

HOW TO GET NOTES/PROBLEM SHEET OF THIS CHAPTER?

- I. Go to www.dexterchem.in
- 2. Click on Courses from the menu bar.
- 3. Select the course (Adhyay/Nishchay)
- 4. Click on the chapter name, click on the lecture number/Problem Sheet.
- 5. Your download will begin

ALTERNATIVELY

Click the link in the decription box below to directly access chapter's notes+Problem Sheets

- The depression in freezing point observed for a formic acid solution 1. of concentration $0.5~\mathrm{mL}~\mathrm{L}^{-1}$ is $0.0405^{\circ}\mathrm{C}$. Density of formic acid is $1.05~{\rm g~mL^{-1}}$. The Van't Hoff factor of the formic acid solution is nearly :(Given for water $k_f = 1.86 \text{ K kg mol}^{-1}$)
 - (A) 0.8
- **(B)** 1.1
- **(e)** 1.9
- **(D)** 2.4

$$modality = \frac{-525}{46}$$

$$DTf = 0.0405 = \frac{i \times 1.86 \times -525}{46}$$

$$DTf = 0.0405 = \frac{1 \times 1.86 \times .525}{46}$$

$$l = \frac{0.0405 \times 460}{525 \times 186} = \frac{405 \times 460}{525 \times 186}$$

- 2. Two solutions A and B are prepared by dissolving 1 g of non-volatile solutes X and Y. respectively in 1 kg of water. The ratio of depression in freezing points for A and B is found to be 1:4. The ratio of molar masses of X and Y is:
 - masses of x and Y is:

 (A) 1:4

 (B) 1:0.25

 (C) 1:0.20

 (D) 1:5 $\Delta T_{A} = \frac{1}{1} \times K_{A} \times m_{A}$ $\frac{1}{4} = \frac{m_{A}}{m_{B}} = \frac{t_{A}}{m_{A}} \times m_{A}$ $\frac{1}{4} = \frac{m_{B}}{m_{A}} = m_{A} \times m_{A}$ $\frac{1}{4} = \frac{m_{B}}{m_{A}} = \frac{m_{A}}{m_{A}} \times m_{A}$ $\frac{1}{4} = \frac{m_{A}}{m_{A}} = \frac{m_{A}}{m_{A}} \times m_{A}$

Boiling point of a 2% aqueous solution of a nonvolatile solute A is 3. equal to the boiling point of 8% aqueous solution of a non-volatile solute B. The relation between molecular weights of A and B is.

(A) $M_A = 4M_B$ **(B)** $M_B = 4M_A$ **(C)** $M_A = 8M_B$ **(D)** $M_B = 8M_A$

 $\frac{1000}{23}$ $\frac{1000}{1000}$ $\frac{1000}{1000}$

- 4. Solute A associates in water. When 0.7 g of solute A is dissolved in 42.0 g of water, it depresses the freezing point by 0.2°C . The percentage association of solute A in water, is [Given: Molar mass of A = 93 g mol^{-1} . Molal depression constant of water is $1.86 \text{ K kg mol}^{-1}$]
 - **(A)** 50%
- **(B)** 60%
- **(c)** 70%

$$\Delta T_{f} = i \times k_{f} \times m$$

$$0.2 = i \times 1.86 \times \frac{.7}{42 \times 93} \times 1000$$

$$i = \frac{42 \times 93 \times .2}{72 \times 186 \times 1000}$$

$$= \frac{86 \times 93}{72 \times 186 \times 1000}$$

$$i = \frac{.6}{.6}$$

$$2A \longrightarrow A_{2}$$

$$1 - \alpha \longrightarrow A_{2}$$

$$1 - \alpha \longrightarrow A_{2}$$

$$1 - \alpha + \alpha/2 = .6$$

$$\alpha = .80$$

$$\alpha = .80$$

$$\alpha = .80$$

When a certain amount of solid A is dissolved in $100\ \mathrm{g}$ of water at 5. 25°C to make a dilute solution, the vapour pressure of the solution is reduced to one-half of that of pure water. The vapour pressure of pure water is 23.76mmHg. The number of moles of solute A added is . (Nearest Integer) Assume moles of A to be less than moles of B

exact
$$\frac{PA-PA}{PA} = \frac{NB}{NA}$$
 $\frac{2376-\frac{2376}{2}}{23.76} = \frac{NB}{100} \times 18$
 $\frac{23.76}{2} = \frac{100}{18} = 5.55$

