PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

D Intersect only at a point

MCQs & A and R WORK SHEET

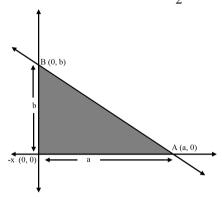
Test / Exam Name: Pair C Two Variables	Of Linear Equations In	Standard: 1	Oth Subject: Mathematics	
Student Name:		Section:	Roll No.:	-
		Que	stions: 45 Time: 01:30 hh:mm Negative Marks: 0	Marks: 45
Instructions 1. MULTIPLE CHOICE QUEST	IONS.			
Q1. For what value of k do the expoint?	equations $kx - 2y = 3$ and $3x - 3x - 3$	+y = 5 represent	two lines intersecting at a unique	1 Mark
$\mathbf{A} \ \mathbf{k} = 3$	B $k = -3$	$\mathbf{C} \mathbf{k} = 6$	D All real values except -6	
Ans: D All real values except -6	5			
Solution:				
kx - 2y = 3 and $3x + y = 5We know that,$				
the system of linear equations a_1	$x + b_1 x + c_1 = 0$, $a_2 x + b_2 y +$	$c_2 = 0$ has a unic	que solution if $\frac{a_1}{a_1} \neq \frac{b_1}{b_1}$.	
So, $\frac{k}{3} = \frac{-2}{1}$	1 1 2 2	2	$\mathbf{a}_2 \cdot \mathbf{b}_2$	
\Rightarrow k \neq -6. Thus, k can take any real values	except -6			
Q2. A system of two linear equa	•	nique solution if t	their graphs:	1 Mark
A CoincideD Intersect only at a point	B Cut the x-axis		C Do not intersect at any point	
Ans: D Intersect only at a point	t			
Solution:				
The number of solutions of a system the graphs of given lines. If a system has a unique solution Q3. A system of two linear equa	ar equations. I then their graphs must inters	ect in only one p		1 Mark
A Cut the x-axisD Do not intersect at any point	B Intersect only at t	a point	C Coincide	
Ans: D Do not intersect at any	point			
Solution:				
A system of two linear equations In this case, a pair of lines represso they do not intersect at any p equations.	sented by the system are para	llel to each other.	• •	
Q4. Every linear equation in two	variables has:			1 Mark
A Two solutionsD No solution	B One solution		C An infinite number of solutions	
Ans: C An infinite number of s	olutions			
Solution:				
A linear equation in two variable every point on this graph is a sol As a line consists of an infinite n Q5. A system of two linear equa	ution for a given linear equati umber of points. A linear equa	on. ation has an infin		1 Mark
A Do not intersect at any poin	t B Coincide with e	each other	C Cut the x-axis	

Ans: B Coincide with each other

Solution:

A system of two linear equations in two variables is dependent consistent, if their graphs coincide with each other i.e. they superimpose each other and all points in one line are also a solution for the other line.

Q6. The area of the triangle formed by the line $\frac{x}{a} + \frac{y}{b} = 1$ with the co-ordinate axis is:


1 Mark

- A 2ab sq. units
- **B** ab sq. units
- C $\frac{1}{4}$ ab sq. units
- $\mathbf{D} = \frac{1}{2}$ ab sq. units

Ans: D $\frac{1}{2}$ ab sq. units

Solution:

Area of triangle OAB = $\frac{1}{2} \times OA \times OB = \frac{1}{2}ab$

Q7. For what value of k, do the equations kx - 2y = 3 and 3x + y = 5 represent two lines intersecting at a unique point?

1 Mark

- $\mathbf{A} \ \mathbf{k} = 3$
- **B** all real values except -6
- C k = 6
- **D** k = -3

Ans: B all real values except -6

Solution:

For a unique intersecting point we have $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

:.

 $\text{text}\{k\} \neq 6$

Q8. The graphs of the equations 2x + 3y - 2 = 0 and x - 2y - 8 = 0 are two lines which are:

1 Mark

A Coincident.

B Parallel.

C Intersecting exactly at one point.

D Perpendicular to each other.

Ans: C Intersecting exactly at one point.

Solution:

$$2x + 3y + 9 = 0$$
 and $x - 2y + 8 = 0$

 $\frac{a}_1}{\text{text}\{a\}_2} = \frac{2}{1}=2$

 $\frac{b}{1} {\text{b}_2} = \frac{3}{-12}$

 $\frac{c}_1}{\text{c}_2}=\frac{9}{-8}$

Clearly, $\frac{a}_1}{\text{text}\{a\}_2} \ln \frac{b}_1}{\text{text}\{b\}_2}$.

