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Abstract 

 

The use of machine learning (ML) in carbon capture and storage (CCS) is an evolving field, 

with many potential technologies in the pipeline for implementation. This paper considers the 

most prevalent ones, including ANN, DT, SVM(R), XGBoost, and clustering, with their unique 

toolsets, and how they can be implemented in hybrid models to ensure effective CCS. It 

considers how these technologies are trained, and how they can be implemented in various 

parts of the CCS process, including storage site selection, real-time monitoring and 

optimisation, leakage detection, predictive maintenance, and enhancing CO2 absorption 

materials. The investigation of the XGBoost algorithm in this study has confirmed ML's 

effectivity, whilst identifying areas of further improvement which can be worked upon to 

enhance the model's accuracy (root squared, or R2, score). 

 

1. Introduction 

 

The escalating threat of climate change has underscored the urgent need for effective strategies 

to mitigate greenhouse gas emissions, with carbon dioxide (CO₂) being a primary target due to 

its substantial contribution to global warming (Intergovernmental Panel on Climate Change 

(IPCC), 2021)1. Carbon Capture and Storage (CCS) has emerged as a pivotal technology in this 

mitigation strategy, aimed at reducing atmospheric CO₂ concentrations by capturing carbon 

emissions from industrial processes and securely storing them underground (Adjiman, et al., 



2018)2 (Shreyash, et al., 2021)3. Despite significant advancements in CCS technology, 

challenges related to efficiency, cost, and operational management persist, necessitating 

innovative approaches to enhance its effectiveness and scalability. 

 

 

 

FIGURE 1 - Carbon Emissions mapped out over an approximately 80-year period. 

 

 

Recent developments in machine learning (ML) offer promising avenues to address these 

challenges. Machine learning, a subset of artificial intelligence, encompasses various 

techniques and algorithms that enable systems to learn from data and improve performance 

over time without explicit programming. By leveraging vast amounts of data and advanced 

computational capabilities, ML can optimize various aspects of CCS operations, from capture 

and transportation to storage and monitoring. 

The integration of ML into CCS processes holds the potential to revolutionize the field in 

several ways (Yao, Yu, Zhang, & Xu, 2023)4. For instance, ML algorithms can improve the 

efficiency of capture technologies by predicting optimal operating conditions and identifying 



anomalies. In the transportation phase, ML can enhance pipeline monitoring and predictive 

maintenance, reducing the risk of leaks and failures. Furthermore, ML models can play a crucial 

role in storage site characterization and monitoring by analysing geological data to predict the 

behaviour of CO₂ in storage sites, ensuring long-term storage security. 

 

Despite its potential, the application of ML in CCS is still in its nascent stages, and several 

hurdles remain, including data quality, model interpretability, and integration with existing 

CCS infrastructure. This paper aims to explore the current state of ML applications in CCS, 

highlighting key advancements, ongoing research, and practical implementations. The paper is 

structured as follows: Section 2 provides an overview of CCS technology and its operational 

challenges. Section 3 delves into various ML techniques and their applications within different 

phases of CCS. Section 4 discusses case studies and real-world examples where ML has been 

successfully applied to CCS. Section 5 identifies ongoing research directions and potential 

future developments in this interdisciplinary field. Finally, Section 6 concludes with a summary 

of findings and recommendations for future research. 

 

By examining the intersection of ML and CCS, this paper contributes to a deeper understanding 

of how emerging technologies can enhance climate change mitigation efforts and offers 

insights into potential pathways for future innovations in the field. It is determined that ML 

offers great help in analysing vast parameters and modelling the long-term effectiveness of a 

geological structure in storing carbon dioxide. 

 

2. Carbon Capture and Storage (CCS) 

 



Carbon Capture and Storage (CCS) is a critical technology designed to reduce carbon dioxide 

(CO₂) emissions from industrial processes and power generation, thereby mitigating climate 

change  (Budinis, Krevor, Mac Dowell, Brandon, & Hawkes, 2018)5. This section provides an 

in-depth overview of CCS technology, including its main components, processes, and 

operational challenges. 

