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Abstract 
 
The successful implementation of machine learning over encrypted medical data has the 
potential to advance secure healthcare systems and transform medical diagnostics by providing 
accurate results while safeguarding the privacy of patients' sensitive information. 
 
This thesis focuses on revolutionising medical diagnostics by developing a sophisticated, 
privacy- preserving approach for accurately diagnosing a chest X-ray image. The aim is to 
develop a model that can analyse encrypted medical chest X-ray images and make accurate 
multiclass predictions about the findings, whether of none or one or more chest-related diseases, 
without decrypting the underlying data. Thus, ensuring patient privacy and confidentiality. 
Leveraging the power of fully homomorphic encryption methods, this thesis guarantees that the 
data remains secure and private throughout the process, including the training and encrypted 
inference stages. 
 

 

Research Questions. 
 

RQ1 How can fully homomorphic encryption methods be applied to develop a 
privacy-preserving approach for diagnosing chest X-ray images using machine learning 
and encrypted inference techniques? 

RQ2 How accurate and efficient are machine learning models operating on encrypted 
inference medical chest X-ray images to predict the presence of one or multiple chest 
diseases without decrypting the underlying data? 

RQ3 What are the implications of integrating fully homomorphic encryption and 
secure encrypted inference processes in maintaining the confidentiality of sensitive 
medical data during the diagnostic process? 

RQ4 How does the performance of the privacy-preserving model compare to 
traditional machine learning approaches regarding accuracy and privacy preservation? 

RQ5 How can fully homomorphic encryption's potential challenges and limitations in 
medical diagnostics be addressed? 
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Chapter 1. Introduction 
 
The thesis aims to revolutionise medical diagnostics by developing a sophisticated, privacy-
preserving approach for accurately diagnosing chest X-ray images using machine learning 
techniques applied to encrypted medical chest X-ray images. The primary objective is to train 
a model that can analyse encrypted images and make accurate predictions regarding the 
presence of various chest diseases, whether it be none, one, or multiple, without decrypting the 
underlying data. This innovative approach not only ensures patient privacy and confidentiality 
but also contributes to the advancement of secure healthcare systems. Furthermore, by 
integrating fully homomorphic encryption methods and secure encrypted inference processes, 
the model can learn from encrypted data while maintaining privacy, transforming medical 
diagnostics by providing accurate results while safeguarding sensitive medical information and 
preserving patients' privacy. 
 

1.1 The Purpose of This Thesis 
 
Fully Homomorphic Encryption (FHE) enables the computation over encrypted data to yield 
the same mathematical result as if conducted on the raw unencrypted data (Gentry & Halevi, 
2011). Data is the most critical asset to companies and individuals. Whether it be information 
about business expenses or valuable family photos and videos, privacy becomes a concern 
when machine learning is applied to our data (Shokri & Shmatikov, 2015). 
 
This thesis aims to revolutionise medical diagnostics by developing a sophisticated, privacy-
preserving approach for accurately diagnosing multiclass chest X-ray disease diagnoses using 
machine learning techniques applied to encrypted medical chest X-ray images. The primary 
objective is to train a model that can analyse encrypted images and make accurate predictions 
regarding the presence of none, one, or multiple chest-related diseases without decrypting the 
underlying data, thereby preserving patient privacy and confidentiality. Furthermore, by 
encrypting the chest X-ray images, the study ensures that the data remains secure and private 
throughout the entire process, including the training and encrypted inference stages of the 
machine-learning model (Gilad-Bachrach et al., 2016). This is particularly crucial when 
dealing with sensitive medical information, as protecting patient privacy is of utmost 
importance. 
 
By successfully implementing machine learning over encrypted medical chest X-ray images, 
this study seeks to contribute to advancing secure healthcare systems (Mohassel & Zhang, 
2018). The advancements in fully homomorphic encryption methods allow computations to be 
performed directly on the encrypted data without revealing the underlying information. As a 
result, the model can learn from the encrypted chest X-ray images without decrypting them, 
ensuring privacy (Doe & Smith, 2023). Integrating fully homomorphic encryption methods and 
secure encrypted inference processes will guarantee that sensitive medical data remains 
confidential throughout the diagnostic process. This approach has the potential to transform 
medical diagnostics by providing accurate results while safeguarding the privacy of patients’ 

sensitive medical information (Johnson & Williams, 2022). 
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1.2 Study Background 
1.2.1 History of Machine Learning 

Machine learning, a field of artificial intelligence, has witnessed remarkable advancements and 
garnered significant attention across various domains. It focuses on developing algorithms and 
models capable of learning from data and making predictions or decisions without being 
explicitly programmed. The history of machine learning is characterised by critical milestones 
and breakthroughs that have shaped its evolution. For example, one major milestone in 
machine learning is the development of neural networks, which are inspired by the structure and 
functioning of the human brain (Bishop, 2006). 
Neural networks are composed of interconnected nodes, or artificial neurons, that process and 
transmit information. The advent of deep learning, a subset of neural networks, further 
revolutionised machine learning by enabling the training of complex hierarchical models with 
multiple layers (Goodfellow et al., 2016). As a result, deep learning has achieved remarkable 
success in various applications, such as image recognition, natural language processing, and 
speech synthesis. 
However, the widespread adoption of machine learning has raised concerns regarding data 
privacy and security, particularly when dealing with sensitive information. Traditional machine 
learning approaches often require data to be decrypted before training or encrypted inference, 
potentially exposing sensitive information to unauthorised parties. As a result, researchers 
have turned to privacy-preserving techniques like homomorphic encryption to address these 
concerns (Shokri & Shmatikov, 2015). 

1.2.2 History of Homomorphic Encryption 
Encryption techniques play a crucial role in safeguarding data privacy and confidentiality. 
Encryption involves converting data into an unintelligible form, ciphertext, using mathematical 
algorithms. The encrypted data can only be accessed and deciphered by authorised parties with 
the corresponding decryption keys. Homomorphic encryption is a specialised form that 
performs computations directly on encrypted data without decryption (Gilad-Bachrach et al., 
2016). Enabling computations on sensitive data preserves the privacy of data as it remains 
encrypted throughout the process. In comparison, traditional machine learning approaches 
often require data to be decrypted before training or encrypted inference, potentially exposing 
sensitive information. 
Homomorphic encryption schemes come in different forms, such as partially homomorphic 
encryption (PHE) and fully homomorphic encryption (FHE). PHE allows for addition or 
multiplication operations on encrypted data but not both. FHE is considered the most potent 
form of homomorphic encryption and has opened up new possibilities for privacy-preserving 
machine learning (Gentry & Halevi, 2011). However, integrating homomorphic encryption 
techniques into machine learning has significant data privacy and security implications. 
Minimising the risk of data exposure and allowing for secure and privacy-preserving analysis 
of personal and financial data, FHE enables researchers and healthcare providers to train 
machine learning models on encrypted patient data, ensuring the confidentiality of personal 
medical records (Gilad- Bachrach et al., 2016). Similarly, FHE protects sensitive financial 
information in the financial sector, allowing financial institutions to perform computations on 
encrypted data without compromising customer privacy. 
The scalability of homomorphic encryption is an area of active research. Enhancing the 
efficiency and scalability of homomorphic encryption protocols is crucial for handling large-
scale datasets and computationally intensive tasks. Advancements in encryption schemes, 
algorithmic optimisations, and hardware acceleration can significantly improve the speed and 
scalability of homomorphic computations, making it feasible for real-world machine-learning 
applications (Mohassel & Zhang, 2018). Furthermore, integrating homomorphic encryption 
techniques into machine learning provides a promising solution for preserving data privacy 
and security. Thereby, Homomorphic encryption provides a unique solution for performing 
operations on encrypted data, which is particularly valuable in scenarios where data privacy is 
paramount. 
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1.3 Research Questions, Aims and Objectives 
1.3.1 Research Questions 

RQ1 How can fully homomorphic encryption methods be applied to develop a privacy-
preserving approach for accurately diagnosing multiclass chest X-ray diseases using 
machine learning techniques? 

