

Wave Motion (Mechanical Waves)

BY AP Sir, Sakaar Classes

1. Basics of Wave Motion & Progressive Waves

Formula / Topic Name	Formula	Conditions / Usage Notes
----------------------	---------	--------------------------

General Plane

Progressive Wave

Equation

$$y = A \sin(\omega t \pm kx + \phi)$$

y

: Displacement,

A

: Amplitude,

ω

: Angular freq,

k

: Propagation constant.

(-) sign: Wave moving in $+x$ direction.

(+) sign: Wave moving in $-x$ direction.

Angular Frequency (ω)

$$\omega = 2\pi f = \frac{2\pi}{T} \quad f$$

: Frequency (Hz),

T

: Time period.

Propagation Constant (k)

$$k = \frac{2\pi}{\lambda}$$

 λ

: Wavelength. Represents phase change per unit length.

Wave Velocity (v)

$$v = f\lambda = \frac{\omega}{k}$$

Speed at which the disturbance travels through the medium.

Particle Velocity (v_p)

$$v_p = \frac{\partial y}{\partial t} = \omega A \cos(\omega t \pm kx)$$

Velocity of a particle oscillating about its mean position.

Relation: Particle vs Wave Velocity

$$v_p = -v \times (\text{slope of y-x graph})$$

Used to find the direction of particle motion if the wave shape is known.

$$v_p = -v \left(\frac{\partial y}{\partial x} \right)$$

Particle Acceleration (a_p)

$$a_p = \frac{\partial^2 y}{\partial t^2} = -\omega^2 y$$

Maximum acceleration

$$a_{max} = \omega^2 A$$

occurs at extreme positions (

$$y = \pm A$$

).

Phase Difference ($\Delta\phi$)

$$\Delta\phi = \frac{2\pi}{\lambda} \Delta x$$

Relation between Phase difference and Path difference (Δx) or Time difference (Δt).

$$\Delta\phi = \frac{2\pi}{T} \Delta t$$

2. Speed of Waves in Media

Formula / Topic Name

Formula

Conditions / Usage Notes

Speed of Transverse Wave on String

$$v = \sqrt{\frac{T}{\mu}}$$

: Tension in string,

μ

: Linear mass density (

$$m/L$$

).

Imp: Ensure

μ

is mass per unit length, not volume density.

Speed of Sound (General)

$$v = \sqrt{\frac{E}{\rho}}$$

: Modulus of Elasticity,

ρ

: Density of medium.

Speed in Solids (Rod)

$$v = \sqrt{\frac{Y}{\rho}}$$

: Young's Modulus.

Speed in Fluids (Liquids/Gases)

$$v = \sqrt{\frac{B}{\rho}}$$

: Bulk Modulus.

Newton's Formula (Gases)

$$v = \sqrt{\frac{P}{\rho}}$$

Assumed Isothermal process. (Incorrect historically, gives lower value).

Laplace Correction (Gases)

$$v = \sqrt{\frac{\gamma P}{\rho}} = \sqrt{\frac{\gamma RT}{M}}$$

Assumed Adiabatic process.

$$\gamma = C_p/C_v$$

(Adiabatic index).

$$T$$

: Temp in Kelvin,

$$M$$

: Molar mass.

Effect of Temperature on Sound Speed

$$v \propto \sqrt{T}$$

Speed increases with temperature.

$$\frac{v_1}{v_2} = \sqrt{\frac{T_1}{T_2}}$$

Effect of Humidity

$$v_{moist} > v_{dry}$$

Moist air is less dense than dry air (

$$\rho_{moist} < \rho_{dry}$$

), so speed increases.

3. Superposition & Interference

Formula / Topic Name

Formula

Conditions / Usage Notes

Resultant Amplitude (

A_{res})

$$A_{res} = \sqrt{A_1^2 + A_2^2 + 2A_1A_2 \cos \phi}$$

ϕ

is the phase difference between two interfering waves.