We know that,

If in a system of linear equations $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$

We have $\frac{a}{1} {\text{a} 2} \cdot {\text{b} 2}$ then the system has a unique solution.

So, the pair of lines are intersecting exactly at one point.

Q9. The pair of equations x = a and y = b graphically represents lines which are:

1 Mark

- A Parallel
- **B** Intersecting at (b, a)
- C Coincident
- **D** Intersecting at (a, b)

Ans: D Intersecting at (a, b)

Solution:

The pair of equations x = a and y = b graphically represents lines which are intersecting at (a, b).

Q10.If the system 6x - 2y = 3, kx - y = 2 has a unique solution, then:

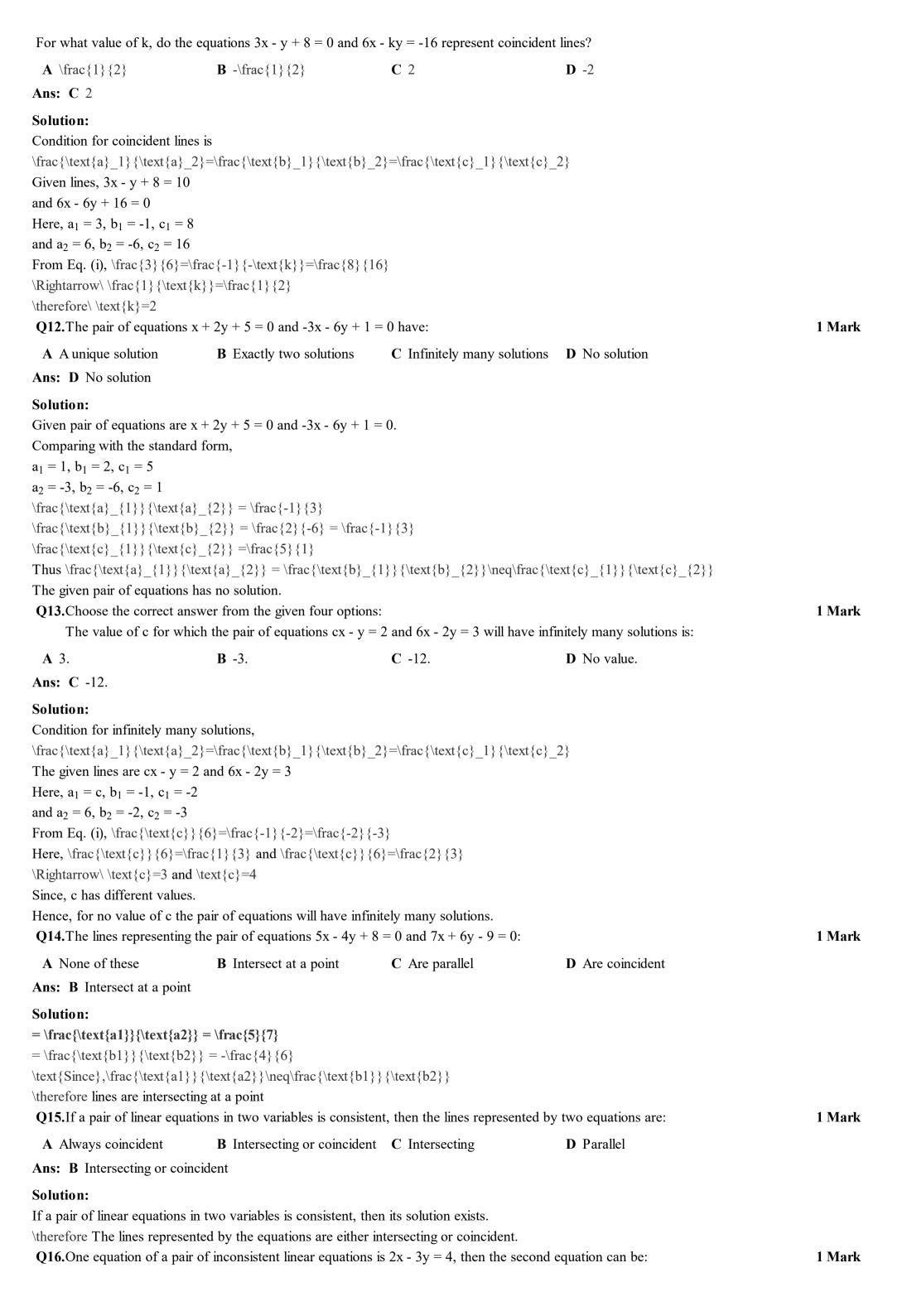
1 Mark

- A $k \neq 4$
- **B** k = 4
- $\mathbf{C} \ \mathbf{k} \neq \mathbf{3}$
- **D** k = 3

