QUADRATIC EQUATIONS

MCQs & A and R WORK SHEET

Test / Exam Name: Quadratic Equati	ons Standard: 10th	Subject: Mathematic	S
Student Name:	Section:	Roll No.:	
	Questions	: 45 Time: 01:30 hh:mm Negative M	larks: 0 Marks: 4
Instructions			
1. MULTIPLE CHOICE QUESTIONS.			
Q1.If $ax^2 + bx + c = 0$ has equal roots, then c is	s equal to:		1 Mark
$A = \frac{b^2}{2a}$ $B = \frac{b^2}{4a}$	$C \frac{b^2}{4a}$	$\mathbf{D} \hspace{0.1cm} rac{\mathrm{b}^2}{4\mathrm{a}}$	
Q2. The roots of the quadratic equation $x^2 - 0.0$	4a	4a	1 Mark
$\mathbf{A} \pm 0.2$ $\mathbf{B} \pm 00.2$	C 0.4	D 2	
Q3. Choose the correct answer from the given f Which of the following equations has the su		:	1 Mark
A $2x^2 - 3x + 6 = 0$. B $-x^2 + 3x - $	$3 = 0.$ C $\sqrt{2}x^2 - \frac{3}{\sqrt{2}}x + 1 =$	$\mathbf{D} \ 3\mathbf{x}^2 - 3\mathbf{x} + 3 = 0$	
Q4. The discriminant of the equation $(2a + b) x$	V 2		1 Mark
A $(2a + b^2)$ B $(2a - b)^2$	$(2a + b)^2$	D $(2a - b^2)$	
$\mathbf{Q5.x^2} - 6ax = -6a^2$ discriminant of the given eq			1 Mark
A $4a^2$ B $12a^2$	$\mathbf{C} 2a^2$	$\mathbf{D} 6a^2$	
Q6. If the equation x^2 - $ax + 1 = 0$ has two distin	nct roots, then:		1 Mark
A $ a = 2$ B $ a < 2$	C $ a > 2$	D None of these.	
Q7. $(x - 1)(2x - 1) = 0$ discriminant of the given	equation is:		1 Mark
A 0 B 2	C 1	D 3	
Q8. If $x = 2$ is a root of the quadratic equation 3	x^2 - px - 2 = 0, then the value of p is:		1 Mark
A 1 B 5	C 3	D 0	
Q9. Which of the following is a quadratic equation	on?		1 Mark
A $(x^2 + 1) = (2 - x)^2 + 3$ B $x^3 - x^2 = (x - 2)^2$		(a - 3) D None of these.	1 Mark
A $x^2 - 14x + 46 = 0$ B $x^2 - 14x - 46$ Q11. The roots of the equation $x^2 + x - p(p + 1)$		$\mathbf{D} \ \mathbf{x}^2 + 14\mathbf{x} - 46 = 0$	1 Mark
A p, p + 1 B -p, p + 1	C p, -(p+1)	$\mathbf{D} - \mathbf{p}, - (\mathbf{p} + 1)$	
Q12. The roots of the quadratic equation $2x^2 - x$	x - 6 = 0 are:		1 Mark
A $-2, \frac{3}{2}$ B $2, \frac{-3}{2}$	$C -2, \frac{-3}{2}$	D $2, \frac{3}{2}$	
Q13.A quadratic equation whose one root is 3 i	2	2	1 Mark
A $x^2 - 5x - 6 = 0$ B $x^2 - 6x - 6 =$	$\mathbf{C} \ \mathbf{x}^2 - 5\mathbf{x} + 6 = 0$	$\mathbf{D} \ \mathbf{x}^2 + 6\mathbf{x} - 5 = 0$	
Q14. $4x^2 - 20x + 25 = 0$ have:			1 Mark
A Real roots B No Real root Q15. The roots of the equation $x^2 - 3x - m(m + m)$	1	s D Real and Distinct roots	1 Mark
A m, m + 3 Q16.Let b = a + c. Then the equation $ax^2 + bx$	C m, $-(m + 3)+ c = 0 has equal roots if:$	D -m, -(m: 3)	1 Mark
•	$\mathbf{C} \ \mathbf{a} = \mathbf{c}$	$\mathbf{D} \ \mathbf{a} = -2\mathbf{c}$	
Q17. A quadratic equation $ax^2 + bx + c = 0$ has			1 Mark
A None of these B $b^2 - 4ac < 0$ Q18. $\sqrt{2}x^2 - 3x - 5 = 0$ have:	C $b^2 - 4ac = 0$	D $b^2 - 4ac > 0$	1 Mark
A Real and Equal roots B Real roots Q19. If one root the equation $2x^2 + kx + 4 = 0$ is	C Real and Distinct ro s 2, then the other root is:	ots D No Real roots	1 Mark
A 6 B -6	C -1	D 1	
Q20. If the equation $x^2 - kx + 1 = 0$ has no real			1 Mark
A $k < -2$ B $k > 2$	C -2 < k < 2	D None of these.	
Q21. If $(a^2 + b^2)x^2 + 2(ab + bd)x + c^2 + d^2 = 0$	has no real roots, then:		1 Mark