 

CCS involves three main stages: capture, transportation, and storage. Each stage is integral to 

the overall efficacy of the technology. The primary focus of this study is how CCS can be 

effectively implemented to offset the dangerously large number of emissions being released 

daily. However, understanding the inherent challenges of CCS at present is essential for its 

effective implementation. Defining the term first, CCS refers to a vast range of processes for 

removing CO₂ from a point source (such as industrial flue gas) or the atmosphere via direct air 

capture. Once the CO₂ has been captured, it can either be put into permanent storage, usually 

underground, or utilized to manufacture valuable products like fuels or specialty chemicals, as 

part of carbon utilization (Boot-Handford, et al., 2014)6 (Rahimi, Moosavi, Smit, & Hatton, 

2021)7. 



    

    FIGURE 2 - The three stages of CCS 

 

In the capture phase, CO₂ is extracted from industrial emissions or power plant exhaust gases. 

There are three primary capture methods: pre-combustion, post-combustion, and oxy-fuel 

combustion. Pre-combustion capture converts fossil fuels into a mixture of hydrogen and CO₂ 

before combustion, allowing for the CO₂ to be separated and captured. This method is efficient 

but requires significant modifications to existing power plants. Post-combustion capture, the 

most commonly used method, involves capturing CO₂ from flue gases produced after the 

combustion of fossil fuels. This approach can be retrofitted to existing power plants, making it 

more versatile. Oxy-fuel combustion burns fossil fuels in the presence of pure oxygen, resulting 

in a flue gas that is mainly water vapour and CO₂, which can then be easily separated. 

 

Advanced CCS technologies primarily use an absorption route, where an absorbent agent 

captures CO₂ from a mixed gas stream (Rahimi, Moosavi, Smit, & Hatton, 2021)7. There is a 

subsequent thermal-stripping process where pure CO₂ is released, and the absorbent agent is 

regenerated. Most thermal-based capture systems use an amine, such as diethanolamine (DEA), 

methyl diethanolamine (MDEA), or monoethanolamine (MEA). However, adsorbent-based 

processes, which are more energy-efficient and versatile, also exist. In these processes, CO₂ is 

selectively adsorbed on the surface (or within the matrix) of an adsorbent substrate, which can 

subsequently be regenerated by a pressure or thermal swing. Typical adsorbents include zeolite, 

activated carbon, metal oxides, and silica gel. 

 

Delving deeper into the different technologies that exist, membrane technology utilizes the 

Knudsen diffusion principle, whereby CO₂ dissolves in the membrane and diffuses at a rate 



proportional to its partial pressure gradient (Wilberforce, Baroutaji, Soudan, Al-Alami, & 

Olabi)8. This method is especially useful for removing CO₂ from natural gas or where its 

pressure is high. However, capturing CO₂ from flue gas, due to its lesser quantity, poses a 

challenge because of the greater energy requirement to achieve the necessary carbon capture 

ratio. Moreover, cryogenic separation involves various compression applications at ambient 

temperature and pressure to separate the gas, making it viable for producing liquid CO₂ and 

high-concentration CO₂ capture. 

 

In the transportation phase, CO₂ must be transported to storage sites. Transportation is typically 

carried out through pipelines, which are considered the most economical and efficient method 

for moving large volumes of CO₂ over long distances. In some cases, CO₂ can also be 

transported by ships, particularly when pipelines are not feasible due to geographical 

constraints. The integrity and safety of CO₂ transport are paramount to prevent leaks and ensure 

that the gas reaches its storage site without causing environmental harm. 

