

LEVEL-1

1. Oxidation state of nitrogen is incorrectly given for:

Compound

Oxidation state

- (a) $[Co(NH_3)_5CI]CI_2$ 3
- (b) NH_2OH -
- (c) $(N_2H_5)_2SO_4 + 2$
- (d) Mg_3N_2 3

2. $xClO_4^- + yMnO_2 + zOH^- \longrightarrow xClO^- + yMnO_4^{2-} + \frac{z}{2}H_2O.$

In this balanced equation x, y, z are

- (a) 2,3,6
- (b) 1,3,4
- (c) 1,3,6
- (d) 2,6,6

1 mol of ferric oxalate is oxidized by x mol of MnO_4^- and also 1 mol of ferrous oxalate is oxidised by y mol of MnO_4^- in acidic medium. The ratio y is

- (a) 2:1
- (b) 1:2
- (c) 3:1
- (d) 1:3

4. Number of moles of KMnO₄ that is needed to react with one mole of FeC₂O₄ in acidic medium is

- (a) 2/5
- (b) 3/5
- (c) 4/5
- (d) 1

5. The oxidation state of Cr in CrO₅ is

- (a) + 10
- (b) +6
- (c) +3
- (d) +3 5

6. One mole of N₂H₄ loses 10 mole of electrons to form a new compound Y. Assuming that all nitrogen appears in the new compound, what is the oxidation state of N in Y (there is no change in the oxidation state of hydrogen).

- (a) -3
- (b) +3
- (c) +5
- (d) +1

Number of moles of electrons change per mole of $Pb(N_3)_2$ in

 $Pb(N_3)_2 + Co (MnO_4)_3 \longrightarrow CoO + MnO_2 + Pb_3O_4 + NO is$

7.

	42	44		
	(a) $\frac{12}{3}$	(b) $\frac{1}{3}$	(c) 10	(d) 44
8.	$Zn + OH^- \longrightarrow Zn^{O_2^-}$	² + H ₂		
	In the balanced ec	juation, what should	l be the coefficient c	of OH ⁻ ?
	(a) 3	(b) 4	(c) 2	(d) 1
9.	In the reaction,			
	Zn + 1	$NaNO_3 + NaOH \longrightarrow$	$Na_2ZnO_2 + NH_3 + H_2O_3$)
	The molar coefficie	ents of Zn and NaNC	3 are	
	(a) 1 and 4 respect	cively	(b) 4 and 1 respect	ively
	(c) 1 and 8 respect	ively	(d) 8 and 1 respect	ively
10.	Carbon is in highes	st oxidation state in		
	(a) CH₃Cl	(b) CCI ₄	(c) CHCl₃	(d) CH ₂ Cl ₂
11.	In the reaction,			
	N_2O_5 -	$+ H_2O \longrightarrow 2HNO_3$		
	the oxidation state	of nitrogen		
	(a) changes from	+5 to +2.	(b) changes	from +2 to +5.
	(c) changes from	+10 to +5.	(d) do not c	hange.
12.	The oxidation state	e of 'S' in Marshall's c	acid (H ₂ S ₂ O ₈) is	
	(a) +5	(b) +3	(c) +6	(d) +7
13.	Amongst the follow state.	ving, identify the spe	ecies with an atom ir	n +6 oxidation
	(a) $\mathrm{MnO_4^-}$	(b) $Cr(CN)_6^{3-}$	(c) $^{\text{NiF}_{6}^{2-}}$	(d) CrO ₂ Cl ₂

