POLYNOMIALS

Q16. The number of zeroes of a cubic polynomial is:

MCQs & A and R WORK SHEET

Test / Exam Name: Polynomials Student Name:		Standard: 10t	h Subject: Mathe	Subject: Mathematics	
		Section:	Roll No.:		
		Quest	ions: 35 Time: 01:00 hh:mm Nega	ative Marks: 0 Marks: 35	
Instructions					
1. MULTIPLE CHOI	CE QUESTIONS.				
Q1.A polynomial of	degree is called a quadrat	c polynomial:		1 Mark	
A 1	B 3	C 0	D 2		
Q2. If α and β are th	ne zeroes of a quadratic polynomia	al $ax^2 + bx + c$, then $\alpha + \beta$	=	1 Mark	
$\mathbf{A} = \frac{\mathbf{c}}{\mathbf{a}}$	$\mathbf{B} \frac{\mathrm{b}}{\mathrm{a}}$	$\mathbf{C} = \frac{-\mathrm{b}}{\mathrm{a}}$	$\mathbf{D} \frac{-\mathbf{c}}{\mathbf{a}}$		
Q3.In fig. the graph (2) (3) (4) (5) (2) (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (9) (1) (1) (1) (2) (3) (4)	of the polynomial $p(x)$ is given. T $\frac{1}{2} \xrightarrow{\frac{1}{3}} \xrightarrow{\frac{1}{4}} \xrightarrow{\frac{1}{5}}$	he number of zeroes of the	e polynomial is:	1 Mark	
A 1	B 2	C 3	D 0		
Q4. If α and β are ze	eros of $x^2 + 5x + 8$, then the value	e of $(\alpha + \beta)$ is:		1 Mark	
A 8	B 5	C -5	D -8		
Q5. If α and β are th	he zeroes of the polynomial $2x^2 +$	$5x + 1$, then the value of α	$\alpha + \beta + \alpha \beta$ is:	1 Mark	
A -2	B 1	C -1	D 3		
	he zeroes of the polynomial $3x^2 +$			1 Mark	
A $\frac{145}{9}$ Q7. If α and β are th	B $\frac{150}{9}$ he zeroes of the polynomial ax2 +	C $\frac{152}{9}$ bx + c, then the values of		1 Mark	
$\mathbf{A} \frac{\mathbf{b}^2}{\mathbf{ac}}$	$\mathbf{B} \frac{\mathrm{c}^2}{\mathrm{d} \mathrm{c}}$	$C \frac{b^2-2ac}{ac}$	$\mathbf{D} = \frac{\mathbf{a}^2}{\mathbf{b}\mathbf{c}}$		
ac	e zeroes of the polynomial $3x^2 +$			1 Mark	
A $\frac{11}{4}$	B $\frac{12}{4}$	$\mathbf{C} \stackrel{13}{=}$	$\mathbf{D} = \frac{15}{4}$		
4	the quadratic polynomial $x^2 + (a +$	4	- T	1 Mark	
A $a = 2, b = -6$	B $a = -7, b = -1$	C a = 0, b = -6	D $a = 5, b = -1$		
Q10. If α , β are the α	zeros of polynomial $f(x) = x^2 - p$ ($(x+1)$ - c, then $(\alpha+1)(\beta)$	+ 1) =	1 Mark	
A c - 1	B 1 - c	Сс	D 1 + c		
Q11.If one zero of the	he quadratic polynomial $x^2 + 3x +$	k is 2, then the value of 'l	c' is:	1 Mark	
A 10	B -5	C -10	D 5		
Q12. The zeroes of t	he quadratic polynomial $x^2 + 99x$	+ 127 are:		1 Mark	
A Both equal	B Both posit	ive	C One positive and one negative		
D Both negative O13 The zeroes of a	a polynomial x^2 - $7x + 12$ are:			1 Mark	
A One positive and		qual	C Both positive	1 Mark	
D Both negative Q14. The number of	zeroes for a polynomial $p(x)$ when $y = p(x)$	ere graph of $y = p(x)$ is give	en in Figure, is:	1 Mark	
	`				
A 3	B 4	C 0	D 5		
Q15.A real number l	k is said to be a zero of a polynon	nial $p(x)$, if $p(k) =$		1 Mark	
A 2	B 3	C 1	D 0		

