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The cause of
colouration in the
ctenophore Beroë
cucumrs

V.L. Welchl, J.P. Vigneron2 and
A.R. Parkerl

Ctenophores are famed for the
spectacular iridescence of their
comb-rows. but the cause of this
bright colouration has never been
found. The colour of any given part
of a ctenophore comb-row
changes as the combs in that
region beat and, thus, the angle
between each comb and an
observer changes. This colour
variation with angle indicates that
the colouration originates from a
structural cause, not a pigment [1].

In this study, we aimed to
explain the cause of this
colouration in the ctenophore
Beroê cucumis by finding and
describing the ultrastructure and
optics of the structure
responsible for the observed
colouration. Because Beroë
cucumis has bioluminescent
organs directly beneath the
combs, any colour-producing
structure within them may affect
on the organism's
bioluminescence, so we aimed to
model the effect of any putative
colour-producing structure on the
organism's bioluminescence.

Transmission electron
microscopy (TEM) revealed a
putative two-dimensional
photonic crystal composed of an
enormous number of t ightly
packed cil ia within the combs of
Beroë cucumls. A photonic
crystal is a rare type of colour-
producing structure, composed
of a regularly repeating structure
with dimensions a fraction of the
wavelength of l ight, complex
optical properties and large
commercial potential [2]. Optical
modeling of the structure
revealed that it would, indeed,
function as a photonic crystal and
that the observed appearance of
the ctenophore could be

explained in terms of its optical
properties.

The ctenophore studied here
was collected by submarine, on a
research cruise off the Eastern
Coast of the USA, between 70'
and 75'West and 35'and 42'
North. Several lengths of comb
row were removed by dissection;
each comprised four or five
combs and the material joining
them. These comb row samples
were immediately fixed in
glutaraldehyde solution and
subsequently prepared for TEM
(see Supplemental Data available
online).

TEM revealed many thousands
of t ightly packed cil ia, running
perpendicular to the plane of the
section, such that they were seen
in transverse section (Figure 1).
The dimensions of these cil ia,
combined with their highly regular
arrangement was very
reminiscent of the colour-
producing structures found within
the spines of the polychaete
worm, Aphrodifa sp. - a
structure known to be a photonic
crystal[3].

ln Beroë cucumis, the putative
photonic crystal is two-
dimensional (the structure's
composition does not vary along
the length of the cil ia, but shows
periodic spatial variations in both
of the other dimensions), with a
previously undescribed geometry;
the cil ia are
parallelogrammatically packed,
giving the photonic crystal a
parallelogrammatic repeat-unit
with side lengths, d' and dr, of
195 nm and215 nm and angles of
77o and 103o between them
(compare [a-6]). The axoneme of
each cil ium has a diameter of

40 nm and is surrounded at a
constant distance of 73 nm by
nine outer microtubule doublets.
which each have a diameter of
40 nm (Figure 2).

For optical modell ing, we
constructed a two-dimensional
'Bravais' lattice, using the
measurements given in Figure 2,
to describe mathematically the
geometry of a 'unit cell' - one
cil ium and the space around it -
which is repeated by translations
throughout the rest of the crystal
and, thus, describes the geometry
of the whole crystal, once these
translations are accounted for.
From this, we calculated the
reflectance, using a'transfer-
matrix' approach [7] (see
Supplemental Data on-line). We
used a refractive index, no = 1.34
to account for the light refracting
properties the solution inside the
cilia (cytosol) and the refractive
index n, = 1.57 tor the cil ial
components (microtubules and so
on) in our calculations (see
Supplemental Data on-line).

Our model predicted the
reflectance spectra shown in
Figure 2 - they are in the visible
range, for different incidence
angles. At normal incidence (0 = 0),
the reflectance is very low for all
wavelengths, except for a near-
total reflection band centred on
À = 61 Snm, in the red part of the
visible range, indicating that bright
red colouration would be observed
at this angle. For increasing
incidence angles, this reflection
band shifts to shorter
wavelengths, sweeping the whole
visible spectrum (orange for
0 = 15o, yellowish green for 0 = 30o,
blue for 0 - 45I. For 0 = 60', the
reflection lies within the ultraviolet
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Figure 1 . Transmission electron micrographs of the Beroé cucumis comb structure
(A) The scale bar is 500 nm. (B) Detail of the structure of the cilia of which photonic
crystal is composed. The scale bar in this micrograph is 200 nm.



Current Biology Vol 15 No 24
R986

,:riiw.

400 450 500 550 600 650 700
Wavelength (nm)

0  1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
Emergence angle (deg)

Current Biology

Figure 2. Morphology and optics of the colour-producing structure.

(A) Our modef of the reflective structure lound on Beroë cucumls to show the photonic
structure.Vector a.t - 195 nm, vector a, = 215 nm. The angle 0 is close to 77 degrees. (B)
Diagram to show a length of a comb-row including four combs. The line A-P is the ante-
rior-posterior axis of the animal. The interior of the animal lies to the bottom of the
image and the combs are surrounded by the sea in vivo. The organs of biolumines-
cence are distributed along channels running along the A-P axis and located under-
neath the comb rows roughly at point'X'. The cilia shown are found in the comb body,
for example in area 'C'. (C) Reflectance spectra, for light at various incidence angles on
the structure shown in Figure 2A. Incidence medium is water (no = 1.34) and the angles
of incidence, 0, are measured from the normal to the surface defined by the rod axes
and the translation vector at, of length 195 nm. The polarization is Transverse Magnetic.
(D) Calculated transmission of 512 layers of cilia at the bioluminescence wavelength
(489 nm). At angles below the high-reflection range (near 40 degrees), the structure is
nearly perfectly transparent. (Further details of all figures in Supplemental Data online.)

range. Thus, the whole range of transmission of light of this
visible light, from red to violet is wavelength is almost perfect for
reflected, according to the angles below this gap,
orientation of the cil ia of the notwithstanding a small dip at
photonic-crystal structure with near-normal incidence.
respect to the observer. Because Our results show that the
this colour range is scanned with observed colouration of the
only moderate angle changes ctenophore Beroë cucumis can
(from normal to about 60"), the be explained by the structure
animal's movement could easily described, which operates as a
generate the drastic colour photonic crystal. This is the first
changes observed in the time a photonic crystal
ctenophore in vivo. composed of cilia has been

With regard to the effect of the reported. The parallelogrammatic
structure on Beroé cucumis's cil ial packing is also new: the
bioluminescence, our model two-dimensional photonic
predicts the transmission crystals previously described
properties shown in Figure 2. have had hexagonally [3],
Because the organism's squarely [9] or rectangularly [9]
wavelength of maximal packed components.
bioluminescence is Remarkably, our results
489 nm = 4.7 nm) [8], the results indicate that this structure is
shown are for l ight of 489 nm. optimised not only for reflection
Our model predicted total of ambient l ight to generate bright
reflection of incoming light of this colouration across the visible
wavelength for a direction slightly spectrum, but also to transmit
above 40'. Most importantly, this l ight of wavelengths around that
calculation shows that the of the organism's
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bioluminescence. Since
ctenophores lack l ight sensitive
organs and the main prey of
Beroë cucumis are other
ctenophores, we suggest the
most l ikely function of this
colouration to be deterring
predators.
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