

Units, Dimensions, and Measurements Formulae for NEET & JEE

by AP Sir, Director Sakaar PCMB Classes

Formula /
Topic Name

Formula(e) & Expressions

Conditions & Usage Notes

1. Dimensional Analysis

Fundamental Quantities

Mass [M], Length [L], Time [T], Current [A],
Temp [K], Amount of Substance [mol],
Luminous Intensity [cd]

Base dimensions from which all
others are derived.

Order of Magnitude

Express number as $N = a \times 10^b$

Used to estimate the size of a
quantity.

If $a \leq \sqrt{10}$ (≈ 3.16), Order = b

Example: $4 \times 10^5 \rightarrow$ Since
 $4 > 3.16$, Order is 10^6 .

If $a > \sqrt{10}$, Order = $b + 1$

2. Significant Figures

Counting Rules

1. All non-zero digits are significant.

0.007 (1 SF)

2. Zeros between non-zeros are significant.

2.05 (3 SF)

3. Leading zeros are **never** significant.

2.500 (4 SF)

4. Trailing zeros with a decimal point are
significant.

1200 (Ambiguous, assume 2 unless
specified).

Rounding Off

- Digit > 5 : Round up

Example (= 5):

- Digit < 5 : No change

$2.45 \rightarrow 2.4$ (4 is even)

	- Digit = 5: Round to nearest even number.	2.35 → 2.4 (round up to even)
Arithmetic Operations	Add/Sub: Result has same decimal places as the least precise term.	Add: $12.11 + 18.0 = 30.1$ (1 dec. place)
	Mul/Div: Result has same sig figs as the least precise term.	Mul: $2.5 \times 1.25 = 3.1$ (2 SF)
3. Vernier Caliper		
Least Count (L.C.)	$L.C. = 1MSD - 1VSD$	Where N is total divisions on Vernier scale.
	Standard: $L.C. = \frac{1MSD}{N}$	Common L.C. = 0.1 mm or 0.01 cm.
Reading	$Reading = MSR + (VSR \times L.C.)$	MSR: Main Scale Reading immediately left of zero.
		VSR: Coinciding Vernier division.
Zero Error	True Reading = Observed – Zero Error	Negative Error Calculation:
	Positive: Zero of VS is right of MS zero.	Error $= -(N - \text{coinciding div}) \times L.C.$
	Negative: Zero of VS is left of MS zero.	
4. Screw Gauge		
Pitch	$Pitch = \frac{\text{Distance moved on Main Scale}}{\text{Number of full rotations}}$	Usually 1 mm or 0.5 mm. Distance screw moves in 1 rotation.
Least Count (L.C.)	$L.C. = \frac{\text{Pitch}}{\text{Total Circular Scale Divisions (CSD)}}$	Common L.C. = 0.01 mm or 0.001 cm.
Reading	$Reading = MSR + (CSR \times L.C.)$	MSR: Reading visible on linear scale.

CSR: Circular division coinciding with reference line.

Zero Error

Positive: Zero of CS is below reference line.

Always subtract the error (keeping signs in mind).

Negative: Zero of CS is above reference line.