 

The final stage of CCS is storage, where CO₂ is injected into deep geological formations for 

long-term isolation from the atmosphere. Suitable storage sites include depleted oil and gas 

fields, deep saline aquifers, and unmineable coal seams. These geological formations are 

chosen based on their capacity to securely contain CO₂ and their impermeability, which 

prevents CO₂ from escaping to the surface. The process of injecting CO₂ into these formations 

is known as geological sequestration. Extensive site characterization and monitoring are 

required to ensure the long-term stability and security of stored CO₂. This involves detailed 

geological surveys, risk assessments, and the implementation of monitoring technologies to 

detect any potential leaks or changes in the storage site. 

 



Despite its potential, CCS technology faces several significant challenges. One of the primary 

challenges is the high cost associated with the capture phase, which can account for up to 70% 

of the total cost of CCS. The energy-intensive nature of CO₂ capture processes reduces the 

overall efficiency of power plants and industrial operations, thereby increasing operational 

costs. Additionally, the development and maintenance of CO₂ transportation infrastructure, 

such as pipelines, require substantial financial investment. The long-term monitoring and 

verification of storage sites also add to the overall cost and complexity of CCS projects (Boot-

Handford, et al., 2014)6 (Pires, Martins, Alvim-Ferraz, & Simões, 2011)8 (Anderson & Newell, 

2004)9 (Gibbins & Chalmers, 2008)10 (Adjiman, et al., 2018)2. 

    FIGURE 3 - The carbon storage process 

 

Another major challenge is the regulatory and policy framework surrounding CCS. Clear and 

supportive policies are essential to incentivize investment in CCS technologies and ensure 

compliance with safety and environmental standards. The lack of a comprehensive legal 



framework can hinder the development and deployment of CCS projects. Moreover, public 

perception and acceptance of CCS can be a barrier. Concerns about the safety of CO₂ storage, 

potential environmental impacts, and the perception that CCS may prolong the use of fossil 

fuels can lead to resistance from local communities and stakeholders. 

 

Addressing these challenges requires a multifaceted approach. Continued research and 

development are crucial to advancing CCS technologies and reducing costs. Innovations in 

materials, capture processes, and monitoring techniques can enhance the efficiency and 

reliability of CCS. Additionally, government policies and incentives, such as carbon pricing 

and subsidies, can stimulate investment and adoption of CCS. Public engagement and 

education are also vital to address misconceptions and build trust in CCS as a viable climate 

mitigation strategy. 

 

Carbon Capture and Storage is a pivotal technology in the fight against climate change, offering 

a means to significantly reduce CO₂ emissions from industrial sources. While the technology 

has made considerable progress, overcoming the challenges of cost, regulatory frameworks, 

and public perception is essential for its widespread implementation. By addressing these issues 

and leveraging advancements in technology, including the integration of machine learning, 

CCS can play a crucial role in achieving global climate goals and transitioning to a low-carbon 

future. The next section will explore the application of machine learning in CCS, detailing how 

these advanced computational techniques can address some of the current challenges and 

enhance the overall efficiency and effectiveness of CCS processes. 

 

3. Machine learning techniques in CCS 

 



Machine learning offers a variety of solutions to these issues, with each unique model offering 

its own set of features to tackle a different problem. 

 

3.1 Artificial Neural Networks (ANNs) 

 

One of the core technologies is Artificial Neural Networks (ANNs). An ANN consists of 3 

layers: input, hidden (where the processing occurs), and output. These are based on a 

perceptron algorithm, which imitates human neurons (Yan, et al., 2021)11. ANNs are commonly 

used to project CO2 solubility, viscosity, saturation and density, especially when the carbon 

interacts with multicomponent gas-liquid mixtures, which ensures its long-term safety and 

effective storage (such as to predict the storage efficiency in a saline aquifer), along with 

optimising the conditions for enhanced oil recovery (EOR), which is an effective way to 

repurpose the CO2 (Yao, Yu, Zhang, & Xu, 2023)4
 (Vaziri & Sedaee, 2023)12. Saline aquifers 

are a poignant consideration as they are one of the most effective means of long-term carbon 

storage. Later in the paper, a study by Song et al (2020)13 is considered, which used an ANN 

to create a synthetic model of saline aquifers to map out their long-term carbon impermeability. 