Resultant Intensity (

I_{res})

$$I_{res} = I_1 + I_2 + 2\sqrt{I_1I_2} \cos \phi$$

Since

$$I \propto A^2$$

**Constructive
Interference (Maxima)**

Condition:

Where

$$\phi = 2n\pi$$

$$n = 0, 1, 2, \dots$$

Path diff

$$\Delta x = n\lambda$$

$$A_{max} = A_1 + A_2$$

$$I_{max} = (\sqrt{I_1} + \sqrt{I_2})^2$$

**Destructive
Interference (Minima)**

Condition:

Where

$$\phi = (2n - 1)\pi$$

$$n = 1, 2, 3, \dots$$

Path diff

$$\Delta x = (2n - 1)\frac{\lambda}{2}$$

$$A_{min} = |A_1 - A_2|$$

$$\text{\$\$I_{min} = (\sqrt{I_1} - \sqrt{I_2})}$$

Ratio of Intensities

$$\frac{I_{max}}{I_{min}} = \left(\frac{A_1 + A_2}{A_1 - A_2} \right)^2$$

Useful for questions given
amplitude ratio

$$r = A_1/A_2$$

4. Stationary (Standing) Waves

Formula / Topic Name	Formula	Conditions / Usage Notes
General Equation	$y = 2A \sin(kx) \cos(\omega t)$	Or $y = 2A \cos(kx) \sin(\omega t)$
		Amplitude of particle at x is $A(x) = 2A \sin(kx)$
Nodes & Antinodes	Nodes: Zero amplitude points. Antinodes: Max amplitude points.	Distance between consecutive Node & Node or Antinode & Antinode = $\lambda/2$ Distance between Node & Antinode = $\lambda/4$
String Fixed at Both Ends	$f_n = \frac{nv}{2L} = n \left(\frac{1}{2L} \sqrt{\frac{T}{\mu}} \right)$	$n = 1, 2, 3\dots$ (Number of loops).

$$n = 1$$

: Fundamental/1st Harmonic.

$$n = 2$$

: 2nd Harmonic/1st Overtone.

All harmonics are present.

String Fixed at

One End

$$f_n = \frac{(2n-1)v}{4L} \quad n = 1, 2, 3\dots$$

Only odd harmonics are present (

$$f_1, 3f_1, 5f_1\dots$$

).

Sonometer Law

$$f \propto \frac{1}{L}$$

Used for comparing frequencies when length or tension changes.

$$f \propto \sqrt{T}$$

$$f \propto \frac{1}{\sqrt{\mu}}$$

5. Organ Pipes (Sound Columns)

Formula / Topic
Name

Formula

Conditions / Usage Notes

Open Organ Pipe

$$f_n = \frac{nv}{2L}$$

Open at both ends.

Similar to string fixed at both ends.

All harmonics present (

$$1 : 2 : 3\dots$$

).

Closed Organ Pipe

$$f_n = \frac{(2n-1)v}{4L}$$

Closed at one end.

Similar to string fixed at one end.

Only odd harmonics present (

1 : 3 : 5...

).

End Correction (e)

$$e \approx 0.6r \quad r$$

: Radius of pipe.

Antinode forms slightly outside the open end.

Corrected Lengths

Open Pipe:

Use these lengths in frequency formulas for precise calculation.

$$L_{eff} = L + 2e$$

Closed Pipe:

$$L_{eff} = L + e$$

Resonance Tube

$$v = 2f(L_2 - L_1) \quad L_1$$

: First resonance length ($\lambda/4$).

$$L_2$$

: Second resonance length ($3\lambda/4$).

Eliminates end correction error.

6. Beats & Doppler Effect

Formula / Topic Name	Formula	Conditions / Usage Notes
Beat Frequency (f_b)	$f_b = f_1 - f_2 $	Number of beats per second. Requires $f_1 \approx f_2$
Tuning Fork Loading/Filing	Waxing (Loading): Mass ↓ , Freq	Used to determine unknown frequency based on change in beat frequency.
	Filing: Mass ↓ , Freq	
Doppler Effect (General)	$f' = f_0 \left(\frac{v \pm v_o}{v \mp v_s} \right)$	f' : Apparent freq. f_0 : Source freq. v

: Speed of sound.

v_o

: Observer velocity.

v_s

: Source velocity.

Doppler Sign Convention

Numerator (v_o): (+) if Observer moves TOWARDS source.

"Towards" tends to increase frequency.

Denominator (v_s): (-) if Source moves TOWARDS observer.

"Away" tends to decrease frequency.

Effect of Wind (v_w)

$$f' = f_0 \left(\frac{(v \pm v_w) \pm v_o}{(v \pm v_w) \mp v_s} \right)$$

Add

v_w

to

v

if wind blows Source → Observer.

Subtract if wind blows Observer → Source.

7. Intensity & Energy Density

Formula / Topic Name

Formula

Conditions / Usage Notes

Intensity (I)

$$I = 2\pi^2 f^2 A^2 \rho v$$

Power per unit area.

Depends on square of frequency and amplitude.

Intensity vs Distance

Point Source:

Spherical wavefronts vs Cylindrical wavefronts.