14. In the following reaction,						
	2N	$a_2S_2O_3 + I_2 \longrightarrow 2N_0$	al + Na ₂ S ₄ O ₆	Na₂S₂O₃ is acting as		
	(a) an oxidising	agent	(b) c	ı reducing agent		
	(c) both		(d) none			
15.	Which of the following	lowing statements is	s incorrect?			
	(a) Oxidation st	ate of oxygen is + 1 i	n peroxides.			
	(b) Oxidation st	ate of oxygen is + 2	in OF ₂ .			
	(c) Oxidation st	c) Oxidation state of oxygen is – 0.5 in superoxides.				
	(d) Oxidation st	ate of oxygen is – 2 i	n most of its co	mpounds.		
16.	Which pair of th oxidation state?	e following compou	nds has elemei	nts in their highest		
	(a) [Fe(CN) ₆] ³⁻ (and [Co(CN) ₆ [3-	(b) [MnO ₄]-	and CrO ₂ Cl ₂		
	(c) [MnO ₄]- and	[NiF ₄] ²⁻	(d) MnO ₂ aı	nd TiO ₂		
17.		gave on reaction wit weight of the metal i		.P. 34.2ml hydrogen gas.		
	(A) 32.7	(B) 48.6	(C) 64.2	(D) 16.3		
18.	0.5g of metal or the metal is	n oxidation gave 0.79	9g of its oxide. T	he equivalent weight of		
	(A) 10	(B) 14	(C) 20	(D) 40		
19.	74.5g of the me weight of the m		ins 35.5g of chlo	orine. The equivalent		
	(A) 19.5	(B) 35.5	(C) 39.0	(D) 78.0		
20.	The chloride of a metal (M) contains 65.5% of chlorine. 100ml. of the vapou of the chloride of the metal at S.T.P. weigh 0.72g. The molecular formula of the metal chloride is					
	(A) MCI	(B) MCl ₂	(C) MCI ₃	(D) MCI ₄		

21. The equivalent weight of a metal is 4.5 and the molecular weight of its chloride is 80. The atomic weight of the metal is			ar weight of its	
	(A) 18	(B) 9	(C) 4.5	(D) 36
22.	The sulphate of an	element contains 4 I be:	2.2% element. The	e equivalent weight
	(A) 17.0	(B) 35.0	(C) 51.0	(D) 68.0
23.	The equivalent we 59.25. Then the val	ight of an elements lency of the elemo	is 4. Its chloride ho ents is	as a vapour density
	(A) 4	(B) 3	(C) 2 (D)	1
24.		ement possesses the al is 9, then the atom		•
	(A) 9	(B) 18	(C) 27 (D)	none of these.
25.	Approximate atom exact atomic wt. is	nic weight of an elen ::	nent is 29.89. If its	eq. wt. is 8.9, the
	(A) 26.89	(B) 8.9	(C) 17.8	(D) 26.7
26.		es 1.415g Cu from the The equivalent weig		
	(A) 15.9	(B) 47.7	(C) 31.8	(D) 8.0
27.	In m ₁ gram of a metal A displaces m ₂ gram of another metal B from its so solutions and if the equivalent weights are E ₁ and E ₂ respectively then the equivalent weight of A can be expressed by			pectively then the
	(A) $E_1 = \frac{m_1}{m_2} x E_2$	exter		
	(c) $E_1 = \frac{m_1 x m_2}{E_2}$		(D) $E_1 = \sqrt{\frac{m_1}{m_2} x E_2}$	2
28.	The weight of a me	etal of equivalent we	eight 12, which will	give 0.475 g of its
	(A) 0.12 g	(B) 0.16 g	(C) 0.18 g	(D) 0.24 g