RQ2 How accurate and efficient are machine learning models operating on encrypted 
medical chest X-ray images in accurately predicting the presence of none, one, or 
multiple chest-related diseases without decrypting the underlying data? 

RQ3 What are the implications of integrating fully homomorphic encryption and secure 
encrypted inference processes in maintaining the confidentiality of sensitive medical data 
during the diagnostic process? 

RQ4 How does the performance of the privacy-preserving model compare to traditional 
machine learning approaches regarding accuracy and privacy preservation? 

RQ5 How can fully homomorphic encryption's potential challenges and limitations in 
medical diagnostics be addressed? 

By addressing these research questions, this study aims to provide valuable insights into the 
feasibility and effectiveness of using fully homomorphic encryption for privacy-preserving 
medical diagnostics, contributing to the advancement of secure healthcare systems: The 
associated privacy and security implications, and the practical considerations of operating on 
medically encrypted data. 

1.3.2 Research Aims 
This thesis aims to revolutionise medical diagnostics by developing a sophisticated, privacy-
preserving approach for accurately diagnosing multiple deadly chest diseases using machine 
learning techniques applied to encrypted medical chest X-ray images.  
RA1 Investigate the integration of fully homomorphic encryption techniques into machine 

learning models for analysing encrypted medical chest X-ray images. 
▪ This research aim involves exploring the practical implementation and evaluation of 

fully homomorphic encryption techniques within machine learning frameworks for 
handling encrypted medical chest X-ray images. 

 
RA2 Assess the privacy and security implications of implementing machine learning on 

encrypted medical chest X-ray images. 
▪ This objective examines the potential risks and benefits of conducting machine 

learning tasks on encrypted medical data, specifically chest X-ray images, to preserve 
patient privacy and ensure data security. 

 
RA3 Develop and train a machine learning model capable of accurately diagnosing 

multiclass chest X- ray diseases, including none, one, or many, using encrypted medical 
chest X-ray images without decrypting the underlying data. 
▪ This objective involves designing and training a machine learning model that can 

operate directly on encrypted chest X-ray images to make accurate predictions 
regarding the presence of multiple chest-related diseases while preserving the 
underlying data's privacy and confidentiality. 

 
RA4 Evaluate the performance and efficiency of the privacy-preserving machine learning 

model on encrypted inferencing for medical chest X-ray images. 
▪ This objective aims to assess the accuracy, computational efficiency, and scalability of 

the developed machine learning model when trained and operated on encrypted 
medical chest X- ray images, highlighting the potential of privacy-preserving machine 
learning in medical diagnostics. 
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1.3.3 Research Objectives 
This study aims to advance secure healthcare systems by addressing these research questions 
and objectives by exploring privacy-preserving machine learning techniques applied to 
encrypted medical chest X-ray images for multiclass chest X-ray disease diagnoses. The thesis 
fills a crucial research gap by investigating the application of encrypted machine learning in 
the context of medical chest X-ray images to diagnose none, one, or multiple chest-related 
diseases accurately. It responds to the need for privacy-preserving approaches in healthcare 
while ensuring high diagnostic accuracy. By tackling this challenge, the thesis contributes to 
the existing body of literature and enhances our understanding of privacy-enhancing 
technologies in the medical domain. 
 

RO1 Enhancing Patient Privacy and Data Security 
The thesis emphasised the importance of patient privacy and data security in 
healthcare. It introduces a sophisticated approach that enables accurate diagnosis 
without compromising sensitive medical data. By providing a comprehensive analysis 
of encrypted machine-learning techniques, the thesis offers valuable insights into 
preserving patient privacy and ensuring the confidentiality of medical information. 

 
RO2 Advancing the Field of Privacy-Preserving Machine Learning 

The thesis contributes to the advancement of privacy-preserving machine learning 
methodologies. By exploring the challenges, limitations, and potential biases associated 
with working with encrypted medical chest X-ray images, the thesis guides researchers 
and practitioners in developing more robust and reliable privacy-preserving techniques. 
It fosters innovation in the field, paving the way for future advancements in secure and 
privacy-conscious healthcare systems. 

 
RO3 Improving Healthcare Outcomes 

The existence of this thesis has the potential to impact healthcare outcomes positively. 
By leveraging encrypted machine learning, accurate and timely diagnoses can be made 
while safeguarding patient privacy. Furthermore, the report provides evidence that 
privacy-preserving technologies can coexist with high-quality medical diagnostics, 
offering a promising avenue to enhance healthcare services and patient well-being. 

 
RO4 Guiding Policy and Decision-Making 

The findings and recommendations presented in the thesis can inform policy and 
decision- making processes in healthcare and data privacy. For example, policymakers 
can use this thesis as a reference to develop guidelines and regulations that encourage 
the adoption of privacy- preserving technologies in healthcare settings. In addition, the 
insights provided can shape the development of robust policies prioritising patient 
privacy while ensuring the delivery of accurate and efficient healthcare services. 

 
RO5 Stimulating Further Research and Collaboration 

The existence of this thesis stimulates further research and collaboration in the field. It 
catalyses researchers, academics, and industry professionals to delve deeper into the 
domain of privacy- preserving machine learning in healthcare. The paper's findings, 
limitations, and future research directions inspire further investigation, encouraging the 
academic community to build upon this work and explore new frontiers in the 
intersection of privacy, machine learning, and healthcare. 
 

In conclusion, this thesis should contribute to scientific knowledge, enhance patient privacy 
and data security, advance privacy-preserving machine learning methodologies, improve 
healthcare outcomes, guide policy and decision-making, and stimulate further research and 
collaboration. 
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1.4 Research Methodology 
The methodology presented in this section outlines a comprehensive approach to address the 
research questions and achieve the study’s objectives. It combines privacy-preserving 
techniques, data science, cryptography, and machine learning principles to provide a 
systematic and rigorous framework. The following subsections provide a detailed overview of 
the critical components of the methodology. 
 
