Implementing Post-Quantum Cryptography

Future-Proofing Enterprise Security, Compliance and Resilience – From PQC to Business Continuity

Contact:

<u>Thomas Bronack, president</u> <u>bronackt@dcag.com</u> (917) 673-6992

6/8/2025

Copyright 2025 © Data Center Assistance Group, LLC,

The Quantum Threat to Data Security

- Quantum computers will break current encryption standards
- Data encrypted today can be stolen and stored for decryption later ("harvest now, decrypt later") by Hackers
- Only Post Quantum Cryptography (PQC) can protect your data, but only if you convert to PQC before data is stolen.
- Protect your critical infrastructure, financial systems, supply chains, and sensitive data at risk
- □ **Timeline:** Quantum computers capable of breaking RSA expected within 5-10 years

Quantum Computing Threat

Current encryption methods like RSA and ECC will be vulnerable to quantum algorithms.

Developing a Quantum-Readiness Roadmap

Shor's Algorithm can factor large numbers exponentially faster than classical computers, breaking encryption that secures your data today. Grover's Algorithm can rapidly crunch numbers

CISA Post Quantum Readiness Report

Password Decryption Cracking times: Now vs Post Quantum Computers

Harvest Now, Decrypt Later (HNDL), is the most important problem faced by companies today.

	Time Required to Decrypt a Password using Classical Computers					
	as c	compared to Quantum Comput	ers			
Password	Charset	Classical Time	Quantum	Quantum (Grover's		
Length			(Grover's)	Shor's)		
6	Alphanumeric + Symbols	12.25 minutes	0.00 sec	1.00 seconds		
7	Alphanumeric + Symbols	19.40 hours	0.01 sec	1.01 seconds		
8	Alphanumeric + Symbols	10.97 weeks	0.08 sec	1.08 seconds		
9	Alphanumeric + Symbols	19.97 years	0.79 sec	1.79 seconds		
10	Alphanumeric + Symbols	18.97 centuries	7.74 seconds	8.74 seconds		
11	Alphanumeric + Symbols	1802.42 centuries	1.26 minutes	2.26 seconds		
12	Alphanumeric + Symbols	171229.78 centuries	12.25 minutes	13.25 seconds		
13	Alphanumeric + Symbols	16266829.01 centuries	1.99 hours	2.99 seconds		
14	Alphanumeric + Symbols	1545348756.29 centuries	19.40 hours	20.40 seconds		
15	Alphanumeric + Symbols	146808131847.72 centuries	1.13 weeks	2.13 seconds		
16	Alphanumeric + Symbols	13946772525533.18 centuries	10.97 weeks	11.97 seconds		
17	Alphanumeric + Symbols	1324943389925651.50 centuries	2.05 years	3.05 seconds		
18	Alphanumeric + Symbols	125869622042936880.00 centuries	19.97 years	20.97 seconds		
19	Alphanumeric + Symbols	11957614094079006720.00 centuries	1.95 centuries	2.95 seconds		
20	Alphanumeric + Symbols	1135973338937505480704.00 centuries	18.97 centuries	19.97 seconds		

Grover's and Shor's algorithms are the major tools used to crack passwords. Grover's algorithm is used to crunch passwords through Brute Force, while Shor's algorithm is used to determine prime numbers. Quantum Computers use Entanglement to half the time needed to crack a password.

Decryption time required to crack a 12-character difficult password changes from centuries to minutes.

Encrypted Data can be stolen now and decrypted later by hackers when quantum computers are available, then they have your most important data to ransom you with.

6/8/2025

Laws, Regulations, and supportive Algorithms

Adherence to laws and use of recommended FIPS procedures are necessary for successful PQC Migration.

- All Government agencies must inventory encryption usage.
- Prioritize PQC Migration candidates.
- PQC Inventory and PQC Adoption Plans.
- Develop & Implement PQC Migration Plan.
- All new Systems must use PQC.
- Supply chains must use PQC.
- Migration to PQC completed by 2030.
- Government acceptance of PQC only.