Integer) Assume moles of A to be less than moles of B
$$\frac{PA-PA}{PA} = \frac{NB}{NA}$$

$$\frac{PA-PA}{PA} = \frac{NB}{NA}$$

$$\frac{376-23.76}{23.76} = \frac{NB}{100}$$

$$\frac{33.76-23.76}{23.76} = \frac{NB}{100}$$

$$\frac{33.76-23.76}{23.76} = \frac{NB}{100}$$

$$\frac{33.76}{23.76} = \frac{NB}{100}$$

$$\frac{33$$

6. 150 g of acetic acid was contaminated with 10.2 g ascorbic acid $(C_6H_8O_6)$ to lower down its freezing point by $(x\times 10^{-1})^{\circ}C$. The value of x is (Nearest integer) [Given $K_f=3.9~K~kg~mol^{-1}$; Molar mass of ascorbic acid = 176 g mol⁻¹]

$$DT_f = i \times K_f \times m$$
= $1 \times 3^{6} \times \frac{10^{62}}{176 \times 10^{6}} \times 10^{60}$
= $1.50 = 15 \times 10^{-1}$

7. A gaseous mixture of two substances A and B, under a total pressure of 0.8 atm is in equilibrium with an ideal liquid solution. The mole fraction of substance A is 0.5 in the vapour phase and 0.2 in the liquid phase. The vapour pressure of pure liquid A is atm. (Nearest integer)

8. If 0_2 gas is bubbled through water at 303 K, the number of millimoles of 0_2 gas that dissolve in 1 litre of water is . (Nearest Integer) (Given: Henry's Law constant for 0_2 at 303 K is $46.82 \, \mathrm{k}$ bar and partial pressure of $0_2 = 0.920 \, \mathrm{bar}$) (Assume solubility of 0_2 in water is too small, nearly negligible)

$$PA = KHXA$$

$$0.920 = 46.82 \times \frac{N02}{nH20}$$

$$.920 = 46.82 \times \frac{N02}{1000}$$

$$18$$

$$No_2 = \frac{.920 \times 1000}{46.82 \times 18}$$

$$= 1.09 \times 10^{-3} \text{ moles}$$

$$= 1 \text{ milimale}.$$

'x'g of molecular oxygen (0_2) is mixed with 200 g of neon (Ne). The total pressure of the non- reactive mixture of 0_2 and Ne in the cylinder is 25 bar. The partial pressure of Ne is 20 bar at the same temperature and volume. The value of 'x' is [Given: Molar mass of $0_2 = 32 \text{ g mol}^{-1}$. Molar mass of Ne = 20 g mol^{-1}]

PNe = 20 bar

$$P_T = 25 bar$$

 $P_{02} = 25 - 20 = 5 bar$
 $P_{02} = \chi_{02} \chi_{P_T}$
 $\chi_{02} = \chi_{02} \chi_{P_T}$

1.80 g of solute A was dissolved in 62.5 cm³ of ethanol and freezing point of the solution was found to be 155.1 K. The molar mass of solute A is $gmol^{-1}$.

[Given: Freezing point of ethanol is 156.0 K. Density of ethanol is 0.80 g cm^{-3} .

Freezing point depression constant of ethanol is 2.00 K kg $^{-1}$

point depression constant of ethanol is 2.00 K kg mol⁻¹]

$$DTf = i \times Kf \times M$$

$$D \cdot 9 = i \times 2 \times 1.80 \times 1.000$$

$$M \times 62.5 \times 8$$

$$V \times d \text{ man of solvent}$$

$$M = \frac{2 \times 1.80 \times 1.000}{2.9 \times 62.5 \times 1.8}$$

$$= \frac{4.000}{62.5 \times 8} = \frac{80}{62.5 \times 8}$$

The osmotic pressure of blood is 7.47 bar at 300 K. To inject glucose to a patient intravenously, it has to be isotonic with blood. The concentration of glucose solution in gL^{-1} is (Molar mass of glucose = $180 \text{ g mol}^{-1}R = 0.083 \text{ L}_{\text{bar}}^{-1} \text{ mol}^{-1}$) (Nearest integer)

12. A company dissolves 'X' amount of CO_2 at 298 K in 1 litre of water to prepare soda water $X = ___ \times 10^{-3}$ g. (nearest integer) (Given: partial pressure of CO_2 at 298 K = 0.835 bar. Henry's law constant for CO_2 at 298 K = 1.67 k bar. Atomic mass of H, C and 0 is 1,12 and 6 g mol⁻¹, respectively)