Ans: C $k \neq 3$

Solution:

If the system has a unique solution, then $\frac{a}{1}}{\text{1}}}$ \text{a} {2}}\neq\frac{\text{b}} {1}} {\text{b}} {2}}


Here $a_1 = 6$, $a_2 = k$, $b_1 = -2$ and $b_2 = -1$

 $\Rightarrow\text\{k\} \neq \{3\}$

 ${2}\det{k} neq{6}, \det{k}neq{3}$

Q11. Choose the correct answer from the given four options:

1 Mark

B
$$6x - 9y = 12$$

C
$$4x - 6y = 8$$

D
$$4x - 6y = 9$$

Ans: D 4x - 6y = 9

Solution:

If equations of a pair of dependent linear equations, then $\frac{a}{a} {1}}{\det\{a\} {2}}=\frac{b}{1}$ ${\text{b} {2}} \neq {\text{c} {1}} {\text{c} {2}}$

Give: $a_1 = 2$, $b_1 = -3$, and $c_1 = 4$

For satisfying the condition of dependent linear equations, the value of a₂, b₂, and c₂ should be the multiples of the value of a_1 , b_1 and c_1

\therefore The value would be $a_2 = 2 \times (2) = 4$, $b_2 = 6 \times 2 = 12$ and $c_1 = 4 \times 2 = 8$

\therefore The second equations can be 4x - 6y = 8

Q17. The sum of two numbers is 35 and their difference is 13. The numbers are:

1 Mark

A 24 and 11

B 25 and 12

C 20 and 15

D 26 and 13

Ans: A 24 and 11

Solution:

let the numbers be x and y, then as per question

$$x + y = 35 \dots (1)$$

$$x - y = 13 \dots (2)$$

Adding equation (1) and (2)

2x = 48

x = 24

Substitute this value in eq. (1) we get

$$24 + y = 35$$

$$y = 11$$

\therefore the Numbers are 24 and 11

Q18. The lines representing the pair of equations x + 3y = 6 and 2x - 3y = 12 intersect at:

1 Mark

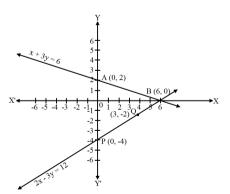
A (0, 6)

B (1, 6)

C(6,0)

D (6, 1)

Ans: C (6, 0)


Solution:

Here are the two solutions of each of the given equations. x + 3y = 6

х	0	6
У	2	0

2x - 3y = 12

•		
X	0	3
y	-4	-2

Q19. The pair of linear equations y = 0 and y = -6 has.

1 Mark

A A unique solution

B No solution

C Infinitely many solutions **D** Only solution (0, 0)

Ans: B No solution

Solution:

The pair of equation y = 0 and y = -6 has no solution. We know that the line y = c is a horizontal line. Since, therefore both lines are parallel to each other.

Q20. The pair of equations x = 2 and y = -3 has:

1 Mark

A Infinitely many solutions **B** Two solutions

C One solution

D No solution

Ans: C One solution

Solution:

Here, a unique solution of each variable of a pair of linear equations is given,

\therefore it has one solution to a system of linear equations.