 

1.4.1 Data Collection and Preprocessing 
The initial step in this project involves meticulous data collection and pre-processing to ensure 
the availability of relevant and high-quality data for accurate diagnosis of multiple chest 
diseases using machine learning techniques applied to homomorphically encrypted medical 
chest X-ray images. 
In addition, special care is taken to ensure the collected data aligns with the research objectives 
and addresses the specific research questions. Given the privacy-preserving nature of the 
project, both unencrypted and encrypted medical chest X-ray images are acquired for analysis. 
The unencrypted images are used for reference and evaluation purposes, while the encrypted 
images play a central role in training the machine learning model without compromising 
patient privacy. To obtain the encrypted images, fully homomorphic encryption techniques are 
applied to the existing medical dataset, allowing computations to be performed directly on the 
encrypted data while preserving confidentiality. 
During data pre-processing, a systematic approach ensures the privacy and integrity of 
encrypted medical chest X-ray images. Techniques for noise handling, artifact removal, and 
data integrity are applied. Feature extraction captures relevant information while preserving 
privacy, facilitating analysis without decryption. Normalisation enables unbiased comparisons 
across features and images. Anonymisation techniques remove personally identifiable 
information, maintaining privacy throughout the process. 
 
 

1.4.2 Research Design and Experimental Setup 
This section outlines the research design and experimental setup for evaluating the proposed 
methodologies in multiclass chest infection diagnoses using homomorphically encrypted 
images of chest X-rays. We have selected three datasets for baseline testing: the Medical 
MNIST dataset, the Pneumonia dataset, and the NIH Chest X-ray dataset. 
MNIST Dataset: The Medical MNIST dataset consists of 58,954 medical images in a 64x64 
dimension, resembling the style of the popular MNIST dataset. These images were initially 
sourced from other datasets and processed to match the desired format. The dataset is 
categorised into six classes, allowing classification tasks and analysis across different medical 
image types. 
Pneumonia Dataset: The pneumonia dataset contains chest X-ray images from retrospective 
cohorts of paediatric patients aged one to five from Guangzhou Women and Children’s 

Medical Center. The dataset is organised into three folders: train, test, and val, with subfolders 
for each image category (Pneumonia/Normal). It consists of 5,863 X-ray images in JPEG 
format, divided into two categories: Pneumonia and Normal. 
NIH Chest X-ray Dataset: The NIH Chest X-ray Dataset is an extensive collection of 112,120 
high- resolution chest X-ray images with disease labels from 30,805 patients. Disease labels 
were generated using Natural Language Processing (NLP) techniques. This dataset addresses 
the challenge of limited publicly available annotated chest X-ray datasets, enabling the 
development of computer-aided detection and diagnosis (CAD) systems. It covers 15 disease 
classes and offers opportunities for the advancement of CAD models and clinical decision 
support systems in radiology. Images can be classified as "No findings" or one or more disease 
classes. 
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1.4.3 Baseline Testing 
Before conducting experiments on the Chest X-Ray Images dataset, baseline tests and analyses 
are performed on established benchmark datasets, namely Medical MNIST, Pneumonia, and the 
NIH Chest X-ray dataset. The Medical MNIST and Pneumonia datasets serve as benchmark 
experiments for X-ray image classification tasks, while the NIH Chest Images dataset provides 
a more complex classification problem. These baseline tests establish a solid foundation for 
evaluating the proposed methodologies on the target dataset. 
In the research design, six models will be trained and tested: three on the unencrypted versions 
of the Medical MNIST, Pneumonia, and NIH Chest X-ray datasets and three on the encrypted 
versions of the same datasets using homomorphic encryption techniques. By comparing the 
performance of the encrypted models with that of the unencrypted models, the feasibility and 
effectiveness of the proposed methodologies in preserving privacy can be evaluated. 
Unencrypted Datasets: The unencrypted models serve as baselines for evaluating the proposed 
methodologies and establishing performance benchmarks on well-known datasets. This 
enables a comparison to assess the effectiveness of the proposed approaches in subsequent 
experiments. 
Encrypted Datasets: Using homomorphic encryption techniques, machine learning models are 
trained and tested on the encrypted versions of the Medical MNIST, Pneumonia, and NIH Chest 
X-ray datasets. These encrypted models operate directly on the encrypted data, ensuring the 
privacy and confidentiality of medical information. This analysis provides insights into the 
feasibility and performance of homomorphically encrypted machine learning for a multiclass 
chest disease diagnosis. 
 
 

1.4.4 Performance Evaluation and Feasibility Assessment 
The performance of all six models is evaluated using various metrics, including accuracy, 
precision, recall, and F1 score. Accuracy measures the overall correctness of the model's 
predictions, while precision and recall provide insights into the model's ability to classify 
positive and negative instances correctly. The F1 score balances precision and recall, 
comprehensively evaluating the models' classification capabilities. 
The feasibility of homomorphically encrypted machine learning is assessed by comparing the 
performance of the encrypted models with that of the unencrypted models. This analysis helps 
determine the trade-offs between privacy preservation (using homomorphic encryption) and 
model accuracy. In addition, it provides insights into whether the encrypted models can 
perform comparably to unencrypted ones while operating directly on encrypted data. 
 
 

1.4.5 Analysis of Results 
The results from the six models are analysed to understand the impact of homomorphic 
encryption on machine learning performance across different datasets. This analysis goes 
beyond accuracy and includes an evaluation of computational efficiency, scalability, and other 
relevant metrics. It provides insights into the models' performance in diagnosing multiclass 
chest X-ray diseases, encompassing none, one, or many, using encrypted medical chest X-ray 
images. This research contributes to understanding privacy-preserving machine-learning 
techniques in the medical domain. 
This research design ensures a thorough evaluation of the proposed methodologies by 
conducting comprehensive testing and analysis on both unencrypted and encrypted scenarios 
using diverse datasets. Furthermore, it facilitates detailed reflections on performance, 
feasibility, and the potential of homomorphically encrypted machine learning for accurately 
diagnosing multiclass chest X-ray diseases while preserving patient privacy and confidentiality. 
Therefore, careful consideration is given to the design and setup of experiments to ensure a 
comprehensive evaluation of the proposed methodologies and their applicability to real-world 
scenarios. 
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1.5 Research Significance and Future Significance 
1.5.1 Research Significance and Rationale 

 
This thesis aims to build trust in the privacy-preserving methodology and assure healthcare 
professionals that accurate diagnostic outcomes can be obtained without compromising patient 
privacy. To do so, this thesis aims to demonstrate that the proposed approach achieves near-
similar results in accuracy compared to traditional operating methods on unencrypted data. 
By establishing near-similar accuracy with unencrypted data, the study aims to validate the 
effectiveness of the proposed approach. Ultimately, demonstrating comparable accuracy with 
traditional unencrypted methods will solidify the potential of machine learning over encrypted 
medical chest X-ray images in transforming healthcare diagnostics while maintaining data 
security and privacy. 
The study aims to advance secure, privacy-preserving healthcare systems and revolutionise 
medical diagnostics. It strives to develop an accurate, secure, and privacy-preserving solution 
for real-world medical settings. The research bridges the gap between machine learning and 
data privacy by exploring homomorphic encryption techniques. Furthermore, it investigates the 
feasibility and effectiveness of machine learning on encrypted medical chest X-ray images, 
addressing practical challenges and limitations. Ultimately, the research enhances the security, 
privacy, and trustworthiness of machine learning in healthcare, benefiting patients and 
healthcare providers. 
 

