

1.	The depression in freezing point observed for a formic acid solution of
	concentration $0.5~\mathrm{mL~L^{-1}}$ is $0.0405^{\circ}\mathrm{C}$. Density of formic acid is $1.05~\mathrm{g~mL^{-1}}$. The
	Van't Hoff factor of the formic acid solution is nearly : (Given for water ${\rm k}_{\rm f} =$
	1.86 K kg mol ⁻¹)

(A) 0.8 **(B)** 1.1 **(C)** 1.9 **(D)** 2.4

Two solutions A and B are prepared by dissolving 1 g of non-volatile solutes X and Y. respectively in 1 kg of water. The ratio of depression in freezing points for A and B is found to be 1:4. The ratio of molar masses of X and Y is:
(A) 1:4
(B) 1:0.25
(C) 1:0.20
(D) 1:5

Boiling point of a 2% aqueous solution of a nonvolatile solute A is equal to the boiling point of 8% aqueous solution of a non-volatile solute B. The relation

(A) $M_A = 4M_B$ **(B)** $M_B = 4M_A$ **(C)** $M_A = 8M_B$ **(D)** $M_B = 8M_A$

Solute A associates in water. When 0.7 g of solute A is dissolved in 42.0 g of water, it depresses the freezing point by 0.2°C . The percentage association of solute A in water, is [Given: Molar mass of $A = 93 \text{ g mol}^{-1}$. Molal depression constant of water is $1.86 \text{ K kg mol}^{-1}$]

between molecular weights of A and B is.

(A) 50% **(B)** 60% **(C)** 70% **(D)** 80%

- 5. When a certain amount of solid A is dissolved in 100 g of water at 25°C to make a dilute solution, the vapour pressure of the solution is reduced to one-half of that of pure water. The vapour pressure of pure water is 23.76mmHg. The number of moles of solute A added is . (Nearest Integer) Assume moles of A to be less than moles of B
- 6. 150 g of acetic acid was contaminated with 10.2 g ascorbic acid ($C_6H_8O_6$) to lower down its freezing point by $(x \times 10^{-1})^{\circ}C$. The value of x is (Nearest integer) [Given $K_f = 3.9 \text{ K kg mol}^{-1}$; Molar mass of ascorbic acid = 176 g mol $^{-1}$]
- 7. A gaseous mixture of two substances A and B, under a total pressure of 0.8 atm is in equilibrium with an ideal liquid solution. The mole fraction of substance A is 0.5 in the vapour phase and 0.2 in the liquid phase. The vapour pressure of pure liquid A is atm. (Nearest integer)

3.

- 8. If 0_2 gas is bubbled through water at 303 K, the number of millimoles of 0_2 gas that dissolve in 1 litre of water is . (Nearest Integer) (Given : Henry's Law constant for 0_2 at 303 K is 46.82 k bar and partial pressure of $0_2 = 0.920$ bar) (Assume solubility of 0_2 in water is too small, nearly negligible)
- 9. ' x ' g of molecular oxygen (0_2) is mixed with 200 g of neon (Ne). The total pressure of the non- reactive mixture of 0_2 and Ne in the cylinder is 25 bar. The partial pressure of Ne is 20 bar at the same temperature and volume. The value of ' x ' is [Given: Molar mass of $0_2 = 32 \text{ g mol}^{-1}$. Molar mass of Ne = 20 g mol^{-1}]
- 10. 1.80 g of solute A was dissolved in 62.5 cm³ of ethanol and freezing point of the solution was found to be 155.1 K. The molar mass of solute A is gmol⁻¹.
 [Given: Freezing point of ethanol is 156.0 K. Density of ethanol is 0.80 g cm⁻³.
 Freezing point depression constant of ethanol is 2.00 K kg mol⁻¹]
- 11. The osmotic pressure of blood is 7.47 bar at 300 K. To inject glucose to a patient intravenously, it has to be isotonic with blood. The concentration of glucose solution in gL^{-1} is ____(Molar mass of glucose = $180 \text{ g mol}^{-1}R = 0.083 \text{ L}_{\text{bar}}^{-1} \text{ mol}^{-1}$) (Nearest integer)
- A company dissolves 'X' amount of CO_2 at 298 K in 1 litre of water to prepare soda water $X = ___ \times 10^{-3}$ g. (nearest integer) (Given: partial pressure of CO_2 at 298 K = 0.835 bar. Henry's law constant for CO_2 at 298 K = 1.67 k bar. Atomic mass of H, C and 0 is 1,12 and 6 g mol⁻¹, respectively)
- The elevation in boiling point for 1 molal solution of non-volatile solute A is 3 K. The depression in freezing point for 2 molal solution of A in the same solvent is 6 K. The ratio of K_b and K_f i.e., K_b/K_f is 1: X. The value of X is [nearest integer]
- 14. A 0.5 percent solution of potassium chloride was found to freeze at -0.24° C. The percentage dissociation of potassium chloride is(Nearest integer)(Molal depression constant for water is $1.80 \text{ K kg mol}^{-1}$ and molar mass of KCl is 74.6 g mol^{-1})

- **15.** The osmotic pressure exerted by a solution prepared by dissolving 2.0 g of protein of molar mass 60 kg mol⁻¹ in 200 mL of water at 27°C is Pa. [integer value]
- 2 g of a non-volatile non-electrolyte solute is dissolved in 200 g of two different solvents A and B whose ebullioscopic constants are in the ratio of 1:8. The elevation in boiling points of A and B are in the ratio $\frac{x}{y}(x:y)$. The value of y is___ (Nearest integer)
- 17. A solution containing 2.5×10^{-3} kg of a solute dissolved in 75×10^{-3} kg of water boils at 373.535 K. The molar mass of the solute is __ gmol⁻¹. [nearest integer] (Given: $K_b(H_20) = 0.52$ KKg mol⁻¹, boiling point of water = 373.15 K)
- 18. The vapour pressures of two volatile liquids A and B at 25°C are 50 Torr and 100 Torr, respectively. If the liquid mixture contains 0.3 mole fraction of A, then the mole fraction of liquid B in the vapour phase is $\frac{x}{17}$. The value of x is
- 1.2 mL of acetic acid is dissolved in water to make $2.0 \, L$ of solution. The depression in freezing point observed for this strength of acid is $0.0198^{\circ}C$. The percentage of dissociation of the acid is (Nearest integer)[Given: Density of acetic acid is $1.02 \, \mathrm{g \, mL^{-1}}$ Molar mass of acetic acid is $60 \, \mathrm{g \, mol^{-1}}$ $K_f(H_2O) = 1.85 \, \mathrm{K \, kg \, mol^{-1}}$]
- **20.** Elevation in boiling point for 1.5 molal solution of glucose in water is 4 K. The depression in freezing point for 4.5 molal solution of glucose in water is 4 K. The ratio of molal elevation constant to molal depression constant (K_b/K_f) is..

Answer Key

1. (C)

2. (B)

3. (B)

4. (D)

5. (5.55) or (3)

6. (15)

7. (2)

8. (1)

9. (80)

10. (80)

11. (54)

12. (1223)

13. (1)

14. (98)

15. (415)

16. (8)

17. (45)

18. (14)

19. (5)

20. (3)