29.	The equivalent weight of iron in Fe ₂ O ₃ would be				
	(A) 18.6	(B) 28	(C) 56	(D) 112.0	
30.	=	netal displaced 4g c e. The atomic weigh		4) from a solution	
	(A) 12	(B) 24	(C) 48	(D) 6	
31.	Equivalent weight	of KMnO4when it is c	onverted into MnSO	4 is	
	(A) M/5	(B) M/6	(C) M/3	(D) M/2	
32.	The weight of two ratio of their	elements which con	nbine with one anot	her are in the	
	(A) atomic weight		(B) molecular weig	ght	
	(C) gram mole		(D) equivalent wei	ght	
33.	0.84g of a metal h	ydride contains 0.04	12g of hydrogen. Its (equivalent weight	
	(A) 80	(B) 40	(c) 60	(D) 20	
34.	A metallic oxide co	ontains 60% of the m	netal. The equivalent	weight of the	
	(A) 12	(B) 24	(C) 40	(D) 48	
35.	When a metal is b weight of the meta	urnt, its weight is inc al will be	reased by 24 perce	nt. The equivalent	
	(A) 2	(B) 24	(c) 33.3	(D) 76.	
36.	· ·	metal is converted uivalent weight of th	•	ely and it yield 5g	
	(A) 33.25	(B) 3.325	(C) 12	(D) 20.	
37.	A bivalent metal h oxide will be	as the equivalent we	eight of 12. The mole	cular weight of its	
	(A) 24	(B) 34	(C) 36	(D) 40	

38.
$$2 H_3 PO_4 + 3Ca(OH)_2 \rightarrow Ca_3(PO_4)_2 + 6H_2O.$$

Equivalent weight of H₃PO₄ in this reaction is

- (A) 98
- (B) 49
- (C) 32.66
- (D) 24.5
- **39.** What is the equivalent mass of HCl in the given reaction:

$$2KMnO_4 + 16 HCI \longrightarrow 2KCI + 2MnCl_2 + 5Cl_2 + 8H_2O$$

- (a) $\frac{M}{1}$
- (b) $\frac{M}{10}$
- $\frac{8M}{5}$
- (d) none
- **40.** In an experiment 50 ml of 0.1 M solution of a salt reacted with 25 ml of 0.1 M solution of sodium sulphite. The half equation for the oxidation of sulphite ion is

$$SO_{3 (aq)}^{2-} + H_2O_{(I)} \rightarrow SO_{4 (aq)}^{2-} + 2H^+ + 2e^-$$

If the oxidation number of metal in the salt was 3, what would be the new oxidation number of metal?

- (a) zero
- (b) 1
- (c) 2
- (d) 4

ADHYAY-2027

DexterChem

41.

are true:

(a) $6M_1V_1 = M_2V_2$

LEVEL-2

In the titration of $K_2Cr_2O_7$ and ferrous sulphate, following data is obtained :

(b) $M_1V_1 = 6 M_2V_2$

 V_1ml of M_1 $K_2Cr_2O_7$ requires V_2 ml M_2 FeSO₄ which of the following relations

	(c) $N_1V_1 = 2N_2V_2$		(d) $M_1V_1 = M_2V_2$		
42.	by ${^{\text{Cr}_2}\text{O}_7^{2-}}$ in acidic	medium. In the exp	oxidation number A periment 1.68 × 10 ⁻³ m The new oxidation nu	ole of K ₂ Cr ₂ O ₇	
	(a) 3	(b) 3 – n	(c) n – 3	(d) + n	
43.	The number of mo HNO ₃ (reduced to I		to H₃AsO₄ and H₂SO₄	₄ by 1 mole of	
	(a) $\frac{3}{2}$	(b) $\frac{5}{2}$	(c) $\frac{2}{3}$	(d) $\frac{3}{28}$	
44.	A solution is containing 2.52 g litre ⁻¹ of a reductant. 25 mL of this solution required 20 mL of 0.01M KMnO ₄ in acid medium for oxidation. Given that each of the two atoms which undergo oxidation per molecule of reductant, suffer an increase in oxidation state by one unit. The mol. wt. of reductant is-				
	(a) M = 126	(b) M = 130	(c) $M = 128$	(d) $M = 127$	
45 .			Sn ⁴⁺ and H ₂ O. 100 m I SnCl ₂ solution. Cald		
	(a) 11.2	(b) 1.12	(c) 0.112	(d) none	
46.			ified solution of KI is $a_2S_2O_3$ solution. The v		
	(a) 1.12	(b) 2.24	(c) 3.24	(d) 4.44	