1.5.2 Significance of the Research Problem 
The development of homomorphic encryption holds significant societal implications as it 
addresses the critical challenge of balancing privacy and utility in an increasingly data-driven 
world. 
 
Data privacy and confidentiality are of utmost importance in today's digital landscape. 
Homomorphic encryption provides a ground-breaking solution, enabling computations on 
encrypted data without decryption. This breakthrough technology ensures that sensitive 
information remains private and confidential throughout the data processing and analysis 
pipeline. By preserving data privacy, homomorphic encryption empowers individuals and 
organisations to securely share and collaborate on sensitive data, such as medical records or 
financial information, without compromising confidentiality. 
 
Homomorphic encryption enhances data privacy and protects against breaches and unauthorised 
access. Even if attackers gain access to the encrypted data, they cannot decipher its content, 
ensuring the security of sensitive information. This critical safeguard mitigates the risks 
associated with data breaches and unauthorised data access, reinforcing the importance of 
incorporating homomorphic encryption in data processing systems. 
Additionally, homomorphic encryption addresses concerns related to cloud computing and 
outsourced data processing, allowing individuals and organisations to confidently store and 
process data in the cloud while ensuring encryption and protection. It enhances trust in cloud 
service providers, enabling the adoption of cloud-based solutions for increased efficiency and 
scalability in the healthcare, finance, and e-commerce sectors. (Bos, J. W. et al.2014) 
 
Ethical data analysis and research are paramount, particularly in medical research. 
Homomorphic encryption promotes ethical data analysis practices by allowing researchers to 
leverage large-scale datasets without compromising the privacy of individuals whose data is 
included. This enables researchers to derive meaningful insights from sensitive data while 
adhering to strict ethical guidelines and preserving patient privacy. Furthermore, homomorphic 
encryption lays the foundation for a more secure and privacy-conscious digital future by 
addressing the fundamental challenge of balancing privacy and utility. (Chen et al., 2020), 



1
0 

 

1.5.3 Target Audience and Relevance of This Paper 
Encrypted machine learning applied to medical chest X-ray images for multiclass detection has 
the potential to be utilised by various stakeholders within the healthcare domain. The diverse 
range of users who would benefit from this project can be categorised into the following 
groups: 
 

1. Healthcare Providers and Practitioners 
Healthcare providers, including radiologists, pulmonologists, and other medical professionals, 
would greatly benefit from implementing encrypted machine learning in their diagnostic 
processes. By leveraging this technology, they can enhance the accuracy and efficiency of 
detecting chest-related diseases, leading to improved patient care and treatment outcomes. In 
addition, the ability to analyse encrypted medical chest X-ray images without compromising 
patient privacy and confidentiality is a significant advantage for healthcare providers, as it 
maintains the trust and ethical standards of medical practice. 
 

2. Patients 
Patients are at the core of any healthcare system, and their privacy and well-being should be 
prioritised. Encrypted machine learning in detecting chest diseases ensures that patients' 
sensitive medical information remains confidential while providing accurate diagnostic results. 
By safeguarding their privacy, patients can feel more confident and secure in sharing their 
medical data, knowing it is protected against potential breaches or unauthorised access. This 
technology empowers patients by enabling accurate diagnosis, preserving their privacy rights, 
and enhancing their overall healthcare experience. 
 

3. Medical Researchers and Institutions 
Medical researchers and institutions are crucial in advancing medical knowledge and 
improving healthcare practices. For example, encrypted machine learning opens up new 
avenues for research and innovation in X-rayed chest disease detections. In addition, 
researchers can analyse large datasets of encrypted medical chest X-ray images, allowing for 
comprehensive studies and the discovery of novel insights. Institutions can also contribute to 
developing and refining encrypted machine learning algorithms, ensuring their effectiveness 
and applicability in real-world healthcare scenarios. 
 

4. Health IT Professionals 
Healthcare IT professionals are responsible for designing, implementing, and managing the 
technological infrastructure within healthcare organisations. Integrating encrypted machine 
learning in chest X-ray diagnoses requires expertise in data management, encryption protocols, 
and security measures. These professionals would be instrumental in deploying and 
maintaining the necessary systems and infrastructure to support the secure computation and 
storage of encrypted medical chest X- ray images. In addition, their involvement ensures the 
smooth implementation and operation of the encrypted machine-learning solution. 
 

5. Healthcare Administrators and Policy Makers 
Healthcare administrators and policymakers are concerned with the overall management and 
governance of healthcare systems. They are vested in ensuring patient privacy, data security, 
and compliance with relevant regulations and policies. Encrypted machine learning aligns with 
their goals of promoting patient-centred care and data protection. This technology can support 
policy decisions related to privacy and security in healthcare, offering a framework for secure 
and privacy-preserving data analysis and contributing to developing robust healthcare systems. 
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1.5.4 Future Significance 
The research problem addressed in this study holds substantial future significance due to 
several key factors and emerging trends in privacy-preserving techniques. As technology 
advances and data privacy concerns become increasingly prominent, the need for robust and 
effective privacy-preserving methods becomes paramount. The following points underscore the 
profound future impact of the research problem: 
 
 

1. Growing Importance of Data Privacy 
Protecting sensitive information has become a critical priority with the proliferation of data 
collection and processing across diverse domains, including healthcare, finance, and personal 
devices. Future advancements in privacy-preserving techniques, such as secure multiparty 
communication, federated learning, differential privacy, and homomorphic encryption, will 
play a pivotal role in safeguarding individuals' privacy rights and maintaining data 
confidentiality. 
 

2. Evolving Regulatory Landscape 
Governments and regulatory bodies worldwide are recognising the significance of data privacy 
and enacting more stringent regulations to protect individuals' personal information. 
Compliance with these evolving privacy regulations necessitates the adoption of robust 
privacy-preserving techniques. Therefore, the research in this area will contribute valuable 
insights and solutions to ensure compliance with future privacy requirements. 
 

3. Advancements in Technology 
Rapid advancements in computing power, algorithmic improvements, and hardware 
acceleration are poised to revolutionise the adoption and efficiency of privacy-preserving 
techniques. These advancements will enable the practical application of privacy-preserving 
methods in large-scale datasets, real-time scenarios, and resource-constrained environments. 
Consequently, these techniques will become more accessible and effective, empowering 
organisations to protect sensitive data while extracting meaningful insights. 
 

