

BY AP Sir, Sakaar Classes

Topic: Vectors (Physics)

Formula Name / Topic	Formula(e)	Conditions / Usage
1. Magnitude of a Vector	If $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$:	Used to find the size/length of a vector from its Cartesian components.
	$ \vec{A} = \sqrt{A_x^2 + A_y^2 + A_z^2}$	
2. Unit Vector	$\hat{n} = \frac{\vec{A}}{ \vec{A} }$	Represents direction only. Magnitude is always 1.
3. Vector Addition (Parallelogram Law)	Resultant (R):	θ is the angle between \vec{A} and \vec{B} (tail-to-tail).
	$R = \sqrt{A^2 + B^2 + 2AB \cos \theta}$	$R_{max} = A + B$ (at 0°), $R_{min} = A - B $ (at 180°).
	Direction (α with \vec{A}):	
	$\tan \alpha = \frac{B \sin \theta}{A + B \cos \theta}$	
4. Vector Subtraction	Magnitude:	Used for relative velocity ($\Delta \vec{v}$). θ is the angle between original vectors.
	$ \vec{A} - \vec{B} = \sqrt{A^2 + B^2 - 2AB \cos \theta}$	
	Direction:	
	$\tan \alpha = \frac{B \sin \theta}{A - B \cos \theta}$	
5. Resolution of Components	$A_x = A \cos \theta$	θ is the angle made with the X-axis.

$$A_y = A \sin \theta$$

6. Direction Cosines $l = \frac{A_x}{A}, \quad m = \frac{A_y}{A}, \quad n = \frac{A_z}{A}$ l, m, n are cosines of angles with X, Y, Z axes.

$$l^2 + m^2 + n^2 = 1$$

7. Dot Product (Scalar) $\vec{A} \cdot \vec{B} = AB \cos \theta$ Result is Scalar.

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

Perpendicular if: $\vec{A} \cdot \vec{B} = 0$.

8. Angle Between Vectors $\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|}$ Vectors must be tail-to-tail.

9. Cross Product (Vector) **Magnitude:** $|\vec{A} \times \vec{B}| = AB \sin \theta$ Result is Vector \perp to \vec{A} and \vec{B} .

Parallel if: $\vec{A} \times \vec{B} = 0$.

Determinant Form:

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

10. Lami's Theorem $\frac{A}{\sin \alpha} = \frac{B}{\sin \beta} = \frac{C}{\sin \gamma}$ Only for 3 concurrent forces in equilibrium.

11. Relative Velocity $\vec{v}_{AB} = \vec{v}_A - \vec{v}_B$ Velocity of A w.r.t B.

12. Rain-Man Concept $\vec{v}_{rm} = \vec{v}_r - \vec{v}_m$ θ with vertical.

$$\tan \theta = \frac{v_m}{v_r}$$

13. River Boat: Min Time $t_{min} = \frac{d}{v_b}$ Head perpendicular to flow.

$$\text{Drift } x = v_r \times t_{min}$$

14. River Boat: Shortest Path $\sin \theta = \frac{v_r}{v_b}$ Head upstream at angle θ .

$$t = \frac{a}{\sqrt{v_b^2 - v_r^2}}$$
 Cond: $v_b > v_r$.

15. Area of Triangle $\text{Area} = \frac{1}{2} |\vec{A} \times \vec{B}|$ \vec{A}, \vec{B} are adjacent sides.

16. Area of Parallelogram Sides: $|\vec{A} \times \vec{B}|$

Diagonals: $\frac{1}{2} |\vec{d}_1 \times \vec{d}_2|$

17. Vol. of Parallelepiped $V = |\vec{A} \cdot (\vec{B} \times \vec{C})|$ Coplanar if Volume = 0.

$$V = \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$$