The U.S. federal government has issued clear guidance mandating PQC readiness:

- **6 U.S.C. §1526**: Requires all agencies to inventory cryptographic systems.
- NSM-10 (National Security Memorandum 10): Mandates prioritized migration to PQC.
- **OMB Memorandum M-23-02**: Requires cryptographic inventories and PQC adoption plans from all federal agencies.
- NSA CNSA 2.0 Requirements: All new National Security Systems must use quantum-safe algorithms by 2025.
- By 2030, RSA-2048 and ECC will be deprecated.
- By **2035**, only post-quantum cryptography will be allowed in U.S. government systems.

FIPS and NIST Standards governing PQC adoption

Law / Standard	Mandated By	Mandate Date	Problem Addressed	Certification Required	Certification Deadline	Key Parameters
FIPS 203 (Module-Lattice-Based Key- Encapsulation Mechanism Standard)	NIST	Aug-24	Provides quantum-resistant key encapsulation mechanisms to replace vulnerable public-key encryption methods.	Yes	TBD	Based on CRYSTALS-Kyber algorithm; designed for general encryption with small key sizes and high performance.
FIPS 204 (Module-Lattice-Based Digital Signature Algorithm)	NIST	Aug-24	Offers quantum-resistant digital signature schemes to secure digital communications.	Yes	TBD	Based on CRYSTALS-Dilithium algorithm; provides strong security with efficient verification.
FIPS 205 (Stateless Hash-Based Digital Signature Algorithm)	NIST	Aug-24	Provides alternative digital signature schemes resistant to quantum attacks.	Yes	TBD	Based on SPHINCS+ algorithm; stateless and hash-based, offering strong security assurances.
<u>CNSA Suite 2.0</u> Commercial National Security Algorithm Suite 2.0)	NSA	Sep-22	Updates cryptographic algorithms to be quantum-resistant for national security systems.	Yes	Transition period ongoing	Includes recommendations for using quantum-resistant algorithms; specific algorithms and parameters defined by NSA.
NIST SP 800-208 (Recommendation for Stateful Hash-Based Signature Schemes)	NIST	Oct-20	Provides guidance on using stateful hash-based signature schemes as interim solutions until PQC standards are finalized.	No	N/A	Recommends usage of algorithms like XMSS and LMS for specific applications requiring long-term security.
FIPS 140-3 (Security Requirements for Cryptographic Modules)	NIST	Mar-19	Specifies security requirements for cryptographic modules, including those implementing PQC algorithms.	Yes	Transition period until September 2026	Successor to FIPS 140-2; includes updated requirements to accommodate PQC algorithms.

6/8/2025

Understanding the Data Supply Chain

- Solution: Use PQC to protect when data is received and stored
- Solution: Use PQC to protect data at rest.
 Protection provided by Homomorphic Encryption and Data Centric Security.
- Solution: Use PQC to protect data transfer through Homomorphic Encryption and Data Centric Security.

Post-Quantum Cryptography: The Solution

- Mathematical algorithms resistant to quantum computing attacks
- NIST standardization process nearing completion
- Provides protection against both classical and quantum threats
- Enables forward security for sensitive data

Key Benefits of PQC Implementation

Future-proof security: Protection against both classical and quantum attacks

Regulatory compliance: Meet emerging requirements from government and industry

Forward security: Ensure today's sensitive data remains protected tomorrow

Standardized approach: NIST-approved algorithms provide reliability

Regulatory Landscape

Federal Regulations

- **FISMA:** Requiring quantum-resistant solutions for federal systems
- FedRAMP: Adding PQC requirements for cloud service providers
- NIST: Finalizing standardization of PQC algorithms

Industry Regulations

- **HIPAA:** Implications for healthcare data protection
- PCI DSS: Considerations for financial information security
- SEC: Potential disclosure requirements for quantum readiness

International Frameworks

- EU: NIS2 Directive and GDPR implications
- China: National standards for quantum-safe cryptography
- **Global:** ISO/IEC standards for cryptographic technique

Al Agentic Rag automation for optimization

Al Agents can be used to automate functions associated with PQC Migration or Maintenance.