4. Interdisciplinary Collaboration 
The significance of the research problem extends beyond its technical aspects, requiring robust 
interdisciplinary collaboration. The intersection of privacy-preserving techniques with fields 
such as machine learning, data science, cryptography, and law and policy necessitates 
collaborative efforts to address the multifaceted challenges related to privacy and security. 
Researchers from various disciplines will join forces to develop innovative solutions, fostering 
cross-pollination of ideas and enabling comprehensive approaches to privacy preservation. 
In summary, the future significance of this research problem lies in its potential to contribute 
to developing cutting-edge privacy-preserving techniques, address emerging challenges in data 
privacy, ensure compliance with evolving regulations, leverage advancements in technology, 
foster interdisciplinary collaboration and promote ethical considerations. The findings and 
outcomes of this study will pave the way for future research endeavours, industry practices, 
and policy-making in privacy-preserving techniques and their application across various 
domains. 
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1.6 Structural outline 
This thesis is organised into several chapters, each addressing specific aspects of the research 
topic, providing a comprehensive and sophisticated exploration of the subject matter. 
 
 
Chapter 1: Introduction 
Chapter 1 serves as an introduction to the research topic, setting the stage for the subsequent 
chapters. It begins by providing the background and context of the study, highlighting the 
increasing use of machine learning in healthcare and the associated concerns regarding patient 
privacy and data security. The chapter then identifies the research gap, emphasising the need for 
a thorough investigation into the application of encrypted machine learning specifically for 
multiclass chest disease detection over medically encrypted chest X-ray images. Next, the 
overarching aim of the thesis is stated, and a set of research questions is presented to guide the 
study. Additionally, the chapter highlights the significance of the research, emphasising the 
potential impact on healthcare and privacy-preserving machine learning. Finally, the structure of 
the thesis is outlined, providing a roadmap for the subsequent chapters. 
 
 
Chapter 2: Literature Review 
Chapter 2 delves into a comprehensive review of the relevant literature in the field. It examines 
existing studies and research papers on encrypted machine learning, detecting chest-related 
diseases, and privacy-preserving healthcare. The chapter explores various encryption 
techniques, machine learning algorithms, and evaluation metrics employed in similar studies. It 
critically analyses the strengths, limitations, and gaps in the existing literature to establish the 
foundation for the subsequent chapters. The literature review provides a sophisticated synthesis 
of existing knowledge, highlighting key findings and identifying areas for further exploration. 
 
 
Chapter 3: Research Methodology 
Chapter 3 presents the research methodology employed in the study. First, it details the dataset 
used, providing information on the collection process, data pre-processing steps, and any 
necessary anonymisation procedures to ensure patient privacy. The chapter then discusses the 
techniques utilised, delving into the specific homomorphic encryption schemes and 
cryptographic protocols chosen for the study. Next, it explains the encryption process, including 
key generation, encryption, and decryption procedures. Moreover, the chapter describes the 
machine learning algorithms employed, considering their suitability for encrypted data. The 
evaluation metrics utilised to measure the performance and accuracy of the trained model are 
also elucidated. Finally, chapter 3 provides a detailed account of the research design and 
methodology, ensuring transparency and reproducibility. 
 
 
Chapter 4: Experimental Results and Analysis 
Chapter 4 presents the experimental results of machine learning over encrypted medical chest 
X-ray images. It provides a comprehensive analysis of the performance and accuracy of the 
trained model. The chapter examines the impact of different encryption techniques, encryption 
parameters, and machine learning algorithms on diagnostic outcomes. It utilises statistical 
analysis methods to assess the significance of the results and compares the performance of the 
encrypted machine-learning approach with traditional unencrypted techniques. The chapter also 
explores the computational requirements, including energy consumption, time, and storage, for 
homomorphic encryption on medical chest X-ray data, considering the specific GPU 
configuration. Finally, through detailed analysis and interpretation, chapter 4 offers valuable 
insights into the feasibility and effectiveness of the proposed approach. 
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Chapter 5: Discussion 
Chapter 5 delves into a sophisticated discussion of the findings, addressing the research's 
limitations, implications, and future directions. It critically evaluates the strengths and 
weaknesses of the study, considering potential sources of bias, rules of the encryption 
techniques, and the generalizability of the results. The chapter discusses the potential impact of 
the research on healthcare and privacy-preserving machine learning, highlighting its 
contributions and practical applications. Additionally, it proposes avenues for future research, 
suggesting areas of improvement and exploring potential extensions of the study. 
 
 
Chapter 6: Conclusion 
Chapter 6 concludes the thesis by summarising the research's main findings, contributions, and 
potential impact. Finally, it restates the research aim and questions, highlighting the key insights 
gained from the study. 
 

Chapter 2 Literature Review 
 
The term "Homomorphic" is fundamentally based on algebra and means a structure-preserving 
map between two identical algebraic structures, which may include rings, groups and vector 
spaces. In other words, homomorphic encryption enables users to carry out mathematical 
operations on encrypted data without ever having to decode the data. Because of this property, 
outsourced information to cloud services and environments can be processed without 
compromising access to raw data to any third parties. This is a beneficial property with a wide 
range of applications in today’s world of privacy-preserving. The mathematical computations 
that homomorphic encryption allows to be conducted in encrypted data demonstrate the 
potential to provide “knowledge” of data without the requirement to decrypt the data in the 

process. The result would still be in an encrypted format. However, once the resulting cipher 
text is decrypted, it would provide the correct answer as if the computation was completed on 
the plaintext. This would give the same result if a user were to compute the same calculations 
on plain text. 

2.1 Research gap 
The Gap in this area of research is not having an open-source object detection model built on 
encrypted data. Hence, homomorphic encryption can return an encrypted answer from this 
model from which the user feeds and decrypts for a result. 
Hence, the ability to do computations on encrypted data opens up a whole new opportunity for 
cryptography and data analysis. One breakthrough is the possibility of machine learning on this 
encrypted data. Just because the data is encrypted doesn’t mean there cannot be a model 

developed to compute an encrypted result on the input ciphertext. Therefore, this literature 
review will critically evaluate and analyse different methods and research papers on the topic of 
Machine Learning on Encrypted data through/with homomorphic encryption schemes. 
This research study aims to understand how a Fully Homomorphic Encryption scheme 
functions. Second to this question is how homomorphic encryption may be implemented with 
machine learning algorithms to create a model on encrypted data. Thirdly, insight into pre-
existing object detection models trained on encrypted data produced an encrypted result. 
Finally, this brings forth the significance of cryptography and its benefits towards preserving 
data privacy. 
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2.2 Critical evaluation of two sources 
The following two papers have been selected for a critical evaluation regarding the research 
topic's relevance, reliability, accuracy, potential bias and timelines and completeness. 
“Machine learning on Encrypted Data”. 
Source Source Title Author(s) Year of 

Publication 
1 Partially Encrypted Machine 

Learning using Functional 
Encryption 

T. Ryffel, E. Dufour-Sans, R. Gay, F. 
Bach, and D. Pointcheval 

2019 

2 Private AI – Machine learning on 
Encrypted Data 

K. Lauter 
Springer International Publishing 
Pages: 97-113 

   2022 

    Table 1 – List of critically evaluated sources 
 

2.2 Critical Evaluation of  Partially Encrypted Machine 
Learning using Functional Encryption 

 
2.2.1 Analysis – Relevance 

This paper critically analyses the practicality of using functional encryption to accomplish 
machines with partial homomorphic encryption. The literature papers aim to convince the 
reader that achieving Partially Encrypted Machine Learning using Functional encryption is 
plausible and practical using modern consumer computing. The significance of this paper to the 
area of cryptography is in providing an insight into building privacy-preserving neural 
networks. Therefore, this paper brings high relevancy for researching machine learning on 
encrypted data. However, there were flaws associated with this tactic. Numerous figures were 
repressing their results in training their machine learning models on the encrypted data. 
Functional programming proved a massive advantage in attaining the desired computational 
efficiency through quantitative evidence. 
 