Q21.5 pencils and 7 is:	pens together cost Rs. 50 when	reas 7 pencils ands pens toge	ther cost Rs. 46. The cost of 1 pen	1 Mark
A Rs. 5	B Rs. 6	C Rs. 3	D Rs. 4	
Ans: A Rs. 5	D 13. 0	C Rs. 3	В 13. т	
Solution:	4			
Let, cost in (RS) of o	_			
and cost in (RS) of or $5x + 7x = 50$ (1)	ne pen = y			
$5x + 7y = 50 \dots (1)$ $7x + 5y = 46 \dots (2)$				
` '	by 7 and equation (2) by 5 we	get		
$7(5x + 7y) = 7 \times 50$	by 7 and equation (2) by 3 we	get		
$35x + 49y = 350 \dots (3)$	3)			
and $5(7x + 5y) = 5x + 6$				
$35x + 25y = 230 \dots (4)$				
·	from equation 3, we get			
35x + 49y - 35x - 25y				
49y - 25y = 120				
24y = 120				
$\text{text}\{y\} = \text{frac}\{120\}$	{24}			
y = 5				
Substitute $y = 5$ in eq	uation 1, we get			
$5x + 7 \times 5 = 50$				
5x + 35 = 50				
5x = 50 - 35				
5x = 15				
$\text{\text}\{x\} = \text{\frac}\{15\} \{$				
x = 3 Cost of One Pe	•			
	e two supplementary angles ex	•		1 Mark
A 180°	B 81°	C 100°	D 99°	
Ans: B 81°				
Solution:				
Let larger of the two	supplementary angles be x and	smaller be y		
According to question	$x + y = 180^{\circ} \dots (i)$			
And $x = y + 18^{\circ}$				
$? x - y = 18^{\circ} (ii)$				
Subtracting eq. (ii) from	om eq. (i),			
we get $2y = 162^{\circ}$				
$9 = 81^{\circ}$	1 1 040			
Therefore, the smaller				
Putting the value of y	in equation 1			
$x + 81^{\circ} = 180^{\circ}$				
$x = 180^{\circ} - 81^{\circ}$ $x = 00^{\circ} \text{which is a law}$				
$x = 99^{\circ}$, which is a lar	rger angle. triangle are x°, y° and 40°. Th	e difference between the two	angles y and y is 30° then	1 Mark
				TWIAIK
	= 95° B $x^{\circ} = 75^{\circ}$ and $y^{\circ} = 10^{\circ}$	= 45° C None of these	$\mathbf{D} \ \mathbf{x}^{\circ} = \ 85^{\circ} \ \text{and} \ \mathbf{y}^{\circ} = 55^{\circ}$	
Ans: D $x^{\circ} = 85^{\circ}$ an	$d y^0 = 55^\circ$			
Solution:				
According to the ques	stion,			
$x^{\circ} + y^{\circ} + 40^{\circ} = 180^{\circ}$				
$x^{\circ} + y^{\circ} = 140^{\circ} \dots (i)$				
and $x^{\circ} + y^{\circ} = 30^{\circ}$	(ii)			
and $y^{\circ} = 55^{\circ}$				
On solving eq. (i) and	eq. (ii),			
x + y + x - y = 140 +	30			