AI Agentic RAG

6/8/2025

Implementation Strategy

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5
Discovery and Assessment of encryption assets.	Risk analysis and prioritization	Solution selection and testing	Deployment and monitoring	Continuous improvement
 Discovery Phase 	 Evaluate data sensitivity 	 Choose NIST algorithms 	 Implement hybrid solutions 	 Perform Regular cryptographic
 Identify all encryption uses 	 Assess protection lifetime 	 Develop test environments Measure 	 Roll out in priority order Check completed 	 Follow standards evolution
 Catalog crypto libraries 	 Prioritize critical systems 	performance impact	 Monitor for issues 	 Provide Continuous Training
 Document key lengths 	 Develop Check-off list 			 Update as needed
6/8/2025	Copyright 20	025 © Data Center Assist	tance Group, LLC,	Page: 10

Encryption Discovery Report

Results required from Encryption Discovery Report						
Discovery Element	Description	Why It Matters	Prioritization Criteria	Verification Method		
Cryptographic Algorithm Type	RSA, ECC, DSA, AES, SHA, etc.	Quantum vulnerability	Asymmetric = High	Crypto scan + simulation		
Key Length	1024, 2048, 4096 (RSA); 256-bit (AES)	Indicates strength	<2048-bit = Critical	Key strength checker		
Encryption Purpose	Data-at-rest, data-in-transit, etc.	Scopes urgency	Transit + key exchange = Critical	Protocol mapping		
Protocol/Library Used	TLS 1.2/1.3, OpenSSL, etc.	Identifies upgrade paths	Legacy = Critical	Protocol inspection tools		
Certificate Details	X.509 certs, CA info	Needs PQC-ready PKI	RSA/ECC certs = High	Cert audit tools		
Hardware Crypto Modules	HSMs, TPMs	Compatibility or upgrade	Fixed crypto = High	Device interrogation		
Embedded or Hardcoded Keys	In firmware, binaries	Hard to rotate/upgrade	Static keys = Critical	Binary scanning		
Software Components (SBOM)	Dev/vendor SBOMs	Maps crypto dependencies	Legacy crypto = High	SBOM/CBOM analysis		
Data Sensitivity	PII, PHI, FCI, CUI	Prioritizes replacements	Regulated data = Critical	Data tagging		
Usage Context	APIs, cloud, internal	Exposure urgency	Public exposed = High	Traffic analysis		

6/8/2025

Analysis, Prioritization, and Verification of PQC Migration

Pri	oritizing Phase II	Migration Cycles based	on Prioritization
Risk Leve		Criteria	Recommended Schedule
Critical	ical RSA < 2048-bit, expired certs, public exposure, etc.		Immediate (0–3 months)
High	ECC key exchange, TL	S 1.2, vendor apps	Short-term (3–6 months)
Medium	SHA-1, AES-128, inter	rnal APIs	Mid-term (6–12 months)
Low AES-256, TLS 1.3, internal-c		ernal-only	Long-term (12–24 months)
	Veri	fication of PQC Migratio	on
Ve	erification Method	ب ا	Purpose
Simulated M	lessage Exchange	Confirms PQC functional int	egrity in key exchange/signing
Hybrid Certif	ficate Testing	Tests interoperability of lega	acy + PQC certs
Compliance S	Scanners	Ensure conformance with FI	PS 203–205, CNSA Suite 2.0
Cryptographi	ic Audit Reports	Documents configuration ar	nd PKI compatibility
PKI Compatibility Testing Validates CA support		Validates CA support for PQ	C certs
Automation Scripts Verify PQC in CI/CD builds, de		letect legacy crypto	

6/8/2025

Copyright 2025 © Data Center Assistance Group, LLC,

Technology Comparison

Provider	Solution Type	Key Features	Implementation Ease	Cost Factors
GemaSecure	Specialized PQC solutions for enterprise	Comprehensive ecosystem, legacy integration, managed services	Medium (requires dedicated resources)	Subscription-based, scales with deployment size
Microsoft	PQC integration with existing products	Azure Key Vault integration, Windows/Office support	Easy (for Microsoft environments)	Included in enterprise licensing
Google	Open-source PQC implementations	Boringssl library, Chrome browser support	Complex (requires development expertise)	Free open-source, implementation costs
NVIDIA	Hardware acceleration for PQC algorithms	GPU acceleration, high- performance computing support	Complex (specialized hardware)	Hardware investment plus integration
AWS	Cloud-based PQC services	KMS integration, S3 encryption options	Medium (requires AWS expertise)	Pay-per-use model based on API calls

6/8/2025

Copyright 2025 © Data Center Assistance Group, LLC,

DCAG partner firms in PQC Migration - What ProCap360 and GemaSecure products provide

Discovery, Analysis, Monitoring and Dashboard

Distributed PQC Hardware / Software Solutions – Ready Now!

