Banking of Roads (Smooth)

$$\tan \theta = \frac{v^2}{rg}$$

Friction ignored. Ideal banking angle.

Banking of Roads (With Friction)

$$v_{max} = \sqrt{rg \left(\frac{\mu_s + \tan \theta}{1 - \mu_s \tan \theta} \right)}$$

Maximum safe speed on a banked rough road.

Bending of Cyclist

$$\tan \theta = \frac{v^2}{rg}$$

Cyclist leans inward to provide necessary centripetal force.

Pseudo Force

Applied to an object when observing