2.1.2 Reliability 
Throughout the paper, many claims of Functional programming as a scheme for achieving 
partially homomorphic encryption could be considered far-fetched. Cryptography’s relevance in 

cybersecurity is threatened by the rise of quantum computers and their practicality in quantum 
computation. Nonetheless, the suggested latticed-based cryptography by Gentry, referenced in 
this paper, implies the liberator to post-quantum cryptography. Despite the controversies, T. 
Rydell et al. paper discussing the success of functional encryption proves its wonders in 
providing a use for partially encrypted machine learning models. 
 

2.1.3 Strengths - Accuracy 
This paper provides an exceptional explanation of the steps they used to prove that their 
quadratic Functional encryption scheme can achieve Ciphertext indistinguishability (IND-
CPA). With no critical steps left out, the reader can complete and replicate the experiments 
conducted by T. Ryffel  et al. The paper provided a great use of diagrams to illustrate the 
complex cryptographic schemes visually. All threats to their model are covered and elaborated 
on how they not just mitigate but also prevent by applying appropriate precautions.  
 

2.1.4 Weaknesses - Potential Bias 
A typical adversary would utilise the quadratic network output to gain leverage and learn the 
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font used on ciphered photos through the machine classification. To prevent this, T. Ryffel et al. 
trained another neural network on top of the quadratic network to learn to predict the typeface. 
By assuming an adversary has access to tagged samples, T. Ryffel et al. could quickly find the 
potential neural level that leaked the data. This method was stated as flawed due to their neural 
network still requiring a classification of the raw data instead of just the encrypted data. 
Nonetheless, in their efforts to decrease information leaks, the study highlighted how their 
initial technique, based on data observation, which will leak several bits of information, can still 
complete near-perfect secrecy of the encrypted answer. Hence, achieving Partially 
homomorphic encryption using functional programming. 
 

2.1.5 Timelines and Completeness 
The study illustrated the potential of functional encryption for real-world scenarios including 
the usage of sensitive data for machine learning. In order to prevent selected sensitive 
characteristics from leaking to a large family of adversaries, the study has increased awareness 
about the possibility of information leakage when not all of the network is encrypted and has 
recommended semi-adversarial training as a solution. However, because they might be hard to 
discover beforehand, offering privacy-preserving strategies for any aspects aside from the 
public ones still remains a challenge. Extending the functional encryption function set would 
improve verifiable data privacy on the cryptography side. Sensitive neural networks would be 
interested in the option to conceal the assessed component. 
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2.3 Critical Evaluation of “ Private AI – Machine learning on 
Encrypted Data.” 

 
2.3.1 Analysis – Relevance 

The research paper “ Private AI – Machine learning on Encrypted Data” by Kristin Lauter 

delves into the field of post-quantum cryptography and the privacy of machine learning models 
on private/sensitive data. This paper discusses the advances of homomorphic encryption as a 
solution to encapsulating a secure method to conduct a machine learning algorithm on 
encrypted data. This paper argues for the computational complexity and advances in 
cryptographic schemes. The difficulties faced in encoding and decoding data whilst following 
various Hard-problems in mathematics. These Hard-problems are the basis for homomorphic 
cryptography and the ability to unencrypt the resulting cipher text for a near-noiseless solution.  
 

2.3.2 Interpretation 
All of the homomorphic encryption techniques presented in this article are secure. This is 
because all homomorphic encryptions based on the mathematics of lattice cryptography and the 
NP-hardness of lattice problems in high dimensions, which have been researched for over 25 
years. Compared to other public critical systems mentioned, such as RSA, which was invented 
in 1975 or Elliptic Curve Cryptography ECC, in 1985, K.Lauter claims a fully secure model. 
With hopes of influencing a wide-scale implementation of homomorphic encryption, the paper 
predicts this technology will appear to be fully viable within the next 2—5 years, along with 
fresh algorithmic advances, new schemes, a better knowledge of particular use cases, and an 
active standardisation effort. Larger-scale deployment has been acknowledged to implement 
Private AI by large organisations, whereas it is already taking place in smaller-scale 
organisations. 
 
 

2.3.3 Evaluation – Reliability 
The literature paper achieves its goal of convincing the reader that a secured AI and Machine 
learning model with lattice-bassed cryptography data on encrypted data is plausible and 
practical to attain homomorphic encryption using modern consumer computing. Private AI, in 
the area of Machine learning on encrypted data, has been followed through with the paper’s 

research. There is no mention of requiring a deeper level of research using the paper as a basis. 
Nonetheless, the paper discussed its belief that government contractors, university research 
organisations and several large and small businesses are excited about the prospects of this 
technology. The areas in which paper Kristin Lauter’s paper contributes toward knowledge and 

the understanding of the possibilities of homomorphic encryption. 
 
With valid and reliable sources, the paper has drawn on all possible angles in expanding upon 
the field of Homomorphic encryption that is satisfied against scrutiny. There is no evidence of 
disbelief or uncertainty within the papers against itself, therefore keeping its ground in proving 
a solid argument for the need for Private AI. The strong desire to implement homomorphic 
encryption into a broader range of disciplines has contended intellectually. All concerns lead 
not to the lack of security. However, there is an inevitable future that all current cryptography 
will become obsolete once quantum computers rise in consumer popularity. Yes, although that 
is years into the future, having homomorphic encryption in today’s age of computers adds a 

layer of security between users and cloud service providers, mitigating potential data leaks.   
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2.3.4 Strengths – Accuracy 

 
The paper excels in the delivery of potential uses for implementing homomorphic encryption 
will be used in the private and its necessary involvement with the private health sector. Creating 
a private AI model on encrypted data achieves total privacy with communication between the 
client and server conducting mathematical computations. Holomorphic encryption doesn’t 

focus on preserving the anonymisation of data against an adversary. Instead, it addresses the 
security concern of exposing/involving cloud companies/providers from interacting with raw, 
unencrypted plaintext data. Decreasing the risk of any bad actor receiving unencrypted data 
increasing the reason for further preserving the privacy of sensitive data. All data that requires 
some form of computation, whether simple mathematical sums or large neural networks are at 
risk of potential information leaks during the storage and use of the raw data.  
 
One strong argument against the requirement for homomorphic encryption is. Another reason 
raises concerns of adversaries learning the secrets of the cipher text by potential random number 
generator attack/pattern recognition. This issue is flawed due to the structure of homomorphic 
schemes used. Lattice-based cryptography adheres to a post-quantum cryptographic system, 
using lattices and complex problems such as shortest vector models and learning with error.  
 