A ab = bc Q22. The two numbers v	\mathbf{B} ab = cd whose sum is 27 and their pr	C ac = bd roduct is 182 are:	$\mathbf{D} \ \mathrm{ad} eq \mathrm{bc}$	1 Mark
A 14 and 15	B 12 and 13	C 13 and 14	D 12 and 15	
Q23. The values of k for		on $2x^2$ - $kx + k = 0$ has equal r		1 Mark
A 8 only	B 0 only	C 4	D 0, 8	
Q24. If $\sin \alpha$ and $\cos \alpha$ a	are the roots of the equation	$a^2 + bx + c = 0$, then $b^2 = 0$		1 Mark
$\mathbf{A} \ \mathbf{a}^2 - 2\mathbf{a}\mathbf{c}$	$\mathbf{B} \ \mathbf{a}^2 + 2\mathbf{a}\mathbf{c}$	$\mathbf{C} \ \mathbf{a}^2 - \mathbf{a}\mathbf{c}$	$\mathbf{D} \ \mathbf{a2} + \mathbf{ac}$	
A a^2 - 2ac Q25. The value of $\sqrt{6}$ +	$\sqrt{6+\sqrt{6+}}$ is:			1 Mark
·		G 2	D 2.5	
A 4	\mathbf{B} 3	\mathbf{C} -2 $=\lambda(2\mathbf{x}-1)$ is zero, then $\lambda=$	D 3.5	1 Mark
				IWIAIK
A-2	$\mathbf{B} \ 2$	$C - \frac{1}{2}$	$\mathbf{D} \ \frac{1}{2}$	1 Marile
		= 0 be the reciprocal of the o		1 Mark
A 8	B -8	C 4	D -4	1 1 1 - 1
	the and its reciprocal is $2\frac{1}{2}$			1 Mark
A None of these	4	C 1 and $\frac{3}{2}$	D 3 and $\frac{1}{3}$	
Q29. The perimeter of a	rectangle is 82m and its are	a is 400m^2 . The breadth of the	e rectangle is:	1 Mark
A 25m	B 20m	C 16m	D 9m	
			wickets taken by Srinath. The of wickets taken by Kumble is:	1 Mark
A 2	B 4	C 10	D 5	
Q31.Rohan's mother is 2 Rohan's present ago	•	e product of their ages 3 years	from now will be 360, then	1 Mark
A 10 years	B 6 years	C 7 years	D 8 years	
- • •		than twice the shortest side. The tuation in the form of a quadrate	he third side is 2m less than the atic equation is:	1 Mark
A $(2x+6)_2 = x^2 - (2x-6)_2$	$(+4)^2$ B None of these	$C (2x+6)^2 + x^2 =$	$(2x+4)^2$ D $(2x+6)^2 = x^2 + (2x+4)^2$	
Q33. A train travels 360km at a uniform speed. If the speed had been 5km/ hr more, it would have taken 1 hour less for the same journey, then the actual speed of the train is:				
A 48km/ hr	B 40km/ hr	C 36km/ hr	D 45km/ hr	
	divided equally among a cert d one banana less. Then the		ere were 25 more students, each	1 Mark
A 125	B 100	C 250	D 500	
Q35.Directions: In the factor both the statements Assertion: $(2x-1)$	carefully and choose the co $x^2 - 4x^2 + 5 = 0$ is not a quad-	ertions (A) and Reason(s) (R) orrect alternative from the followard equation. $= 0, a \neq 0$, where a, b, c \in R	owing:	1 Mark
	l Reason are correct and Re	eason is the correct explanation	n of	
Assertion.		eason is not the correct explana		
Q36.Assertion: $3y^2 + 1$	et but Reason is incorrect. $7y - 30 = 0$ have distinct roomstie equation $ax^2 + by + c$		correct but Reason is correct.	1 Mark
_	_			
A Assertion and Reason Assertion.	n both are correct statemen	ts and Reason is the correct ex	eplanation of	
	n both are correct statement	ts but Reason is not the correc	t explanation of	
C Assertion is correct s	statement but Reason is wro	ong statement.		
	tatement but Reason is corre			
	2x + 9 = has repeated roots.		similar of DS 0	1 Mark
_	_	= 0 have repeated roots if disc	riminant D>0	
assertion.		is not the correct explanation of	of.	
assertion.	reason are true but reason?	is not the correct explanation of)1	

