

Motion in One Dimension - Important Formulae for NEET & JEE

BY AP Sir, Sakaar Classes

Topic / Formula Name	Formula(e)	Conditions / Notes
1. Average Velocity & Speed	$v_{avg} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$	Valid for any type of motion (uniform or non-uniform). Δx is displacement.
	$\text{Speed}_{avg} = \frac{\text{Total Path Length}}{\text{Total Time}}$	
Special Case: Equal Distances	$v_{avg} = \frac{2v_1 v_2}{v_1 + v_2}$	When a body covers equal distances with different speeds v_1 and v_2 . (Harmonic Mean)
Special Case: Equal Time Intervals	$v_{avg} = \frac{v_1 + v_2}{2}$	When a body travels for equal time intervals with different speeds v_1 and v_2 . (Arithmetic Mean)
2. Instantaneous Velocity & Speed	$\vec{v}_{inst} = \lim_{\Delta t \rightarrow 0} \frac{\Delta \vec{x}}{\Delta t} = \frac{d\vec{x}}{dt}$	$\text{vec}\{v\}_{inst}$
	$\text{Speed}_{inst} =$	
3. Instantaneous Acceleration	$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$	Used for variable acceleration. The form $v(dv/dx)$ is crucial when v is a function of x .
	$a = v \frac{dv}{dx}$	

4. Equations of Kinematics (Scalar Form)

1.

$$v = u + at$$

STRICTLY for Constant Acceleration ($a = \text{const.}$).

u : initial velocity, v : final velocity, a : acceleration, s : displacement, t : time.

2.

$$s = ut + \frac{1}{2}at^2$$

3.

$$v^2 = u^2 + 2as$$

4.

$$s = \left(\frac{u + v}{2} \right) t$$

5. Displacement in n^{th} Second

$$S_{n^{\text{th}}} = u + \frac{a}{2}(2n - 1)$$

Displacement covered strictly during the n^{th} second of motion. Only for constant acceleration.

6. Motion Under Gravity (Free Fall)

1.

$$v = u - gt$$

Sign Convention (Upward +ve):

$a = -g$, Displacement h is +ve if up, -ve if down.

2.

$$h = ut - \frac{1}{2}gt^2$$

For dropped object: $u = 0$.

3.

$$v^2 = u^2 - 2gh$$

7. Max Height & Time of Flight

$$H_{\max} = \frac{u^2}{2g}$$

For a particle thrown vertically upward with speed u returning to the same level.

$$T_{flight} = \frac{2u}{g}$$

8. Stopping Distance

$$d_{stop} = \frac{u^2}{2a}$$

Distance traveled before coming to rest ($v = 0$) with retardation a .

9. Relative Velocity in 1D

$$v_{AB} = v_A - v_B$$

Velocity/Acceleration of A with respect to B. Signs are crucial (+ve for one direction, -ve for opposite).

$$a_{AB} = a_A - a_B$$

10. Graphical Interpretations

1. Slope of $x - t$ graph = Velocity (v)

Valid for all types of motion.

2. Slope of $v - t$ graph = Acceleration (a)

3. Area under $v - t$ graph = Displacement (Δx)

4. Area under Speed-time graph = Distance

5. Area under $a - t$ graph = Change in velocity (Δv)

11. Variable Acceleration (Integration)

$$v = \int a \, dt$$

Use definite integrals with limits when acceleration is a function of time ($a = f(t)$).

$$x = \int v \, dt$$

Key Tips for Solving Problems:

- **Sign Convention:** Always choose a positive direction (usually right or up). Any vector (displacement, velocity, acceleration) opposite to this is negative.

- **Vector Form:** For complex problems, use $\vec{v} = \vec{u} + \vec{a}t$.

- **Differentiation vs Integration:**

- $x \xrightarrow{\text{diff}} v \xrightarrow{\text{diff}} a$

- $a \xrightarrow{\text{int}} v \xrightarrow{\text{int}} x$