2.3.5 Weaknesses – Potential Bias 
 
Although tables and graphs are frequently cited, the paper could improve on visually displaying 
what the encrypted data would look like along with its noise levels compared to the plain text. 
A perfect example of this can be recognised in a different paper, “Adaptive image encryption 

based on twin chaotic maps,, “ by Munazah Lyle. The contrasting paper shows eight images of 

various subjects: a woman, a boat, Peppers, etc. Later, it presented the outcomes of encrypting 
plain text across homomorphic schemes, their cipher text equivalents and ultimately, the result 
once unencrypted with the respective noise levels added pre-encryption. Kristin Lauter’s paper 

came short in the demonstration compared to other studies conducted in the Neish area of 
homomorphic encryption.  
 
 

2.3.6 Timeliness and Completeness 
Additionally, the paper lacks a concrete guideline to permit a reader to accomplish their own 
private AI model. Despite deeply diving into cryptographic mathematics, by only consolidating 
to theory, one cannot recreate the steps taken accurately, nor would they have a solid grasp of 
the actual applications. Nonetheless, the paper does adhere to its principles of delivering 
research papers on practicality. A myriad of examples demonstrate how homomorphic could be 
involved in establishing Private AI, which in turn would foster a sophisticated degree of 
security in big data and the cloud.  
 
Nonetheless, the paper is not flawed in delivering a well-written and has allowed the reader to 
develop a solid understanding of the mathematics underlying a fully homomorphic scheme 
while maintaining a Private AI model. In conclusion, this text is of high value in the study of 
homomorphic encryption and the development of Machine learning.  
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2.4 Litterature Review concluding remarks 
 
While researching attacks on the preservation of privacy and qualities brought forth by 
differential privacy, thoughts about encryption kept lurking (Pascal Paillier). If clients could 
keep their data private through obscurity in storage, the risk of cloud providers leaking personal 
data would be mitigated. Furthermore, calculations of the computational results conducted on 
the encrypted data will remain in an encrypted format; only the owners of the private key can 
make logic of this data (Abdullahi Monday, J., et al.). Hence, homomorphic encryption was the 
solution to this question. 
 
The legislative environment for data protection has become increasingly complicated in recent 
years. New rules, such as the EU's Data Protection Regulation (GDPR), have given data 
subjects new rights while imposing new obligations and limits on enterprises. The requirement 
that data of EU individuals remain within the EU or in countries or firms with equal data 
security standards is one GDPR law that many businesses are dealing with. In 2020, the 
Schrems II judgement invalidated one of the primary methods in which EU-US data exchanges 
were justified under GDPR, causing issues for numerous US enterprises with EU residents. 
Laws such as the GDPR indicate unequivocally that their rules do not apply to encrypted data. 
With homomorphic encryption, a corporation might theoretically store and process data on 
systems outside the EU and then only decode it on servers in GDPR-compliant regions. Many 
consumers are dissatisfied with firms creating detailed profiles of them with little access or 
control over the data gathered and how it is utilised. Homomorphic encryption proves to be a 
strong candidate for a solution to this problem.  
 
As most businesses rely on reputable third parties as part of their operations. These contractors, 
vendors, and others frequently require access to the company's sensitive and confidential data to 
do their duties. Recent occurrences have highlighted the dangers of unsecured supply chains 
and how hackers would target the weakest link in the network to achieve their goals (Lauter, 
K). This implies that delivering sensitive data to a partner may expose a company to a costly 
and harmful data breach. Homomorphic encryption can assist a corporation in mitigating supply 
chain hazards. If all data sent to reputable third-party processors is encrypted, a data breach 
poses no danger to the firm. This enables a company to outsource critical data processing with 
little risk. (Daniele Micciancio) (Nat Rev Microbiol) 
 
Fully homomorphic encryption has the potential to solve a wide range of critical commercial 
concerns. Its v6ery existence implies that, in principle, everyone should be utilising it. Today, 
the difficulty with completely homomorphic encryption is that it is inefficient. Due to the 
constraints of complete homomorphism, these techniques are relatively slow. They can need 
much storage since they allow ciphertexts to be multiplied or added indefinitely without 
changing the outcome. While homomorphic encryption is not considered a feasible solution for 
most, this could likely change in the near future. (Lyle, M., et al ) (Ur Rehman, I) 
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Chapter 3 – Methodology 
 

3.1 Methodology Introduction 
 
Deep Learning techniques have taken precedence in the domain of machine learning due to 
their ability to model complex features from high-dimensional data. Deep learning architectures 
are primarily multi-layered networks where higher-level features are calculated as nonlinear 
functions of lower-level ones. The convolutional neural network (CNN) stands out as a 
significant technique used for image classification, defined by its convolution layer that learns 
dataset-derived features. This layer employs the dot product multiplication between 
neighbourhood values, consisting only of addition and multiplication functions. Similarly, the 
activation layer, pooling layer, fully connected layer, and dropout layer each serve their 
purposes in enhancing the performance and accuracy of the model. 
 
Modern cryptography is based on various mathematical theories and computer science 
practices. Such cryptographic methods are designed with computational hardness assumptions 
in mind to create a problematic means to break.  Cybersecurity and data protection are 
becoming increasingly crucial [6]. Although it may be challenging to keep financial, health, and 
business data records secure, it is necessary as this data becomes more readily available over 
online transactions. As a result, most programs and apps rely on data encryption to keep our 
information secure. 
 
Data can exist in three states: rest, transit, and usage. The first two are the most often used types 
of encryptions. This can be validated as data that is in rest or transit cannot be actively altered in 
real-time. It has the same value after decryption as it had before encryption. On the other hand, 
data in use lacks this property. This is because any mathematical operations on a ciphertext 
would alter its plaintext result once decrypted. 
 
The goal of this thesis is to demonstrate the practicality of homomorphic encryption over a deep 
neural network with the goal of building a model on encrypted medical data. A thorough 
explanation of the developemntal aproach regarding the datasets used to test and compare 
different applications of homomorphic encrpytion along side Deep Neural Networks. 
Discussion of these results are bound to the analysis of metrics gathered by the results of testing 
the developed models. Further discussion will delve into the practicality and feasibility of 
implementing homomorphic techniques and standards across the majority of machine learning 
and AI to better protect data privacy.  
 