1 Mark

A At most 3	B At least 3	$ m C~2$ um of zeroes are $rac{1}{3}$ and $\sqrt{2}$ resp	D 3	1 Mark
		o .		1 1/1 2/1 11
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 D $3x^2 - 3\sqrt{2}x + 1$	1 Mark
A -5	B 5	$\mathbf{C} \ 6$	D -6	1 IVIUIN
		$x^2 + 13x + 3k$ is reciprocal of th		1 Mark
A 5	B 2	C 3	D 4	2 2 3 3 3 3 3
	caph of the polynomial $f(x) =$		и т	1 Mark
$\begin{bmatrix} \frac{-b}{2a}, \frac{-D}{4a} \end{bmatrix} \overset{\mathbf{y}}{0}$	$\Rightarrow x$ $0 = ax^2 + bx + c$			
Q21. Figure show the $f(x) = ax^2 + bx + c + y$	c > 0 B $a < 0$, $b < 0$ and c graph of the polynomial $f(x)$		c < 0 D $a > 0$, $b > 0$ and $c < 0$	1 Mark
A A < 0, b < 0 and Q22. If α , β are the z		d c > 0 C A < 0, b > 0 and $x^2 - p(x + 1) - c$ such that $(\alpha + 1)$	$\begin{array}{ll} 1 \ c > 0 & \mathbf{D} \ A > 0, \ b > 0 \ \text{and} \ c < 0 \\ -1)(\beta + 1) = 0, \ \text{then} \ c = \end{array}$	1 Mark
A 1	B 0	C -1	D 2	
Q23. The zeroes of the	ne polynomial $x^2 - 3x - m$ (m	+ 3) are:		1 Mark
A m, $m + 3$	B $-m$, $m + 3$	C m, -(m+3)	D - m, -(m+3)	
Q24. The number of	polynomials having zeroes -2	and 5 is:		1 Mark
both the statement Assertion: The	ents carefully and choose the	C 3 ssertions (A) and Reason(s) (R) correct alternative from the followial P(x) intersects the x - axis at lis a parabola.	lowing:	1 Mark
A Both assertion (A assertion (A).	A) and reason (R) are true and	I reason (R) is the correct expla	nation of	
`	a) and reason (R) are true but	reason (R) is not the correct ex	xplanation of assertion	
(A).	rue but reason (R) is false.	D. Assortion (A) is	false but reason (R) is true.	
Q26.Directions: In t	1 Mark			
		correct alternative from the foll	_	
•	ree of the polynomial $5x^2 + 3x^2 +$			
		variable is the highest value of t	•	
Assertio		ason is the correct explanation		
B Both Assertion an Assertion	nd Reason are correct, but Re	eason is not the correct explanat	tion for	
Q27. Directions: In both the statement	ents carefully and choose the b^2) = $(a - b)(a + b)$.		orrect but Reason is correct) have been put forward. Read lowing:	1 Mark
A Both assertion (A assertion (A).	A) and reason (R) are true and	I reason (R) is the correct expla	nation of	
` '	a) and reason (R) are true but	reason (R) is not the correct ex	xplanation of assertion	
C Assertion (A) is t Q28.Directions: In t		D Assertion (A) is a secretions (A) and Reason(s) (R) correct alternative from the following	•	1 Mark

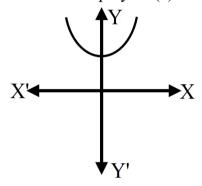
Assertion: x^3+x has only one real zero.

Reason: A polynomial of nth degree must have n real zeroes.true.

- A Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- **B** Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- C Assertion (A) is true but reason (R) is false.
- **D** Assertion (A) is false but reason (R) is
- **Q29. Directions:** In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

1 Mark

Assertion: $x^2 + 4x + 5$ has two zeroes.


Reason: A quadratic polynomial can have at the most two zeroes.

- A Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- **B** Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- C Assertion (A) is true but reason (R) is false.
- **D** Assertion (A) is false but reason (R) is true.
- **Q30.Directions:** In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

1 Mark

Assertion: The graph of y = f(x) is given, number of zeroes of f(x) = 0.

Reason: Graph y = f(x) does not intersect x - axis.

- 1. Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- 2. Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- 3. Assertion (A) is true but reason (R) is false.
- 4. Assertion (A) is false but reason (R) is true.
- A Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- **B** Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- C Assertion (A) is true but reason (R) is false.
- **D** Assertion (A) is false but reason (R) is true.
- Q31.Directions: In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

1 Mark

Assertion: A quadratic polynomial, sum of whose zeroes is 8 and their product is 12 is $x^2 - 20x + 96$.

Reason: If α and β be the zeroes of the polynomial f(x), then polynomial is given by

 $f(x) = x^2 - (\alpha + \beta)x + \alpha\beta.$

- A Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- **B** Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- C Assertion (A) is true but reason (R) is false.
- **D** Assertion (A) is false but reason (R) is true.
- **Q32.Directions:** In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

1 Mark

Assertion: If the sum of the zeroes of the quadratic polynomial x^2 - 2kx + 8 is 2 then value of k is 1.

Reason: Sum of zeroes of a quadratic polynomial $ax^2 + bx + c$ is $\frac{-b}{a}$.

- **A** Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- **B** Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- C Assertion (A) is true but reason (R) is false.
- **D** Assertion (A) is false but reason (R) is true.
- **Q33.Directions:** In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

Assertion: -1 & -4 are the zeroes of polynomial x^2 - 3x - 4.

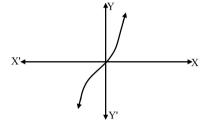
1 Mark

Reason: A real number k is said to be a zero of polynomial P(x) if P(K) = 0.

- **A** Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- **B** Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- C Assertion (A) is true but reason (R) is false.
- **D** Assertion (A) is false but reason (R) is true.
- **Q34.Directions:** In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

1 Mark

Assertion: $3 - 2\sqrt{5}$ is one zero of the quadratic polynomial then other zero willbe $3 + 2\sqrt{5}$.


Reason: Irrational zeros (roots) always occurs in pairs.

- A Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- **B** Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- C Assertion (A) is true but reason (R) is false.
- **D** Assertion (A) is false but reason (R) is true.
- **Q35.Directions:** In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

1 Mark

Assertion: The graph of y = f(x) is given below. Number of zeroes of F(x) = 1.

Reason: Graph of y = f(x) intersect x - axis in one point only.

- 1. Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- 2. Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- 3. Assertion (A) is true but reason (R) is false.
- 4. Assertion (A) is false but reason (R) is true.
- A Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- **B** Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- C Assertion (A) is true but reason (R) is false.
- **D** Assertion (A) is false but reason (R) is true.