 



ANN's use further extends to being able to simulate subsurface characteristics at the reservoir 

scale from permeability parameters and core porosity in the event of incomplete and 

insufficient site data, facilitating the process of finding optimal storage sites. 

 

   FIGURE 4 - ANN 

 

3.2 Deep Neural Networks (DNN) 

 

For even more computationally intensive applications of ANN, DNNs are very robust. A subset 

of ANN that is made up of a greater number of deeper layers, the deep architecture of DNN 

allows the networks to automatically learn hierarchical representations of data and capture its 

complex patterns and features (Nassabeh, You, Keshavarz, & Iglauer, 2024)13. For this, it 

utilises a process called forward propagation (in which data passes through the hidden layers), 

and the complementary processes of back-propagation to reduce the difference between the 

predicted output and the actual target values; this entails the adjusting of weights and biases 



using optimisation algorithms like gradient descent (Nassabeh, You, Keshavarz, & Iglauer, 

2024)13. This results in DNNs being able to effectively capture both local and global patterns 

in CCS research, particularly in the case of non-linear relationships, and dealing with vast and 

complex datasets made up of environmental and geological factors. 

 

3.3 Random Forest (RF) and Decision Tree (DT) 

 

Moving on to a more distinct technique, RF shows potential in enacting a feasibility assessment 

of CCS along with other technologies, such as biomass conversion and hydrothermal treatment 

(HTT) (Yao, Yu, Zhang, & Xu, 2023)11. RF is a subset of the Decision Tree (DT) model, and 

these, coupled, are effective in risk assessment, decision analysis and estimating the success 

probability of CCS. DT involves a process called feature selection, where the model chooses a 

feature that best separates data based on a chosen metric, establishing a root node. The process 

repeats such that an increasing number of internal nodes are formed to further classify the data 

until leaf (end) nodes are formed to give final predictions (Song & Lu, 2015)15. RF builds on 

DT by creating an ensemble of DTs, each being trained on a different subset of data, and 

selected through the processes of bootstrap sampling. RF brings in additional randomness by 

sampling subsets of the training data and features during tree construction, which reduces 

overfitting and increases the accuracy (Nassabeh, You, Keshavarz, & Iglauer, 2024)14. Each 

tree votes on predictions in the forest, with the final result being determined by the majority 

vote (in the case of classification) or averaging (in the case of regression) (Nassabeh, You, 

Keshavarz, & Iglauer, 2024)14. This algorithm holds the benefits of being able to provide strong 

predictions and determine feature importance for each parameter input. For this reason, RF is 

optimal for processes such as CCS site screening, because of its ability to map out complex 

relationships between economic, geological, and environmental parameters (Nassabeh, You, 



Keshavarz, & Iglauer, 2024)14. Its feature importance analysis helps it with decision-making 

by highlighting key factors, which allow for the evaluation of the success probability of a CCS 

project; added to this is its ease of use and scalability, which enable it to deal with large and 

diverse datasets during the screening research process (Nassabeh, You, Keshavarz, & Iglauer, 

2024)14 (Yao, Yu, Zhang, & Xu, 2023)11. Furthermore, the model is fail-safe against overfitting 

(which would entail failing to accurately perform on unseen data) due to its ensemble property 

(Nassabeh, You, Keshavarz, & Iglauer, 2024)14. 