2x = 170 $x = 85^{\circ}$

Putting the value of x in equation (i), we get

```
85^{\circ} + y = 140^{\circ}
y = 140^{\circ} - 85^{\circ}
y = 55^{\circ}
we get x^{\circ} = 85^{\circ} and y^{\circ} = 55^{\circ}
Q24.If \frac{1}{\text{x}}+\frac{2}{\text{x}}=4 and \frac{3}{\text{x}}=11 then:
                                                                                                                                                                1 Mark
                                              B \text{text}\{x\}=-2, \text{text}\{y\}=3
  A \text{text}\{x\}=2, \text{text}\{y\}=3
                                                                                          C \text{text}\{x\} = \text{frac}\{-1\}\{2\}, \text{text}\{y\} = 3
  D \text{text}\{x\} = \frac{-1}{2}, \text{text}\{y\} = \frac{1}{3}
Ans: A \text{text}\{x\}=2, \text{text}\{y\}=3
Solution:
\frac{2\text{x}}{3}-\frac{y}{2}+\frac{1}{6}=0
Multiply by the LCM, 6.
? 4x - 3y + 1 = 0
? 4x - 3y = -1 ....(i)
\frac{x}}{2}+\frac{2\cdot x}{y}}{3}=3
Multiply by the LCM, 6.
3x + 4y = 18 ...(ii)
Multiply equation (i) and (ii) by 4 and 3 respectively.
16x - 12y = -4 ...(iii)
9x + 12y = 54 ...(iv)
Adding equations (iii) and (iv), we get
25x = 50
? x = 2
Substituting x = 2 in (ii), we get y = 3.
 Q25.5 years hence, the age of a man shall be 3 times the age of his son while 5 years earlier the age of the man
                                                                                                                                                                1 Mark
      was 7 times the age of his son. The present age of the man is:
  A 45 years
                                     B 47 years
                                                                         C 40 years
                                                                                                             D 50 years
Ans: C 40 years
Solution:
Let us assume the present age of men be x years
Also, the present age of his son be y years
According to question, after 5 years:
(x+5)=3(y+5)
x + 5 = 3y + 15
x - 3y = 10 ... (i)
Also, five years ago:
(x - 5) = 7 (y - 5)
x - 5 = 7y - 35
x - 7y = -30 \dots (ii)
Now, on subtracting (i) from (ii) we get:
-4y = -40
y = 10
Putting the value of y in (i), we get
x - 3 \times 10 = 10
x - 30 = 10
x = 10 + 30
x = 40
\therefore The present age of men is 40 years.
 Q26.If \frac{3}{\text{x+y}}+\frac{2}{\text{x}-\text{y}}=2 and \frac{9}{\text{x+y}}-\frac{4}{\text{x}-\text{y}}=2
                                                                                                                                                                1 Mark
      \text{text}\{y\}\}=1 then:
  A \text{text}\{x\} = \text{frac}\{1\}\{2\}, \text{text}\{y\} = \text{frac}\{3\}\{2\}
                                                                         B \text{text}\{x\} = \text{frac}\{5\}\{2\}, \text{text}\{y\} = \text{frac}\{1\}\{2\}
  \mathbb{C} \left\{ x \right\} = \left\{ 3 \right\} \left\{ 2 \right\}, \left\{ y \right\} = \left\{ 1 \right\} \left\{ 2 \right\}
                                                                         D \text{text}\{x\} = \frac{1}{2}, \frac{y} = \frac{5}{2}
Ans: B \text{text}\{x\} = \text{frac}\{5\}\{2\}, \text{text}\{y\} = \text{frac}\{1\}\{2\}
Solution:
\frac{3}{\text{x+y}}+\frac{2}{\text{xx}-\text{xy}}=2
\frac{9}{\text{x+y}}-\frac{4}{\text{x}-\text{y}}=1
Put \frac{1}{\text{x+y}} = \text{text}\{u\} and \frac{1}{\text{x+y}} = \text{text}\{v\}
So, we get
3u + 2v = 2 ...(i)
```

```
9u - 4v = 1 ...(ii)
Multiply (i) by 2 and add it to (ii).
? 6u + 4v = 4
? 15u = 5
\left\{ u\right\} = \left\{ 1\right\} \left\{ 3\right\}
Substituting \text{text}\{u\} = \text{frac}\{1\}\{3\} in (i), we get \text{text}\{v\} = \text{frac}\{1\}\{2\}.
? x + y = 3 ...(iii)
? x - y = 2 ...(iv)
Adding (iii) and (iv), we get
2\text{text}\{x\}=5
\left\{x\right\} = \left\{5\right\} \left\{2\right\}
Substituting \text{text}\{x\} = \text{frac}\{5\}\{2\} in (iii), we get \text{text}\{y\} = \text{frac}\{1\}\{2\}.
Q27.If 2^{\text{text}}\{x+y\} = 2^{\text{text}}\{x-y\} = \sqrt{8} then the value of y is:
                                                                                                                                                        1 Mark
                                   \mathbf{B} \ 0
                                                                                                       D None of these
 A \{1\}\{2\}
                                                                     C \{3\}\{2\}
Ans: B 0
Solution:
2^{\text{text}\{x+y\}} = 2^{\text{text}\{x-y\}} = \{2\} | frac\{3\}\{2\}|
\Rightarrow \text{text}\{x+y\}=\frac\{3\}\{2\}  and
\text{text}\{x-y\} = \text{frac}\{3\}\{2\}
So adding above two equations.
We get and x = y = 0
Q28. The area of the triangle formed by the lines 2x + y = 6, 2x - y + 2 = 0 and the x-axis is:
                                                                                                                                                        1 Mark
                                   B 8sq. units
 A 15sq. units
                                                                     C 12sq. units
                                                                                                       D 10sq. units
Ans: B 8sq. units
Solution:
Here are the two solutions of each of the given equations.
2x + y = 6,
                          8
                                                                   2
                                                                                             0
2x - y + 2 = 0
                          0
                                                                                             8
The area bounded by the given lines and x-axis has been shaded in the graph
                                                    = \frac{1}{2}\times \frac{1}{2}\times \frac{Base}\times \frac{Height}
\therefore
              Area
                              shaded
                                          region
                                                                                                                              \frac{1}{}
\{2\}\times\{Dc\}\times\{Gh\} = \frac{1}{2}\times\{4\}\times\{4\} = \{8\}\times\{sq.\}\times\{units\}
Q29.In a \triangle\text{ABC},\
                                                                                                                                                        1 Mark
      \aggle \text{C}=3\aggle \text{B}=2(\aggle \text{A}+\aggle \text{B}), then \aggle \text{Ext} B}=?
                                   B 40°
                                                                     C 60°
 \mathbf{A} \ 20^{\mathrm{o}}
                                                                                                       D 80°
Ans: A 20°
Solution:
Give that in a \triangle\text{ABC},
\aggle \text{C}=3\aggle \text{B}=2(\aggle \text{A}+\aggle \text{B})
```

