COORDINATE GEOMETRY

MCQs & A and R WORK SHEET

Test / Exam Name: Coordinate Geometry		Standard: 10th	Subject: Mathematics	
Student Name:		Section:	Roll No.:	
		Ques	tions: 40 Time: 01:30 hh:mm Neg	ative Marks: 0 Marks:
Instructions				
1. MULTIPLE CHOICE QUI	ESTIONS.			
Q1. The distance of the point	nt (4, 7) from the x-axis is:			1 Mark
A 4	B 7	C 11	D $\sqrt{65}$	
Q2. The distance of the point	nt (5, 12) from the y-axis is:			1 Mark
A 5 units	B 12 units	C 13 units	D -5 units	
Q3. The distance of the point	at $P(x, y)$ from the origin $O(x)$	(0, 0) is given by:		1 Mark
A $\sqrt{(x+y)^2}$ units	$\mathbf{B} \sqrt{(\mathbf{x}-\mathbf{y})^2 \text{units}}$	C $\sqrt{(x^2-y^2)}$ units	$\mathbf{D} \sqrt{(\mathbf{x}^2 + \mathbf{y}^2) \text{units}}$	
Q4. A circle has its centre at circle.	t the origin and a point P(5,	0) lies on it. Then the point Q(8, 6) lies the	1 Mark
A out side O5.If A and B are the points	B in side s (-6, 7) and (-1, -5) respect	C on tively, then the distance 2AB is	D None of these equal to	1 Mark
A 20 units	B 15 units	C 26 units	D 13 units	2 1/24/24
Q6. The distance between the			D 13 ums	1 Mark
$\mathbf{A} \sqrt{\mathbf{m}^2 + \mathbf{n}^2}$	$\mathbf{B} \mathbf{m} + \mathbf{n}$	C $2\sqrt{m^2 + n^2}$	D $\sqrt{2m^2 + n^2}$	
Q7. If the distance between	the points $(4, p)$ and $(1, 0)$:	is 5, then p =		1 Mark
A ±4	B 4	C –4	D 0	
Q8. The coordinates of a popoints (7, 6) and (-3, 4)		he perpendicular bisector of the	line segment joining the	1 Mark
A (0, 2)	B (3, 0)	C(0,3)	D (2, 0)	
Q9. A is a point on the x-ax	is whose abscissa is 5 and E	B is the point $(1, -3)$, then the di	stance AB is	1 Mark
A 8 units	B 5 units	C 9 units	D 25 units	
Q10. The points (-4, 0), (4,	0), (0, 3) are the vertices of	a:		1 Mark
	B Sosceles triangle.	•	D Scalene triangle.	
Q11.ABCD is a rectangle w is:	hose three vertices are B(4,	(0), C(4, 3) and D(0, 3). The (0)	ength of one of its diagonals	1 Mark
A 5	B 4	C 3	D 25	
Q12. The distance between the points $(a \cos \theta + b \sin \theta, 0)$ and $(0, a \sin \theta - b \cos \theta)$ is:				1 Mark
$\mathbf{A} \ \mathbf{a}^2 + \mathbf{b}^2$	$\mathbf{B} \ \mathbf{a} + \mathbf{b}$	$\mathbf{C} \ \mathbf{a}^2 - \mathbf{b}^2$	D $\sqrt{a^2 + b^2}$	
Q13. The mid-point of segment AB is $P(0, 4)$. If the coordinates of B are $(-2, 3)$, then the coordinates of A are:				1 Mark
A (2, 5)		C (2, 9)		
		the points (3p, 4) and (-2, 4) a		1 Mark
A 1	B 3	C 4	D 2	1 M
Q15. The points A(-1, 0), B			D D 11.1	1 Mark
A Rectangle.O16. The coordinates of the	B Rhombus. fourth vertex of the rectang	C Square. gle formed by the points $(0, 0)$,	D Parallelogram. (2, 0), (0, 3) are,	1 Mark
A (3, 0)	B (0, 2)	C (-2, 3)	D (3, 2)	
		and (-2, 1). The side of the squ		1 Mark
A $2\sqrt{2}$ units	B 2 units	$\mathbf{C} \sqrt{2 \text{ units}}$	D $2\sqrt{3}$ units	
Q18.If the coordinates of or	ne end of a diameter of a cire of the other end of the diame	rcle are (2, 3) and the coordinater are:		1 Mark
A (0, 4) Q19. Find the value of k, if	B $(6, -7)$ the point $(0, 2)$ is equidistan	$\mathbb{C} (-6, 7)$ at from the points $(3, k)$ and $(k, 6)$	D (0, 8) 5):	1 Mark