 

   FIGURE 5 - RF 

 

3.4 Extreme Gradient Boosting (XGBoost) 

 

A related ML model is XGBoost, which utilises gradient boosting, a technique used for 

regression and classification tasks that sequentially builds an ensemble of trees, with each tree 

correcting the errors of the previous trees. Also utilising ensemble learning, XGBoost is 

optimal for screening research in CCS site screening and selection, as well as being able to 



capture nonlinear relationships, offer feature importance insights, and deal with missing data 

(Nassabeh, You, Keshavarz, & Iglauer, 2024)14. With its regularisation techniques, it can 

provide flexibility and optimal performance to safeguard against overfitting, allow efficient  

training, and provide a wide range of tunable hyperparameters (Nassabeh, You, Keshavarz, & 

Iglauer, 2024)14. 

   

  FIGURE 6 - Gradient Boosting 

3.5 Support Vector Machine (SVM) and Support Vector Regressor (SVR) 

 

SVM is a supervised machine learning algorithm that is primarily used for classification tasks, 

with SVR being the regression counterpart. Its main strength lies in its ability to deal with high-

dimensional data, as well as to create robust classifiers with good generalisation capabilities. 

SVM represents training samples as vectors called support vectors in a space mapped such that 

samples from the separate categories are divided by a clear gap, which is as wide as possible 



(Balabin & Lomakina, 2010)16. SVM uses a hyperplane to separate data points of different 

classes, with each support vector having its margin (distance) from the hyperplane, and the 

model aims to maximise this margin to improve generalisation and avoid excessive variance. 

Similarly, SVR finds a linear relation between the regressors (input variables, X) and the 

dependent variables (y), and maps out the cost function, which is minimised to arrive at the 

best regression model (Balabin & Lomakina, 2010)16. The aim is to use the cost function to 

minimise both the coefficients' size  and the prediction errors (function smoothness and 

accuracy). Prediction errors are penalised linearly, except those that have a deviation below a 

certain value, ε, which is defined by Vapnik's ε-insensitive loss function. SVR's use in CCS lies 

in its ability to identify dominant risk factors, as well as to perform sensitivity analysis on 

parameter uncertainty, which aids the solution of multi-objective optimisation problems (Yao, 

Yu, Zhang, & Xu, 2023)11. Moreover, SVM is seen as a reliable method for estimating 

minimum miscibility pressure (MMP) in CO2-EOR, which is important in project design and 

reservoir screening (Yao, Yu, Zhang, & Xu, 2023)11. Furthermore, LS-SVM is superior to 

various methods in predicting physical parameters like viscosity, the solubility of CO2 in the 

saline layer, and the thermal conductivity of CO2. 

 



 

   FIGURE 7 - Support Vector Model 

 

3.6 Deep Learning (DL) 

 

On the other hand, DL offers the ability to achieve better fitting with less data, owing to its 

construction as a neural network with multiple hidden layers (Yao, Yu, Zhang, & Xu, 2023)11. 

This also enables it to discover complex structures in high-dimensional data, whereby it forms 

a more abstract representation of higher-level attributes by combining lower-level features. One 

DL technique that has been implemented in CCS is a Convolutional Neural Network (CNN), a 

technique that is highly effective in reservoir property prediction and CO2 plume migration 

tracking model development, due to its powerful image processing capability (Yao, Yu, Zhang, 

& Xu, 2023)11. Zhong et al (2019) proposed a DL model for monitoring pressure anomalies in 

real-time to ensure reservoir safety and integrity which uses CNN for spatial pattern mining 

and a technique called Long Short-Term Memory (LSTM) for temporal pattern recognition. 

LSTM is a subset of Recurrent Neural Network (RNN), a DL model that can memorise and 

store previous information and which is specialised in sequential data processing such as text 

and speech, with LSTM being used for long-term data storage. 

 

3.7 Clustering 

 

Clustering algorithms are a significant consideration for CCS, with one of the most effective 

ones being K-means Clustering. This unsupervised machine learning algorithm groups an 

unlabelled dataset into different clusters. It aims to ensure that the distance of data points within 

each cluster is as small as possible and that the distance between clusters is as large as possible 



(Hengrui & Olegovna)17. Clustering algorithms are used in the preliminary stages of CCS 

projects to classify geological formations, as well as to identify potential storage sites based on 

similar characteristics, allowing for the efficient allocation of resources (Pires et al., 2011)8 

(Budinis et al., 2018)4.  