47.	In the reaction, P + $Cr_2O_7^{2-}$ + H ⁺ \longrightarrow PO ₄ ³⁻ + Cr^{+3} + H ₂ O if 0.2 moles of $Cr_2O_7^{2-}$ are taken then moles of 'P' reacted is				
	(a) 0.34	(b) 0.14	(c) 0.24	(d) 0.04	
48.	In the following red	iction,			
	MnO_2	+ 4HCl \longrightarrow MnCl ₂ +	Cl ₂ + 2H ₂ O		
	n-factor of HCl is				
	(a) ½	(b) 1	(c) 2	(d) 4	
49.	The equivalent wei	ght of Fe ₃ O ₄ in the re	eaction,		
	Fe ₃ O ₄ + KMnO ₄	Fe ₂ O ₃ + MnO ₂ would	d be		
	(a) M/6	(b) M	(c) 2M	(d) M/3	
50.	In the following red	ection,	•		
	NO_3^- -	$+ As_2S_3 + 4H_2O \longrightarrow$	$AsO_4^{3-} + NO + SO_4^{2-} + I$	$\mathrm{H}^{\scriptscriptstyle +}$	
	equivalent weight	of As ₂ S ₃ (molecular	weight M) is		
	(a) M/2	(b) M/4	(c) M/24	(d) M/28	
51.		le of electrons are to nt. The possible redu	ransferred to one mo uction product is	ole of HNO₃ when	
	(a) (1/2) mole N ₂		(b) (1/2) mole N ₂ O		
	(c) 1 mole of NO ₂	_	(d) 1 mole NH3		
52.	gives ammonia go Excess of acid is co	is which is absorbed	hen heated with exc d in 150 ml of N/5 H ₂ S d by 20 ml of 1N NaC n chloride is	SO_4 solution.	
	(a) 68%	(b) 34%	(c) 48%	(d) 17%	
53.	25 ml of above solu	ution required 20 ml	are dissolved in 250 of 0.1N H ₂ SO ₄ by using the Ma ₂ CO ₃ in the mixton	ng	
	(a) 1.5 gm	(b) 2.12 gm	(c) 2.05 gm	(d) 1.6 gm	

54.	25 mL of a solution of Na ₂ CO ₃ having a specific gravity of 1.25 g mL ⁻¹ required 32.9 mL of a solution of HCl containing 109.5 g of the acid per litre for complete neutralization. Find the volume of 0.84 N H ₂ SO ₄ that will be completely neutralized by 125 g of Na ₂ CO ₃ solution.				
	(a) 470 mL	(b) 370 mL	(c) 530 mL	(d) 280 mL	
55.		ng 4.2 g of KOH and uivalent of acid, con ing?		•	
	(a) 45%, 55%	(b) 35%, 65%	(c) 25%, 75%	(d) 15%, 85%	
56.	with Ca to form Ca	solution is heated. The olution is heated. The olueous solute he molarity of H ₂ SO ₄	ution of CaO is neuti		
	(a) 2.43 M	(b) 1.78 M	(c) 1.55 M	(d) 2.78 M	
57.	phenolphthalein in HCl by using methy	O_3 and Na_2CO_3 is neadicator. The above of place of the property of the	mixture is neutralise The mole of CO ₂ evo	d by yml of 1M	
58.	The normality of 0.1	l M H₃PO₃ when it un	dergoes following re	eaction,	
	H ₃ PO ₃ + 2OH	\longrightarrow HPO $_3^{2-}$ + 2H ₂ O	would be		
	(a) 0.1	(b) 0.2	(c) 0.3	(d) 0.05	
59.	The equivalent wei	ght of the compoun	d KHC ₂ O ₄ .H ₂ C ₂ O ₄ .4H	₂ O used in	
	(a) $\frac{\text{molecular weigh}}{1}$	<u>t</u>	(b) $\frac{\text{molecular weigh}}{2}$	<u>ut</u>	
	molecular weigh (c) 3	<u>t</u>	molecular weigh	<u>t</u>	
60	(0)		(d)		
60.	(a) 0.1	3 M phosphorous ac (b) 0.9	(c) 0.3	(d) 0.6	
	(3) 5.1	(2) 0.0	(3) 3.3	(4) 5.5	