ProCap360 provides Bills of Materials (Software, Release Components, Cryptographic usage, and AI) that support obtaining the information needed to perform a Post Quantum Cryptography (PQC) migration. It discovered your current use of encryption, so that you can develop a migration path in waves from critical to least important data needing migration to PQC. GemaSecure provides the hardware and software needed to implement Post Quantum Cryptography today through Field Programmable Gate Arry (FPGA) hardware with optimized software that results in ultra-fast cryptography at greatly reduced power consumption rates. GemaSecure handles structured and nonstructured data (i.e., Data Lakes, Data Bases, Videos, Images, Voice, etc.) and provides Homomorphic and Data Centric Security over components.

6/8/2025

Copyright 2025 © Data Center Assistance Group, LLC,

0

Project Plan and timeline

Approximately a 2–3-year project to implement PQC in a medium sized company.

Post-Quantum Cryptography Implementation Project Timeline (Gantt Chart)

6/8/2025

Copyright 2025 © Data Center Assistance Group, LLC,

Project Personnel Requirements & Skills Plus, cost estimates for services

Role	Number	Key Skills
	Needed	
Project Manager	1	Project coordination, stakeholder communication, risk management
Cryptography Expert	1–2	Deep understanding of PQC algorithms, cryptographic systems
Security Analyst	2–3	Risk assessment, vulnerability analysis, compliance knowledge
Systems Engineer	2–3	System integration, network architecture, performance tuning
DevSecOps Specialist	1–2	CI/CD pipelines, security automation, infrastructure as code
Training Coordinator	1	Developing training materials, conducting sessions, feedback collection

Phase	Duration	Consulting Hours	Cost (@\$150/hr)
Assessment & Planning	4–6 weeks	240–360	\$36,000–\$54,000
Design & Pilot Implementation	6–8 weeks	360–480	\$54,000–\$72,000
Full-Scale Deployment	12–16 weeks	720–960	\$108,000-\$144,000
Monitoring & Maintenance	Ongoing	Varies	Varies
Total	22–30 weeks	1,320–1,800	\$198,000-\$270,000

6/8/2025

Business Case for PQC Implementation

- Risk mitigation: Protect against future
 quantum attacks
- Competitive advantage: Early adoption demonstrates security leadership
- Compliance: Meet emerging regulatory requirements
- Customer trust: Ensure long-term data protection
- Protect Against Harvest Now, Decrypt Later (HNDL): Protect your most important encrypted data from being copied now and decrypted later by Hackers. Once they have your data, there is nothing you can do to protect yourself.

ROI Considerations
Implementation costs: \$250K-\$500K for mid-sized enterprise
Cost of breach: Average \$4.45M per incident (IBM 2023)
Risk reduction: Early implementation reduces exposure by 65%
Market advantage: 73% of customers value future-proof security

Next Steps

- Executive sponsorship and resource allocation
- Establish **PQC implementation team**
- **Discover** where encryption is presently being used and priority components and data usage
- Develop detailed technical project plan with migration waves
- Begin cryptographic inventory assessment
- Partner with DCAG for implementation support

Timeline
Month 1-2: Assessment and team formation
Month 3-4: Risk analysis and solution selection
Month 5-8: Testing and pilot implementation
Month 9-18: Phased full deployment

Secure Your Data Supply Chain Today

- The **quantum threat** is real and approaching rapidly
- Present data is exposed to HNDL attacks by Hackers
- PQC implementation is a strategic necessity
- DCAG provides expert guidance through the entire process

Contact us to begin your quantum-safe journey

PQC Advisory Group

Email: bronackt@dcag.com

Phone: (917) 673-6992

Schedule a Consultation

6/8/2025

Copyright 2025 © Data Center Assistance Group, LLC,

Contact Information

Data Center Assistance Group, LLC

- bronackt@dcag.com
- bronackt@gmail.com
- (917) 673-6992
- www.dcag.com

6/8/2025

Copyright 2025 © Data Center Assistance Group, LLC,