 $\mathbf{B} \ 0$ **C** 2 \mathbf{A} -1 **D** 11 Q20. The point on the y-axis which is equidistant from the points (6, 5) and (-4, 3) is: 1 Mark **B** (-9, 0) **A** (9, 0) C(0, 9)**D** (0, -9) **Q21.**If the point P(x, y) is equidistant from A(5, 1) and B(-1, 5), then 1 Mark $\mathbf{B} \mathbf{x} = 5\mathbf{y}$ **C** 3x = 2y $\mathbf{A} \ \mathbf{5} \mathbf{x} = \mathbf{y}$ **D** 2x = 3yQ22. The fourth vertex D of a parallelogram ABCD whose three vertices are A(-2, 3), B(6, 7) and C(8, 3) is: 1 Mark **B** (0, -1) \mathbf{C} (-1, 0) **D** (1, 0) **Q23.** In Figure 2, P(5, -3) and Q(3, y) are the points of trisection of the line segment joining A(7, -2) and B(1, -5). 1 Mark P Q Figure 2 **A** 2 $\mathbf{D} - \frac{5}{2}$ **C** –4 1 Mark **Q24.**In what ratio does the y-axis divide the join of P(-4, 2) and Q(8, 3)? **A** 3:1 **D** 1:2 **Q25.**If points (a, 0), (0, b) and (1, 1) are collinear, then $\frac{1}{a} + \frac{1}{b} =$ 1 Mark **A** 1 \mathbf{C} 0 **D** -1 **Q26.**If the point P(2, 1) lies on the line segment joining points A(4, 2) and B(8, 4), then: 1 Mark $\mathbf{B} \ \mathbf{AP} = \mathbf{PB}$ $\mathbf{C} \ \mathbf{PB} = \frac{1}{3} \mathbf{AB}$ **D** AP = $\frac{1}{2}$ AB $\mathbf{A} \ \mathbf{AP} = \frac{1}{3} \mathbf{AB}$ Q27.If A(2, 2), B(-4, -4) and C(5, -8) are the vertices of a triangle, then the length of the median through vertices 1 Mark C is: $\mathbf{A} \sqrt{65}$ **B** $\sqrt{117}$ **D** $\sqrt{113}$ **Q28.**If points A(5, p), B(1, 5), C(2, 1) and D(6, 2) form a square ABCD, then p =1 Mark **D** 8 Q29. If the point C(k, 4) divides the join of the points A(2, 6) and B(5, 1) in the ratio 2:3 then the value of k is: 1 Mark **A** 16 Q30. The coordinates of the point which is equidistant from the three vertices of a \triangle AOB as shown in the figure is: 1 Mark $\mathbf{A}(\mathbf{x},\mathbf{y})$ $\mathbf{B}(0,0)$ \mathbf{C} (y, x) $\mathbf{D} \quad \left(\frac{\mathbf{x}}{2} = \frac{\mathbf{y}}{2}\right)$ **Q31.** The ratio in which (4, 5) divides the join of (2, 3) and (7, 8) is: 1 Mark A - 2 : 3B - 3 : 2C 3 : 2D 2 : 3Q32. The point where the medians of a triangle meet is called the of the triangle: 1 Mark **B** None of these **D** orthocentre Q33. If P(x, y) is any point on the line joining the points A(a, 0) and B(0, b), then 1 Mark $\mathbf{B} \ \frac{\mathbf{x}}{\mathbf{a}} - \frac{\mathbf{y}}{\mathbf{b}} = 1$ $C \frac{x}{a} + \frac{y}{b} = 1$ $\mathbf{A} \frac{\mathbf{x}}{\mathbf{a}} + \frac{\mathbf{y}}{\mathbf{b}} = \mathbf{0}$ **D** $\frac{x}{a} - \frac{y}{b} = 0$ **Q34.** The ares of a triangle with vertices A(3, 0) and B(7, 0) and C(8, 4) is: 1 Mark **A** 14 **B** 28 **C** 8 **D** 6 Q35. The perimeter of a triangle with vertices (0, 4), (0, 0) and (3, 0) is: 1 Mark **D** $7 + \sqrt{5}$ **A** 5 **B** 12 **C** 11 Q36.Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). 1 Mark Mark the correct choice as: **Assertion:** Points (3, 2), (-2, -3) and (2, 3) form a right triangle. **Reason:** If (x, y) is equidistant from (3, 6) and (-3, 4), then 3x + y = 5. **A** A is true, R is true; R is a correct explanation for A. **B** A is true, R is true; R is not a correct explanation for A. **C** A is true; R is False. **D** A is false; R is true. **Q37.Assertion:** The point (0, 4) lies on y - axis. 1 Mark **Reason:** The x - coordinate on the point on y - axis is zero.

A

Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A). **B** Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A). C Assertion (A) is true but reason (R) is false. **D** Assertion (A) is false but reason (R) is true. **Q38.Assertion:** In quadrilateral ABCD, if AB = BC = CD = DA and AC = BD, then ABCD is a square. 1 Mark **Reason:** A quadrilateral is a square if all its sides are equal and the diagonals are equal. A A is true, R is true; R is a correct explanation for A. **B** A is true, R is true; R is not a correct explanation for A. C A is true; R is False. **D** A is false; R is true. **Q39.Assertion:** The distance of a points P(x, y) from the origin is $\sqrt{x^2 - y^2}$. 1 Mark **Reason:** The distance between two points (x_1, y_1) and (x_2, y_2) is $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ A A is true, R is true; R is a correct explanation for A. **B** A is true, R is true; R is not a correct explanation for A. **D** A is false; R is true. C A is true; R is False. **Q40.Assertion:** There is no such point or X - axis which are at a distance c(c < 3) from the point (2, 3). 1 Mark **Reason:** The distance between two points (x_1, y_1) and (x_2, y_2) is $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

D A is false; R is true.

Reason: The distance between two points (x_1, y_1) and (x_2, y_2) is $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ **A** A is true, R is true; R is a correct explanation for A. **B** A is true, R is true; R is not a correct explanation for A.

C A is true; R is False.