 $Consider, \\ \\ | (C) = 2(\\ \\ | (A) + \\ \\ | (B))$

By the Angle Sum Property

```
\aggle \text{A}+\aggle \text{B}+\aggle \text{C}=180^\circ 
\Rightarrow\angle\text{A}+2\angle\text{A}+2\angle\text{A}+2\angle\text{A}+2\angle\text{A}
\Rightarrow9\angle\text{A}=180\circ
\Rightarrow\angle\text{A}=20^\circ\circ
So, \angle \text{text} \{B\} = 2 \angle \text{text} \{A\}
\Rightarrow\angle\text\{B\}=40\circ
 Q30.92 Aruna has only Rs. 1 and Rs. 2 coins with her. If the total number of coins that she has is 50 and the
                                                                                                                                                                                                                                                                                       1 Mark
            amount of money with her is Rs. 75, then the number of Rs. 1 and Rs. 2 coins are, respectively:
                                                                                                                               C 15 and 35
   A 35 and 15
                                                                 B 35 and 20
                                                                                                                                                                                             D 25 and 25
Ans: D 25 and 25
Solution:
Let number of Rs. 1 coins = x
and number of Rs. 2 coins = y
Now, by given conditions:
Total number of coins = x + y = 50 ...(i)
Also, Amount of money with her = (Number of Rs 1 \times 1) + (Number of Rs 2 \times coin 2)
= x(1) + y(2) = 75
= x + 2y = 75 ...(ii)
On subtracting Eq. (i) from Eq. (ii), we get
(x + 2y) - (x + y) = (75 - 50)
So, y = 25
Putting y = 25 we get x = 25.
he has 25 one-rupee coins and 25
2-rupee coins.
 Q31.If 4x + 6y = 3xy and 8x + 9y = 5xy then:
                                                                                                                                                                                                                                                                                       1 Mark
  A x = 2, y = 3
                                                             B x = 1, y = 2
                                                                                                                            C x = 3, y = 4
                                                                                                                                                                                             D x = 1, y = -1
Ans: C x = 3, y = 4
Solution:
4x + 6y = 3xy \text{ and } 8x + 9y = 5xy
Dividing through out by xy, we get
\frac{4}{\text{y}}+\frac{6}{\text{x}}=3 \text{ and } \frac{8}{\text{y}}+\frac{9}{\text{x}}=5
That is, \frac{6}{\text{x}}+\frac{4}{\text{y}}=3 and \frac{9}{\text{x}}+\frac{8}{\text{y}}=5
Put \ \{1\} \ \{\text\{x\}\} = \text\{u\} \ and \ \{1\} \ \{\text\{y\}\} = \text\{v\} \ and \ frac\{1\} \ and 
So, we get
6u + 4v = 3 ...(i)
9u + 8v = 5 ...(ii)
Multiply (i) by 2 and subtract (ii) from the resultant.
? 12u + 8v = 6 \text{ and } 9u + 8v = 5
? 3u = 1
\left\{ u\right\} = \left\{ 1\right\} \left\{ 3\right\}
Substituting \text{text}\{u\} = \text{frac}\{1\}\{3\} in (i), we get \text{text}\{v\} = \text{frac}\{1\}\{4\}.
\left\{ \frac{1}{\text{x}} = \frac{1}{3} \text{ frac} \{1\} {\text{y}} = \frac{1}{4} \right\}
? x = 3 \text{ and } y = 4.
 Q32. Half the perimeter of a rectangular garden, whose length is 4m more than its width is 36m. The area of the
                                                                                                                                                                                                                                                                                       1 Mark
           garden is:
   A 320m^2
                                                                                                                                                                                             D 300 \text{m}^2
                                                                  B 400 \text{m}^2
                                                                                                                               C 360m^2
Ans: A 320\text{m}^2
Solution:
Let the width be x
then length be x + 4
According to the question,
1 + b = 36
x + (x + 4) = 36
2x + 4 = 36
2x = 36 - 4
2x = 32
```

x = 16.