 

3.8 Hybrid Models 

 

A combination of these models would be utilised in various situations for different parts of the 

CCS process. An example of this would be to integrate ANNs with SVMs or RFs, which 

improves the prediction of CO2 capture efficiency and storage security. Broadly, combining the 

pattern recognition capabilities of ANNs with the classification strength of SVMs, or the 

ensemble approach of RFs (Gibbins & Chalmers, 2008)10 helps provide more accurate and 

reliable predictions. 

 

4. Case Studies of ML in CCS 

 

4.1 Monitoring and Optimisation, including Leakage Detection 

 

This section aims to holistically consider the various ML techniques described above in the 

context of how they facilitate different parts of the CCS process. Firstly, for monitoring and 

optimisation, one of the most effective techniques is CNN, whose convolutional layers can 

manage local spatial features, as well as carry out image processing. This can be implemented 

in saline aquifers, where changes in salinity, CO2 saturation and mineral types can be detected 

by electromagnetic monitoring to ensure they do not affect complex resistivity. Similarly, using 



CNN, the distribution area and real-time location of CO2 plum in deep reservoirs can be 

determined using the electromagnetic monitoring data on the ground. 

 

Similarly, a Generative Adversarial Network (GAN) can be used to map a relationship between 

reservoir permeability and CO2 plume migration based on 4D seismic data (Zhong et al, 2019). 

Zhong et al (2019) event presented a cyclic GAN to deduce the mapping relationship between 

seismic impedance and CO2 saturation in reservoirs, which can monitor leakage. 

 

4.2 Storage Site Selection 

 

For storage site selection, it is important to consider various parameters, such as the trapping 

mechanism. Whilst DT and RF are suited for this, a case study mentioned earlier demonstrates 

the great potential of ANN for this stage. For this, ANNs were considered in a study by Song 

et al (2020)12, where an ANN-GCS (geological CO2 sequestration) model was tested at the 

Pohang Basin near Pohang, South Korea. The saline aquifer here contained coarse-grained 

conglomerate and sandstone at depths exceeding 740 m, and coarse-grained rocks covered by 

a thick layer of mudstone more than 700 m in thickness, which prevents the leakage of CO2. 

Geologic and petrophysical data (such as for hydrostatic pressure, geothermal gradient, and 

salinity) was used to develop a geological model of the Pohang Basin, which was used for 

dynamic CO2 modelling, and to create a synthetic model of saline to generate residual trapping 

index (RTI) and solubility trapping index (STI) datasets as input and output. The model was 

subsequently developed with structural designs of optimal neurons and networks, the optimal 

stability and processes of the neural network being determined by validating the model through 

data generated from the field application model of the Pohang Basin. To generate the datasets, 

simulations of a synthetic model were performed using a GEM reservoir simulation package, 



which made use of the material balance equations for gas, water, and mineral components in 

the synthetic reservoir model. In the resultant simulation, CO2 was injected into the aquifer at 

a rate of 80 tons per day over ten years, followed by a shut-in phase for 290 years, which 

allowed the team to monitor the long-term behaviour of the stored CO2. This allowed them to 

assess the distribution of CO2 saturation, pore pressure, and the effectiveness of various 

trapping mechanisms, including residual trapping, solubility trapping, structural trapping, and 

mineral trapping. 