OI.	neutralisation. The equivalent weight of acid is				
	(a) 26	(b) 52	(c) 104	(d) 156	
62.	What would be the precipitating ager	e normality of a 0.1 I nt for Pb ²⁺ ?	M K ₂ Cr ₂ O ₇ solution u	sed as a	
	(a) 0.1 N	(b) 0.6 N	(c) 0.4 N	(d) 0.2 N	
63.	3g of an oxide of a metal is converted to chloride completely and it yi 5 g chloride. The equivalent weight of metal is				
	(a) 33	(b) 42	(c) 12	(d) 40	
64.		on of 6.3 g oxalic ac N NaOH required to	•	•	
	(a) 40 ml	(b) 20 ml	(c) 1 ml	(d) 4 ml	
65 .	In the reaction, H ₃ I of H ₃ PO ₄ is	$PO_4 + Ca(OH)_2 \longrightarrow 0$	CaHPO $_4$ + 2H $_2$ O, the	equivalent weight	
	(a) 32.7	(b) 49.0	(c) 98.0	(d) 196.0	

DexterChem

Redox Reaction Dexter Tutorials Sheet

LEVEL-3

1.	Mass of KHC ₂ O ₄ (potassium acid oxalate) required to reduce 100 ml of 0.0 M KMnO ₄ in acidic medium (to Mn ²⁺) is <i>x</i> g, and to neutralize 100 ml of 0.0 M Ca(OH) ₂ is <i>y</i> g then				
	(A) x = y	(B) $2x = y$	(c) $x = 2y$	(D) none	
2.	•	f 1 M KMnO4 and 1 M I en Fe (II) oxidized wil	K₂Cr₂O7 solution are 0 I be	allowed to oxidize	
	(A) More by KMnO ₄	1	(B) More by K ₂ Cr ₂ O	7	
	(C) Equal in both c	ases	(D) Data is incomp	lete	
3.	• 100 ml of 1 M KMnO ₄ oxidized 100 ml of H ₂ O ₂ in acidic medium (when Mn reduced to Mn ²⁺); volume of same KMnO ₄ required to oxidize 100 ml of H				
	in neutral medium (when MnO is reduced to MnO2) will be				
	(A) ^{100/3} ml	(B) ^{500/3} ml	(C) ^{300/5} ml	(D) 100 ml	
4.		on (volume strength nedium. Hence, <i>x</i> is:	n = x) required 10 ml	of 0.1N MnO ⁴	
	(A) 0.56	(B) 5.6	(c) 0.1	(D) 10.0	
5.		,	/ 10 ml of 0.1 M NaHC orange end-point. ⁻		
	(A) 0.167 M	(B) 0.133 M	(C) 0.150 M	(D) 0.200 M	
6.	10 ml of NaHC ₂ O ₄ solution is neutralized by 10 ml of 0.1M NaOH solution. 10 m of same NaHC ₂ O ₄ solution is oxidized by 10 ml of KMnO ₄ solution in acidic medium. Hence, molarity of KMnO ₄ is				
	(A) 0.1 M	(B) 0.2 M	(C) 0.04 M	(D) 0.02 M	
7.	1 mol of ferric oxalo	ate is oxidized by <i>x</i> m	nole of MnO 4 and als	so 1 mol of ferrous	
	oxalate is oxidized	by y mol of MnO $^{-4}$ in	acidic medium. The	e ratio x/y is	
	(A) 2:1	(B) 1:2	(C) 3:1	(D) 1:3	

