

Motion in 2D and Projectile Motion

BY AP Sir, Sakaar Classes

Formula Name / Topic	Formula(e)	Conditions / Usage
----------------------	------------	--------------------

1. General Motion in 2D

Position Vector $\vec{r} = x\hat{i} + y\hat{j}$ Cartesian coordinates at time t

Velocity Vector $\vec{v} = \frac{d\vec{r}}{dt} = v_x\hat{i} + v_y\hat{j}$ Instantaneous velocity

Acceleration Vector $\vec{a} = \frac{d\vec{v}}{dt} = a_x\hat{i} + a_y\hat{j}$ Instantaneous acceleration

2. Projectile Motion (Ground to Ground)

Assumptions: Air resistance neglected, g is constant downwards.

Components of Initial Velocity $u_x = u \cos \theta$ θ is angle with horizontal

$$u_y = u \sin \theta$$

Motion Parameters (x & y) $a_x = 0, v_x = u \cos \theta$ (constant) x -motion is uniform; y -motion is under gravity

$$a_y = -g$$

Time of Flight (T) $T = \frac{2u \sin \theta}{g} = \frac{2u_y}{g}$ Projectile lands at same vertical level as launch

Maximum Height (H) $H = \frac{u^2 \sin^2 \theta}{2g} = \frac{u_y^2}{2g}$ Vertical component of velocity becomes zero at max height

Horizontal Range (R) $R = \frac{u^2 \sin 2\theta}{g} = \frac{2u_x u_y}{g}$ Distance between launch and landing point on same level

Condition for Max Range $\theta = 45^\circ \Rightarrow R_{max} = \frac{u^2}{g}$ For a given initial speed u

Relation between H and R

$$R \tan \theta = 4H$$

Useful for direct relation problems

Equation of Trajectory

$$y = x \tan \theta - \frac{gx^2}{2u^2 \cos^2 \theta}$$

To find y given x (eliminating t)

OR

$$y = x \tan \theta \left(1 - \frac{x}{R} \right)$$

Instantaneous Velocity

$$\vec{v} = u \cos \theta \hat{i} + (u \sin \theta - gt) \hat{j} \quad \text{\textbackslash vec\{v\}}$$

\$

Angle with Horizontal (α)

$$\tan \alpha = \frac{v_y}{v_x} = \frac{u \sin \theta - gt}{u \cos \theta}$$

Direction of motion at time t

3. Horizontal Projectile (From Tower)

Condition: Thrown horizontally ($u_y = 0$) from height h

Time of Flight

$$T = \sqrt{\frac{2h}{g}}$$

Time to reach ground

Horizontal Range

$$R = u \times T = u \sqrt{\frac{2h}{g}}$$

Horizontal distance covered

Velocity at Ground

$$v = \sqrt{u^2 + 2gh}$$

Conservation of energy or vector sum

4. Projectile on Inclined Plane

Incline angle α , Projection angle θ (w.r.t incline)

Time of Flight (Incline)

$$T = \frac{2u \sin \theta}{g \cos \alpha}$$

Component of g perpendicular to plane is $g \cos \alpha$

Range on Incline (R_{inc})

$$R_{inc} = \frac{2u^2 \sin \theta \cos(\theta + \alpha)}{g \cos^2 \alpha}$$

Projecting UP the incline

Range on Incline (R_{inc})

$$R_{inc} = \frac{2u^2 \sin \theta \cos(\theta - \alpha)}{g \cos^2 \alpha}$$

Projecting DOWN the incline

5. Relative Motion in 2D

Relative Velocity

$$\vec{v}_{AB} = \vec{v}_A - \vec{v}_B$$

Velocity of A with respect to B

Rain-Man Problem

$$\vec{v}_{rm} = \vec{v}_r - \vec{v}_m$$

\vec{v}_{rm} is how rain appears to the man

River-Boat: Crossing River

$$\vec{v}_{b,g} = \vec{v}_{b,r} + \vec{v}_{r,g}$$

$\vec{v}_{b,r}$ = velocity of boat in still water

Condition: Shortest Path

$$\sin \theta = \frac{v_r}{v_{br}} \text{ (upstream)}$$

Drift = 0 (Requires $v_{br} > v_r$)