

Oscillations (Simple Harmonic Motion)

BY AP Sir, Sakaar Classes

Formula / Topic Name	Formula(e)	Conditions / Notes
1. Standard Equation of SHM	$\frac{d^2x}{dt^2} + \omega^2 x = 0$	Differential equation condition for any particle executing SHM.
2. Displacement	$x = A \sin(\omega t + \phi)$	General displacement from mean position. or ϕ : Initial phase (epoch).
	$x = A \cos(\omega t + \phi)$	Use sin if starts from mean, cos if from extreme.
3. Angular Frequency	$\omega = \frac{2\pi}{T} = 2\pi f = \sqrt{\frac{k}{m}}$	ω : Angular frequency (rad/s). Depends on system properties (k, m), not amplitude.
4. Velocity (v)	$v = \frac{dx}{dt} = A\omega \cos(\omega t + \phi)$ $v = \pm \omega \sqrt{A^2 - x^2}$	$v_{max} = A\omega$ (at mean position, $x = 0$). $v_{min} = 0$ (at extreme position, $x = \pm A$).
5. Acceleration (a)	$a = \frac{dv}{dt} = -\omega^2 A \sin(\omega t + \phi)$ $a = -\omega^2 x$	Direction is always towards mean position. $a_{max} = \omega^2 A$ (at extreme). $a_{min} = 0$ (at mean).

6. Restoring Force	$F = -kx$	Linear SHM condition. Force is proportional to displacement and opposite in direction.
	$F = -m\omega^2 x$	
7. Phase Difference	$\Delta\phi = \phi_2 - \phi_1$	Time diff $\Delta t = \frac{T}{2\pi} \Delta\phi$.
		Path diff $\Delta x = \frac{\lambda}{2\pi} \Delta\phi$ (Wave context).
8. Kinetic Energy (KE)	$K = \frac{1}{2}mv^2 = \frac{1}{2}m\omega^2(A^2 - x^2)$	Max at mean position ($K_{max} = \frac{1}{2}kA^2$).
	$K = \frac{1}{2}kA^2 \cos^2(\omega t + \phi)$	Zero at extreme position.
9. Potential Energy (PE)	$U = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2 x^2$	Assuming $U = 0$ at mean position.
	$U = \frac{1}{2}kA^2 \sin^2(\omega t + \phi)$	Max at extreme ($U_{max} = \frac{1}{2}kA^2$).
10. Total Energy (TE)	$E = K + U = \frac{1}{2}m\omega^2 A^2 = \frac{1}{2}kA^2$	TE is constant (conserved) in undamped SHM.
		$E \propto A^2$ and $E \propto f^2$.
11. Average Energies	$\langle K \rangle_{cycle} = \langle U \rangle_{cycle} = \frac{1}{4}kA^2$	Over one complete cycle of oscillation.
	$\langle E \rangle_{cycle} = \frac{1}{2}kA^2$	
12. Spring-Mass System (Horizontal/Vertical)	$T = 2\pi \sqrt{\frac{m}{k}}$	Period is independent of g and amplitude.
		k : Spring constant.
13. Springs in Series	$\frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2} + \dots$	End-to-end connection. Force is same, extension adds up.
14. Springs in Parallel	$k_{eq} = k_1 + k_2 + \dots$	Side-by-side or mass between two fixed springs. Extensions are same.

15. Cutting a Spring

$$k \cdot l = \text{constant} \implies k \propto \frac{1}{l}$$

If spring of length l is cut into n equal parts, stiffness of each part becomes nk .

16. Two Block System (Reduced Mass)

$$T = 2\pi \sqrt{\frac{\mu}{k}}$$

Where reduced mass $\mu = \frac{m_1 m_2}{m_1 + m_2}$.

Blocks oscillate relative to center of mass.

17. Simple Pendulum

$$T = 2\pi \sqrt{\frac{l}{g_{eff}}}$$

For small angular amplitude ($\theta < 5^\circ$).

l : Length from pivot to CM of bob.

18. Pendulum in Lift

Accelerating Up: $g_{eff} = g + a$

If lift falls freely ($a = g$), $g_{eff} = 0$, $T \rightarrow \infty$ (No oscillation).

$$T = 2\pi \sqrt{\frac{l}{g+a}}$$

Accelerating Down: $g_{eff} = g - a$

$$T = 2\pi \sqrt{\frac{l}{g-a}}$$

19. Pendulum in Truck/Car

$$g_{eff} = \sqrt{g^2 + a^2}$$

Truck moving horizontally with acceleration a . Mean position shifts by $\tan \theta = a/g$.

$$T = 2\pi \sqrt{\frac{l}{(g^2+a^2)^{1/2}}}$$

20. Pendulum with Charged Bob

$$g_{eff} = g + \frac{qE}{m}$$
 (E field down)

Electric field E applied vertically.

$$g_{eff} = g - \frac{qE}{m}$$
 (E field up)

21. Pendulum of Infinite Length

$$T = 2\pi \sqrt{\frac{1}{g(\frac{1}{l} + \frac{1}{R_e})}}$$

If $l \approx R_e$ (Earth's radius).

If $l \rightarrow \infty$,
 $T = 2\pi \sqrt{\frac{R_e}{g}} \approx 84.6 \text{ min.}$

22. Second's Pendulum $T = 2$ seconds Length $l \approx 0.993$ m (on Earth).

23. Physical Pendulum $T = 2\pi\sqrt{\frac{I}{mgd}}$ I : Moment of Inertia about pivot.

24. Torsional Pendulum $T = 2\pi\sqrt{\frac{I}{C}}$ d : Distance between pivot and Center of Mass.

25. Superposition (Same freq) $x_{res} = A \sin(\omega t + \theta)$ I : MOI of disc/body.

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2 \cos \delta}$$

C : Torsional constant (Nm/rad) of the wire.

26. Liquid in U-Tube $T = 2\pi\sqrt{\frac{h}{g}}$ or $T = 2\pi\sqrt{\frac{L}{2g}}$ h : Height of liquid column in one arm at equilibrium.

L : Total length of liquid column.

27. Body Floating in Liquid $T = 2\pi\sqrt{\frac{m}{A\rho g}} = 2\pi\sqrt{\frac{h_{submerged}}{g}}$ A : Cross-sectional area. ρ : Density of liquid.

Slightly depressed and released.

28. Tunnel through Earth $T = 2\pi\sqrt{\frac{R_e}{g}} \approx 84.6$ min Particle dropped in a tunnel along diameter or chord. (Assuming uniform density).

29. Ball in Concave Dish $T = 2\pi\sqrt{\frac{R-r}{g}}$ R : Radius of curvature of dish. r : Radius of ball.

For small oscillations ($r \ll R$, $T \approx 2\pi\sqrt{R/g}$).

30. Piston in Cylinder $T = 2\pi\sqrt{\frac{mV}{PA^2}}$ V : Volume, P : Pressure, A : Area of piston.

(Adiabatic process usually considered, add factor γ in denominator for adiabatic).

21. Amplitude with

$$A' = A \cdot f^n \text{ where } f > 1$$

If amplitude decays by a constant