The length of the garden will be 20m and width	will be 16m.		
Area = length × breath = $20 \times 16 = 320 \text{m}^2$.1 m1 1	436.1
Q33. The difference between two numbers is 26			1 Mark
A 36 and 10 B 36 and 12	C 30 and 10	D 39 and 13	
Ans: D 39 and 13			
Solution:			
Let the two numbers be x and y According to question, $x - y = 26$ and $x = 3y$			
Putting the value of x in x - y = 26, we get,			
3y - y = 26			
? $y = 13$ And $x = 3 \times 13 = 39$			
\therefore the two numbers are 13 and 39.			
	ASSERTION AND REASON	<u>QUESTIONS</u>	
Q34.Directions: In the following questions, the both the statements carefully and choose the Assertion: If a pair of linear equations is concerns. Because the two lines definitely have	ne correct alternative from the follow onsistent, then the lines are intersecti	ring:	1 Mark
A both assertion and reason are correct and reassertion	ason is correct explanation for		
B both assertion and reason are correct but rea	ason is correct explanation for		
C assertion is correct but reason is false	D both assertion and	l reason are false	
Ans: A both assertion and reason are correct ar	nd reason is correct explanation for a	ssertion	
 both assertion and reason are correct and reas Q35.Assertion: The slope of the line 2x - y = 0 Reason: The slope of the line which lies in 	is 2	n	1 Mark
A both assertion and reason are correct and reassertion	ason is correct explanation for		
B both assertion and reason are correct but reasonsertion	ason is correct explanation for		
C assertion is correct but reason is false	D both assertion and	l reason are false	
Ans: A both assertion and reason are correct ar	nd reason is correct explanation for a	ssertion	
 both assertion and reason are correct and reas Q36.Assertion: (A) 4x + 3y = 18 is a line which Reason: (R) The graph of linear equation a 	\mathbf{n} is parallel to \mathbf{X} - axis.		1 Mark
A Ais true, Ris true; Ris acorrect explanation fC Ais true; Ris False.	OrA. B Ais true, Ris true; Ris D Ais false; R is true.	not a correct explanation for A.	
Ans: D Ais false; R is true.			
4. Ais false; R is true.			
Q37.Assertion: (A) $x + y - 4 = 0$ and $2x + ky - 3$ Reason: (R) $a_1x + b_1y + c_1 = 0$ and $a_2x + b_1y + c_1 = 0$ \text{if}\\frac{\text{a}_1}{\text{a}_2}\\neq	1 Mark		
A Ais true, Ris true; Ris acorrect explanation fC Ais true; Ris False.	OrA. B Ais true, Ris true; Ris D Ais false; R is true.	not a correct explanation for A.	
Ans: B Ais true, Ris true; Ris not a correct expl	lanation for A.		
2. Ais true, Ris true; Ris not a correct explanation	n for A.		
Q38.Assertion: $3x - 4y = 7$ and $6x - 8y = k$ has Reason: $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y$ { a_2 }\neq \frac{b}_1} {text{}}	ve infinite number of solution if $k = 1$ + $c_2 = 0$ have a unique solution if \fr		1 Mark
A Both assertion (A) and reason (R) are true a	and reason (R) isthe correct explanation	on of assertion	
(A). B Both assertion (A) and reason (R) are true b	out reason (R) is not the correct expla	nation of assertion	
(A).C Assertion (A) is true but reason (R) is false.	D Assertion (A) is fal	se but reason (R) is true	
Ans: B Both assertion (A) and reason (R) are to	· /	, ,	

```
2. Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
Q39.Assertion: lines are x + 2y - 4 = 0 and 2x + 4y - 12 = 0 the graphical representation of line is parallel line.
                                                                                                                                      1 Mark
     Reason: if pair of given lines are parallel then \frac{a}{1} \frac{1}{\text{text}\{a\}} = \frac{b}{1}
     {\text{b} 2} \neq {\text{c} 1} {\text{c} 2}
 A both assertion and reason are correct and reason is correct explanation for
    assertion
 B both assertion and reason are correct but reason is correct explanation for
    assertion
 C assertion is correct but reason is false
                                                               D both assertion and reason are false
Ans: A both assertion and reason are correct and reason is correct explanation for assertion
1. both assertion and reason are correct and reason is correct explanation for assertion
                                                                                                                                      1 Mark
Q40.Assertion: The value of k for which the system of linear equations kx - y = 2 and 6x - 2y = 3 has a unique
     solution is 3.
     Reason: The system of linear equations a_1x + b_1y + c_1 = 0 and a_2x + b_2y + c_2 = 0 has a unique solution
     if \frac{a}{1} {\text{a} 2} \ln \frac{b}{1} {\text{b} 2}