8.	40 ml of 0.05 M solution of sesquicarbonate (Na ₂ CO ₃ .NaHCO ₃ .2H ₂ O) is titrated against 0.05 M HCl. x ml of HCl is used when phenolphthalein is the indicator and y ml of HCl is used when methyl orange is the indicator in two separation titration, hence $(y-x)$ is				
	(A) 80 ml	(B) 30 ml	(C) 120 ml	(D) none	
9.			₄) ₃ required 100 ml o fraction of FeSO ₄ in t		
	(A) 1/3	(B) 2/3	(C) 2/5	(D) 3/5	
10.	-	ssolved in 150 ml of 1 ce, equivalent weigl	I M HCI. Unused aciont of M is	I required 100 ml	
	(A) 53	(B) 12	(C) 24	(D) 13	
11.	Equivalent weight o	of H ₃ PO ₂ when it disp	roportionates into P	'H₃ and H₃PO₃ is	
	(mol. wt.of $H_3PO_2 =$	м)			
	(A) M	(B) M/2	(C) M/4	(D) 3M/4	
12.		mol of CuSO4 requi tage of pure CuSO4	red 100 ml of 1 M hyp is:	oo solution,	
	(A) 100	(B) 50	(C) 25	(D) 40	
13.		d with 100 ml of 1 M l complete reaction	H ₂ SO ₄ . Molar concen is:	tration of the	
	(A) 0.05 M	(B) 0.005 M	(C) 0.50 M	(D) 0.0005 M	
14.	Volume of 18.0 M H ₂ H ₂ SO ₄ is:	2SO4 required to pre	oare 1.0 litre of a 0.9	M solution of	
	(A) 50.0 ml	(B) 10.0 ml	(C) 500.0 ml	(D) 5.0 ml	
15.	Volume of 0.50 M N H_2SO_4 solution is:	laOH solution requir	ed to react with 40.0) ml of 0.05 M	
	(A) 40.0 ml	(B) 80.0 ml	(C) 20.0 ml	(D) 8.0 ml	
16.	150 ml of 6.00 M H ₂ S Resulting molarity i		d with 250 ml of 3.00	M H ₂ SO ₄ .	
	(A) 4.125 M	(B) 8.250 M	(C) 4.500 M	(D) 1.650 M	

17.	Oxalic acid ($H_2C_2O_4$) forms two series of salt $HC_2O_4^{\frac{1}{4}}$ and $C_2O_4^{\frac{1}{4}}$. If 0.9 g of oxalic acid is in 100 ml solution, $HC_2O_4^{\frac{1}{4}}$ and $C_2O_4^{\frac{2}{4}}$ have normality respectively:				
	(A) 0.1 N, 0.1 N	(B) 0.1 N, 0.2 N	(C) 0.2 N, 0.2 N	(D) 0.2 N, 0.1 N	
18.	10 g of MnO ₂ on red 55). Hence, percen		l liberated 0.1 equivo	lent of Cl ₂ (Mn =	
	(A) 87.0	(B) 21.75	(C) 50.0	(D) 43.5	
19.	0.106 g of Na ₂ CO ₃ co of H ₂ SO ₄ solution is:	• •	es 40.0 ml of H ₂ SO ₄ . H	lence, normality	
	(A) 0.05 N	(B) 0.025 N	(C) 0.10 N	(D) 0.20 N	
20.	Volume of 0.02 M M solution is:	InO 4 solution requir	ed to oxidize 40.0 m	l of 0.1 M Fe ²⁺	
	(A) 200 ml	(B) 100 ml	(C) 40 ml	(D) 20 ml	
21.		of Na ₂ SO ₃ required 3 3. Hence, molarity of	0 ml of 0.01 M K_2Cr_2O Na_2SO_3 solution is:	₇ solution for the	
	(A) 0.015 M	(B) 0.045 M	(C) 0.030 M	(D) 0.0225 M	
22.	1.00 L of 0.15M NaOH molarity of NaOH is		ol of CO2 from air. He	ence, new	
	(A) 0.1276 M	(B) 0.1500 M	(C) 0.0224 M	(D) 0.0112 M	
23.	If a gm is the mass of NaHC ₂ O ₄ required to neutralize 100 mL of 0.2 M NaO and b gm tha required to reduce 100 mL of 0.2 M KMnO ₄ in acidic medium then				
	(A)a = b	(B) 2a = b	(C) a = 2b	(D) None	
24.	A mixture of Na ₂ C ₂ O ₄ (A) and KHC ₂ O ₄ .H ₂ C ₂ O ₄ (B) required equal volume of 0.1 M KMnO ₄ and 0.1 M NaOH separately. Molar ratio of A and B in the mixtu is				
	(A) 1:1	(B) 1:5.5	(C) 5.5:1	(D) 3.1:1	