 

4.3 Case study - using Machine Learning to Validate Carbon Containment in the Illinois 

Basin 

 

To further investigate ML's effectiveness, this study considers the use of the XGBoost 

algorithm to validate carbon containment in the Illinois Basin. The raw dataset contained 

various parameters, all intended to be used to determine the injection rate delta. The Illinois 

Basin - Decatur Project has been established to demonstrate the capacity, injectivity and 

containment of carbon storage in the Mount Simon Sandstone, a main carbon storage resource 

in the Illinois Basin in the Midwest United States (US) (Machine Learning Challenge – Using 

AI to Validate Carbon Containment in the Illinois Basin, n.d.). A distributed temperature sensor 

(DTS) fibre optic cable was installed in the tubing and extended to a depth of 6,326 feet to 

monitor temperature changes, taking readings every 1.624 feet every 5 seconds. The feature 

variables were plotted as histograms (figure 8) and boxplots (figure 9) to evaluate the data 

distribution and identify any outliers.  



   

FIGURE 8 - Histogram representation of the data  

   



   

FIGURE 9 - Boxplot representation of the data 

 

To reduce the impact of the outliers, outliers that exceeded the upper and lower interquartile 

limit (greater than 1.5 times the interquartile range (IQR) at both ends) were removed. The data 

was subsequently plotted on a correlation matrix to determine which features affect the target 

variable the most; an example of a high positive correlation feature is the CO2 vent rate. 

  



 

 

 FIGURE 10 - Correlation matrix of numeric columns (feature set) 

 

This gave a clearer understanding of which features are the most important to consider when 

collecting data on carbon storage structures. 

 

Following this preliminary assessment, the data was trained, the sklearn library being used 

extensively to split the data into training and testing variables using train_test_split, and 

StandardScalar to scale the data. To improve the root-squared (R2) score of the data, 

LinearDiscriminantAnalysis (LDA) was implemented, after binning the data into categorial 

bins (low, medium, and high) and handling missing values by imputing with the mean. 

Hyperparameter tuning was additionally explored to find the optimal combination of 



hyperparameters that yield the best performance. The resultant best R2 score was 

0.1962371674882475, which gives the accuracy with which the model can predict the injection 

rate delta, whilst the root mean squared error was 3.5829616838461003, which indicates, on 

average, how much the predicted values differ from the actual ones. This was a novel 

assessment of using ML techniques for this purpose, and to further improve the R2 score feature 

engineering can be explored by adding interaction terms, domain-specific or polynomial 

features, which can map out underlying patterns more effectively and thus improve the 

predictive capability of the program.  

 

5. Research Directions 

 

The field of CCS, incorporating ML techniques, holds great potential, with operational and 

cost-related challenges slowly diminishing. As the technology evolves to become more 

efficient, reliable and scalable, several promising research directions lay ahead. 

 

5.1 Enhancing Data Quality and Availability 

 

To train the various models, it is vital to ensure the availability of high-quality, comprehensive 

datasets. This should be a focal point of future CCS projects, which should build datasets 

incorporating geological data, operational parameters, and environmental conditions to 

accurately train and validate the ML models. This can be facilitated by the collaboration 

between academia, government, and industrial agencies. All of this will help improve the 

generalisability and accuracy of ML algorithms. 

 

5.2 Advanced ML Algorithms for Real-Time Monitoring 



 

Real-time monitoring of CCS operations is vital to ensure the safety and efficiency of the 

process. Research should explore the development of advanced ML algorithms capable of 

processing real-time data from various sensors and monitoring devices, using techniques such 

as RF for real-time monitoring and anomaly detection, SVM for fault detection and 

classification, and ANN for predictive maintenance. 

 

5.3 ML-driven Optimisation of CO2 capture techniques 

 

Current CO2 capture technologies, including absorption, adsorption, and membrane separation, 

can benefit from ML-driven optimisation. Research should focus on applying ML to optimise 

the design and operation of these technologies, which would improve their efficiency and thus 

reduce energy consumption. An example of this would be using ML models to predict the 

optimal operating conditions for chemical solvents used in absorption processes, or identifying 

the most effective materials for adsorption and membrane technologies. 