 A Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion
    (A).
 B Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion
 C Assertion (A) is true but reason (R) is false.
                                                             D Assertion (A) is false but reason (R) is true
Ans: D Assertion (A) is false but reason (R) is true
Solution:
We know that the system of linear equations a_1x + b_1y + c_1 = 0 and a_2x + b_2y + c_2 = 0 has aunique solution
if \frac{a}{1} {\text{a} 2} \ln {\text{b} 1} {\text{b} 2}
So, Reason is correct For Assertion, we have, a_1 = k, b_1 = -1, c_1 = -2, a_2 = 6, b_2 = -2 and c_2 = -3
= \text{text} \{ \text{Now} \}
             \frac{a}{1} {\text{a} 2}=\frac{k}{6},\frac{b}{1} {\text{b} 2}=\frac{1}{-2}=\frac{1}{2}
{2}
{2}\Rightarrow\text{k}\neq3
So, Assettion 1S not correct.
Q41.Assertion: The pair of equations x + 2y + 5 = 0 and -3x - 6y + 1 = 0 have unique solution
                                                                                                                                      1 Mark
     Reason: an equations \frac{a}_1}{\text{c}_1} {\text{c}_1} 
     \{\text{text}\{c\}_2\} Hence, the given pair of equations have no solution
 A both assertion and reason are correct and reason is correct explanation for
    assertion
 B both assertion and reason are correct but reason is correct explanation for
    assertion
 C assertion is correct but reason is false
                                                               D both assertion and reason are false
Ans: D both assertion and reason are false
4. both assertion and reason are false
Q42.Assertion: 3x + 4y + 5 = 0 and 6x + ky + 9 = 0 represent parallel lines if k = 8.
                                                                                                                                      1 Mark
     Reason: a_1x + b_1y + c_1 = 0 and a_2x + b_2y + c_2 = 0 represent parallel lines ines if \frac{a_1x + b_1y + c_1 = 0}{a_1x + b_2y + c_2} = 0
     {\text{a}_2} = \frac{b}_1 {\text{b}_2} \operatorname{\text{c}_1} {\text{c}_2}
 A Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion
    (A).
 B Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion
 C Assertion (A) is true but reason (R) is false.
                                                              D Assertion (A) is false but reason (R) is true
Ans: A Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
Solution:
In Assertion, given lines represent parallel lines if
=\frac{3}{6}=\frac{4}{\text{text}\{k\}} \ln \{5\} \{9\}
= \text{text}\{k\} = \text{frac}\{6 \times 4\} \{3\} = 8
eason is also true Also, reason is the correct explanation for assertion.
Q43.Assertion: Assertion: The graph of the linear equation x - 5y = 1 passes through the point (6, 1).
                                                                                                                                      1 Mark
     Reason: Every point lying on graph is not a solution of x - 5y = 1.
```

A

both assertion and reason are correct and reason is correct explanation for assertion **B** both assertion and reason are correct but reason is correct explanation for assertion C assertion is correct but reason is false **D** both assertion and reason are false **Ans:** C assertion is correct but reason is false 3. assertion is correct but reason is false **Q44.** Assertion: If the pair of lines are coincident, then we say that pair of lines is consistent and it has a unique 1 Mark solution. **Reason:** If the pair of lines are parallel, then the pair has no solution and is called inconsistent pair of equations. A Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A). **B** Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A). C Assertion (A) is true but reason (R) is false. **D** Assertion (A) is false but reason (R) is true **Ans: D** Assertion (A) is false but reason (R) is true **Solution:** [If the lines are coincident, then it has infinite number of solutions] Reason is clearly true. **Q45.Assertion:** The slope of the line which lies in the second and fourth quadrant is negative. 1 Mark **Reason:** The slope of the line y=-x+6 is -1 A both assertion and reason are correct and reason is correct explanation for assertion **B** both assertion and reason are correct but reason is correct explanation for assertion

C assertion is correct but reason is false D both assertion and reason are false

Ans: A both assertion and reason are correct and reason is correct explanation for assertion

1. both assertion and reason are correct and reason is correct explanation for assertion