25.	An excess of NaOH was added to 100 mL of a ferric chloride solution. This caused the precipitation of 1.425 g of Fe(OH) ₃ . Calculate the normality of the ferric chloride solution				
	(A) 0.20 N	N (B) 0.50N	(C) 0.25 N	(D) 0.40 N
26.	0.4g of a polybasic acid H _n A (all the hydrogens are acidic) requires 0.5g o NaOH for complete neutralization. The number of replaceable hydrogen atoms in the acid and the molecular weight of 'A' would be: (Molecular weight of the acid is 96 gms.)				
	(A) 1,95	(B	2,94	(C) 3,93	(D) 4,92
27.	A solution of Na ₂ S ₂ O ₃ is standardized iodimetrically against 0.1262 g of KBrO ₃ . This process requires 45.mL of the Na ₂ S ₂ O ₃ solution. What is the strength of the Na ₂ S ₂ O ₃ ?				•
	(A) 0.2M	(B) 0.1M	(C) 0.05 M	(D) 0.1N
28.	25.0 g of FeSO ₄ .7H ₂ O was dissolved in water containing dilute H ₂ SO ₄ , and the volume was made up to 1.0 L. 25.0 mL of this solution required 20 mL of an N/10 KMnO ₄ solution for complete oxidation. The percentage of FeSO ₄ .7H ₂ O in the acid solution is				ed 20 mL of an
	(A) 78%	(B	98%	(C) 89%	(D) 79%
29.				5 mol of O ₂ to give on social oxide to ferric oxide	
	(A) 2: 3	(B) 4:3	(C)1:2	(D) 2:7
30.	25 mL of a solution containing HCl and H ₂ SO ₄ required 10 mLbf a 1 N NaOH solution for neutralization. 20 mL of the same acid mixture on being treated with an excess of AgNO ₃ gives 0.1435 g of AgCl. The normality of the HCl and the normality of the H ₂ SO ₄ are respectively				
	(A) 0.40 I	N and 0.05 N		(B) 0.05 N and 0.35	N
	(C) 0.50 I	N and 0.25 N		(D) 0.40 N and 0.5 N	N

31. 0.70 g of mixture (NH₄)₂SO₄ was boiled with 100 mL of 0.2 N NaOH solution till all the NH₃(g) evolved and get dissolved in solution itself. The remaining solution was diluted to 250 mL 25 mL of this solution was neutralized using 10 mL of a 0.1 N H₂SO₄ solution. The percentage purity of the (NH₄)₂SO₄ sample is

(A) 94.3

(B) 50.8

(C) 47.4

(D) 79.8

32. A mixed solution of potassium hydroxide and sodium carbonate required 15 mL of an N/20 HCl solution when titrated with phenoiphthalein as an indicator. But the same amount of the solution when titrated with methyl orange as an indicator required 25 mL of the same acid. The amount of KOH present in the solution is

(A) 0.014 g

(B) 0.14g

(C) 0.028 g

(D) 1.4g

DexterChem