 $p = K_H \times X$ $0.835 = 1.67 \times 10^3 \times \frac{NCO2}{NCO2 + NH20}$ $0.835 = \frac{2}{1670 \times 10^3} \times \frac{\omega}{H4}$ $\frac{\omega}{44} + 55.55$ $\frac{1}{2} = \frac{\omega \times 1000}{\omega + 44 \times 55.55}$

$$|990 = 44x ss.ss$$

$$w = \frac{2444.2}{1999} = |.222.7 \times 10^{-3}g$$

$$= |223$$

The elevation in boiling point for 1 molal solution of non-volatile solute A is 3 K. The depression in freezing point for 2 molal solution of A in the same solvent is 6 K. The ratio of K_b and K_f i.e., K_b/K_f is 1: X. The value of X is [nearest integer]

$$\Delta T_b = 3K = K_b \times 1$$

$$\Delta T_f = 6K = K_f \times 2$$

$$2 \times K_b \times 1$$

$$\frac{3}{2} = \frac{K_b}{K_f} \times \frac{1}{2}$$

$$\frac{1}{K_f} = K_b$$

A 0.5 percent solution of potassium chloride was found to freeze at -0.24°C. The percentage dissociation of potassium chloride is(Nearest integer)(Molal depression constant for water is 1.80 K kg mol⁻¹ and molar mass of KCl is 74.6 g mol⁻¹)

$$\Delta T_f = i \times K_f \times m$$

$$24 = i \times 1.80 \times \frac{.5}{74.6 \times 99.5}$$

$$i = 1.98$$

$$KU \longrightarrow K^{\oplus} + U$$

$$1 \longrightarrow \mathcal{A}$$

$$1 + \mathcal{A} = 1.98$$

$$\mathcal{A} = .98$$

$$\mathcal{A} = .98$$

$$\mathcal{A} = .98$$

15. The osmotic pressure exerted by a solution prepared by dissolving 2.0 g of protein of molar mass 60 kg mol⁻¹ in 200 mL of water at 27°C is Pa. [integer value]

415

2 g of a non-volatile non-electrolyte solute is dissolved in 200 g of two different solvents A and B whose ebullioscopic constants are in the ratio of 1:8. The elevation in boiling points of A and B are in the ratio $\frac{x}{y}(x:y)$. The value of y is___ (Nearest integer)

$$\Delta T_{bA} = 1 \times K_{bA} \times \frac{2}{200 \times m} \times 1000$$

$$\frac{\Delta T_{6A}}{T_{6B}} = \frac{K_{6A}}{K_{6B}} = \frac{1}{8}$$

$$\frac{x}{y} = \frac{1}{8}$$

$$y = \frac{8}{100}$$

www.dexterchem.in

A solution containing $2.5 \times 10^{-3} \text{ kg}$ of a solute dissolved in $\sqrt{75 \times 10^{-3}}$ kg of water boils at 373.535 K. The molar mass of the solute is $_$ gmol⁻¹. [nearest integer] (Given: $K_b(H_2O) = 0.52$ KKg mol^{-1} , boiling point of water = 373.15 K)

boiling point of water =
$$373.15 \text{ R}$$

$$\Delta T_b = \frac{373.150}{373.150}$$

$$0.385 = \frac{2.5}{75 \text{ X 1000}} \times .52$$

$$M = \frac{2.5 \times 52 \times 1000}{9385 \times 753}$$

$$M = \frac{45.02}{45.02} \times \frac{45}{52}$$

The vapour pressures of two volatile liquids A and B at 25°C are 50 Torr and 100 Torr, respectively. If the liquid mixture contains 0.3 mole fraction of A, then the mole fraction of liquid B in the vapour phase is $\frac{x}{17}$. The value of x is

Pa = 50 tons

$$PB = (00 \text{ tons})$$
 $XB = 3$
 $XB = 7$
 $A = 3$
 $A = 3$

$$= \frac{.7 \times 100}{50 \times .3 + .7 \times 100} = \frac{70}{15 + 70} = \frac{70}{851}$$

$$Y_{3} = \frac{14}{17} \Rightarrow x = \underline{14}.$$

19. 1.2 mL of acetic acid is dissolved in water to make 2.0 L of solution. The depression in freezing point observed for this strength of acid is 0.0198°C. The percentage of dissociation of the acid is (Nearest integer) Given: Density of acetic acid is 1.02 g mL⁻¹ Molar mass of acetic acid is 60 g mol⁻¹ $K_f(H_2O) = 1.85 \text{ K kg mol}^{-1}$

$$0.0198 = i \times 1.85 \times \frac{[.2 \times 1.02]}{60 \times 2}$$

$$i = \frac{(0198 \times 600 \times 2)}{1/85 \times 112 \times 1102}$$

$$i = \frac{198 \times 600 \times 2}{185 \times 12 \times 102} = 1.05$$

$$CH_{3}COOH = CH_{3}COOT + H^{\dagger}$$

$$CH_{3}COOT + H^$$

$$1+\alpha = 1.05$$

$$\alpha = .05$$

$$\alpha = .5\%$$

Elevation in boiling point for 1.5 molal solution of glucose in water is 4 K. The depression in freezing point for 4.5 molal solution of glucose in water is 4 K. The ratio of molal elevation constant to molal depression constant (K_b/K_f) is..

$$4K = K_b \times 1.5$$

$$4K = K_f \times 4.5$$

$$\frac{K_b}{K_f} \times \frac{1}{3} = 1$$

$$\frac{K_b}{K_f} = \frac{3}{K_f}$$