 

5.4 Improving Storage Site Characterisation and Selection 

 

The accurate characterisation and subsequent selection of CO2 storage sites are critical for 

ensuring the long-term security of the stored CO2. Future research should leverage ML 

techniques for analysing geological data such as porosity, permeability, and structural integrity 

of geological formations to predict the suitability of potential storage sites, using techniques 

such as ANN. Examples have already been outlined on how ML such as an ANN-GCS can be 

used to aid in developing predictive models to assess the long-term behaviour of CO2 in storage 

sites, being able to identify potential leakage pathways over periods of nearly 300 years. 



 

5.5 Enhancing Predictive Maintenance and Leak Detection 

 

The transportation and storage phases of CCS are susceptible to leaks and equipment failures, 

which hold the risk of undermining the effectiveness of the entire process. Research should 

focus on developing ML-based predictive maintenance systems that can forecast equipment 

failures and schedule timely maintenance interventions, using models such as GAN to generate 

synthetic data. Additionally, advanced ML algorithms can be employed to improve leak 

detection systems, utilising data from various sensors and monitoring devices to quickly 

identify and mitigate leaks in pipelines and storage sites. 

 

5.6 Integration of ML with Other Emerging Technologies 

 

The convergence of ML with other emerging technologies, such as the Internet of Things (IoT), 

blockchain, and edge computing, presents exciting research opportunities. IoT devices can 

provide continuous streams of data from CCS operations, which can be analysed by ML 

algorithms like SVM and RT in real time. Data security and integrity can be further enhanced 

by blockchain technology, while edge computing can facilitate the processing of data at the 

source, thereby reducing latency and improving the responsiveness of ML-driven systems. 

 

ML techniques can be seamlessly integrated across all these stages, from analysis, capture, and 

storage to ensure cost-effective CCS, with IoT facilitating the linking of these complex 

systems. This reduces costs associated with inefficient capture or storage leakage, which makes 

CCS practical in the long term, especially as its demand increases. 

 



5.7 Addressing Ethical and Regulatory Challenges 

 

The application of ML in CCS also raises ethical and regulatory challenges, which need to be 

addressed as the field matures, to ensure public trust, as consumers become more 

environmentally conscious. Research should explore the development of ethical frameworks 

and regulatory guidelines for the development of ML in CCS, which should include ensuring 

data privacy, mitigating biases and 'hallucinations' in ML models, and establishing 

accountability for ML-driven decisions; all of this requires a collaborative effort between 

researchers, policymakers, and industry stakeholders. 

 

5.8 Future Directions in Interdisciplinary Research 

 

Interdisciplinary research combining expertise in geoscience, chemical engineering, computer 

science, and environmental policy is crucial for advancing ML applications in CCS. 

Collaborative projects that integrate knowledge from these diverse fields can lead to 

innovative, novel solutions, and accelerate the effective adoption of ML in CCS. Funding 

agencies and research institutions should prioritise interdisciplinary research initiatives and 

support collaborative efforts to address the complex challenges of CCS. 

 

6. Conclusion  

 

The application of ML in CCS is still evolving, with ongoing research aimed at improving data 

quality, model interpretability, and integration with existing CCS infrastructure. Future 

developments may focus on the use of more advanced DL models, real-time data analytics, and 

the incorporation of ML-driven automation in CCS operations (Boot-Handford et al., 2014)6. 



Furthermore, the integration of ML with other emerging technologies, such as the Internet of 

Things (IoT) and blockchain, could revolutionize CCS by enabling more precise monitoring, 

better data security, and more efficient resource management (Yao et al., 2023)11. 

In conclusion, ML techniques offer transformative potential for CCS, enhancing the efficiency, 

reliability, and scalability of carbon capture, transportation, and storage processes. Continued 

research and innovation in this interdisciplinary field are essential for realizing the full potential 

of ML in combating climate change through effective CCS implementation. The future of this 

technology requires the training of models with large datasets to increase metrics like the R2 

score, which would enhance their accuracy and utility, allowing for a cleaner future to be in 

reach. 
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