C If assertion is true but reason is false. **D** If both assertion and reason are false. **Q38.Assertion**: Sum and product of roots of $2x^2 - 3x + 5 = 0$ are $\frac{3}{2}$ and $\frac{5}{2}$ respectively. 1 Mark **Reason :** If a and b are the roots of $ax^2 + bx + c = 0$, $a \ne q0$, then sum of roots $= \alpha + \beta = -\frac{b}{a}$ and product of roots = $\alpha\beta = \frac{c}{a}$. A If both assertion and reason are true and reason is the correct explanation of **B** If both assertion and reason are true but reason is not the correct explanation of assertion. **C** If assertion is true but reason is false. **D** If both assertion and reason are false. **Q39.Assertion**: The value of kk for which the equation $kx^2 - 12x + 4 = 0$ has equal roots, is 9. 1 Mark **Reason :** The equation $ax^2 + bx + c = 0$, $(a \ne q0)$ has equal roots, if b2 - 4ac > 0. A If both assertion and reason are true and reason is the correct explanation of assertion. **B** If both assertion and reason are true but reason is not the correct explanation of assertion. **C** If assertion is true but reason is false. **D** If both assertion and reason are false. **Q40.Assertion:** The value of k for which the equation $kx^2 - 12x + 4 = 0$ has equal roots, is 9. 1 Mark **Reason:** The equation $ax^2 + bx + c = 0$, $(0 \ne a)$ has equal roots, if $(b^2 - 4ac) > 0$. A Assertion and Reason both are correct statements and Reason is the correct explanation of Assertion. **B** Assertion and Reason both are correct statements but Reason is not the correct explanation of Assertion. C Assertion is correct statement but Reason is wrong statement. **D** Assertion is wrong statement but Reason is correct statement. **Q41.Assertion:** The equation $9x^2 + 3kx + 4 = 0$ has equal roots for $k = \pm 4$. 1 Mark Reason: If discriminant 'D' of a quadratic equation is equal to zero then the roots of equation are real and equal. A Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion **B** Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A). C Assertion (A) is true but reason (R) is false. **D** Assertion (A) is false but reason (R) is true **Q42.Assertion**: The roots of the quadratic equation $x^2 + 2x + 2 = 0$ are imaginary. 1 Mark **Reason :** If discriminant $D = b^2 - 4ac < 0$ then the roots of quadratic equation $ax^2 + bx + c = 0$ are imaginary. A Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).**B** Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion C Assertion (A) is true but reason (R) is false. **D** Assertion (A) is false but reason (R) is true **Q43.Assertion**: $2x^2 - 4x + 3 = 0$ is a quadratic equation. 1 Mark **Reason**: All polynomials of degree n, when n is a whole number can be treated as quadratic equation. A If both assertion and reason are true and reason is the correct explanation of assertion. **B** If both assertion and reason are true but reason is not the correct explanation of **C** If assertion is true but reason is false. **D** If both assertion and reason are false. **Q44.**The two roots of the quadratic equation $2x^2 + 7x - 15 = 0$ 1 Mark

C are of opposite signs.

C are of opposite signs

D none of these.

D none of these

1 Mark

B are both negative

B are both positive

Q45. The zeroes of the quadratic equation $4x^2 - 7x + 3 = 0$

A are both positive

A are both negative