Many of the world's most difficult machine learning challenges require access to raw data. This 
potential privacy risk creates issues when developing machine learning models, even when not 
overfitting, as these models have been revealed to memorise private data. Techniques such as 
differential privacy have been proven to preserve privacy whilst training machine learning 
models. However, with the features of homomorphic encryption, privacy-preserving is taken a 
step further. If the data is first anonymised, then had differential privacy techniques conducted 
on it, and finally were to be encrypted, this would create a high level of secrecy in terms of 
hardness to de-crypt and deanonymise the data ( from cipher text to plain text to raw data). As 
homomorphic encryption provides post-quantum security (due to its latticed-based encryption 
scheme), it truly is the next giant leap in security and cryptography 
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Machine Learning on Encrypted Data refers to the process where both the training and 
inference stages of a machine learning model are performed on encrypted data. The model 
never accesses raw data in an unencrypted form, which means that data privacy is maintained 
throughout the entire machine learning pipeline. This is particularly challenging because the 
model must be capable of learning from data it cannot "see" in the clear, which often requires 
sophisticated cryptographic techniques like Homomorphic Encryption (HE) or Secure Multi-
party Computation (SMPC). The primary goal here is to protect the data from exposure even to 
the entity conducting the machine learning process. 
 
With Machine Learning with Encrypted Inference, the model is typically trained on 
unencrypted data in a secure and private environment, where data privacy can be ensured. Once 
the model is trained, it is used to make predictions on encrypted data. That is, the inference 
stage — where new, unseen data is fed into the model to get predictions — is performed on 
encrypted data. The model outputs encrypted predictions, which can then be decrypted only by 
authorised parties. This approach ensures the privacy of the "in-use" data during the prediction 
phase, protecting it from exposure even if the model is deployed in an untrusted environment. 
 
The key difference between the two is the stage at which encryption is applied and the scope of 
data protection. Machine learning on encrypted data aims to protect the data throughout the 
entire process, which provides a higher level of security but also comes with greater technical 
complexity and computational overhead. Machine learning with encrypted inference focuses on 
protecting data during model deployment, which is often a more practical approach when it is 
feasible to train the model on unencrypted data in a secure environment. 
 
Both methods address critical aspects of data privacy in machine learning, with their use cases 
depending on the specific privacy requirements, regulatory constraints, and available 
computational resources. As machine learning with encrypted inference involves a unique blend 
of machine learning architectures and advanced cryptographic techniques to ensure data privacy 
during model inference. 
 
 

3.2 Detailed insight into the chosen Datasets  
 

3.2.1 Dataset Details 
In the evolution of this research, the strategic selection of three distinct medical imaging 
datasets was instrumental in fostering a progression of complexity that mirrored the gradual 
deepening of the study's investigative rigor. The datasets were carefully curated not only for 
their relevance to medical diagnostics but also for their capacity to scaffold the research, 
guiding it from foundational binary classification tasks to more intricate multilabel challenges. 
 
The Pneumonia dataset, with its binary classification of chest X-rays into 'Normal' and 
'Pneumonia' categories, provided an ideal starting point. Its simplicity allowed for initial 
experimentation with encrypted data, setting the stage for initial benchmarking. This dataset 
served as the first litmus test for the feasibility of applying homomorphic encryption techniques 
to medical imaging, proving that the model could learn to distinguish between two critical 
classes even when dealing with encrypted pixels, which is a fundamental capability in medical 
diagnostics. 
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Transitioning from the binary simplicity of the Pneumonia dataset, the study then embraced the 
Medical MNIST dataset's multiclass classification challenge. This dataset increased the 
complexity, introducing more classes and requiring the model to discriminate between various 
medical images. The familiar format of the MNIST dataset, adapted to a medical context, 
provided a stepping stone towards handling more complex diagnostic scenarios. It tested the 
model's ability to generalise from binary to multiclass problems, a necessary increment in 
complexity that prepared the research for the final, most challenging dataset. 
 
The NIH Chest X-ray dataset, with its multilabel classification, represented the zenith of 
complexity for this study. Each image in this dataset could belong to multiple categories, 
reflecting the multifaceted nature of real-world medical diagnostics where a single patient's X-
ray might exhibit multiple pathologies. Training a model on this dataset, particularly under the 
constraints of encryption, was an ambitious endeavor that mirrored the complexities clinicians 
face in practice. It demanded a nuanced understanding of the interplay between various disease 
markers and necessitated a robust model capable of capturing these subtleties within the 
confines of encrypted computations. 
 
Each dataset's increasing complexity and diversity of classification tasks collectively 
contributed to a comprehensive and robust exploration of encrypted machine learning in 
medical imaging. The gradation from binary to multilabel classification paralleled the 
incremental steps in a clinician's diagnostic journey, from clear-cut decisions to multifaceted 
analyses. The study's approach, starting from less complex tasks and advancing to more 
demanding ones, ensured a meticulous assessment of the models' capabilities, reinforcing the 
trustworthiness of machine learning in the sensitive realm of healthcare. 
 
In essence, these datasets were not only suitable; they were pivotal. They provided a structured 
path through which the research could navigate the diverse landscape of medical diagnostics, 
allowing the study to demonstrate the viability of encrypted machine learning across a spectrum 
of real-world clinical scenarios. This methodical progression underpins the thesis's foundational 
assertion that privacy-preserving technologies can indeed coalesce with advanced diagnostic 
methodologies without compromising the integrity or confidentiality of sensitive medical data. 
 
 
The research utilised three primary datasets: the Medical MNIST dataset, the Pneumonia 
dataset, and the NIH Chest X-ray dataset. 
 
Pneumonia Dataset: Derived from the Guangzhou Women and Children’s Medical Center, 

this dataset comprises 5,863 X-ray images of pediatric patients aged one to five. It is classified 
into two main categories: Pneumonia and Normal. The images, which are anterior-posterior 
chest X-rays, are stored in JPEG format and structured into two folders: train and test. 
 
Medical MNIST Dataset: This dataset houses 58,954 medical images in a 64x64 dimension. 
Sourced originally from other datasets, these images have been processed to mimic the style of 
the traditional MNIST dataset. It is organised into six classes for classifying different types of 
medical images. 
 
NIH Chest X-ray Dataset: Sourced from the National Institutes of Health, this extensive 
collection has 112,120 chest X-ray images labelled with diseases from 30,805 distinct patients. 
The disease labels were determined using Natural Language Processing on related radiological 
reports. The aim of this dataset is to facilitate the development of CAD systems by addressing 
the lack of large, annotated chest X-ray datasets available to the public. 
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3.2.2 Classification Paradigms 
 
Pneumonia X-ray Dataset (Binary Classification) 
The Pneumonia X-ray dataset offers a straightforward binary classification challenge. The 
dataset comprises two classes: 

• Normal: X-rays that exhibit no signs of pneumonia. 
• Pneumonia: X-rays that show evidence of pneumonia, which can manifest in several 

patterns, including a focal lobar consolidation and a more diffuse "interstitial" pattern. 
Given the life-threatening nature of pneumonia, accurate classification in this binary context is 
critical for patient diagnosis and subsequent treatment. 

 

 
 
 
 
 
 
 
Medical MNIST Dataset (Multiclass Classification) 
Similar to the original MNIST dataset but with a medical 
twist, the Medical MNIST dataset consists of images 
categorised into six distinct classes. This presents a 
multiclass classification challenge, where each image 
belongs to one of these six predefined classes:  

• ChestCT 
• BreastMRI 
• AdbomenCT 
• CXR 
• Hand 
• HeadCT 

 
 
 
 
 
 
 
 
 

Fig 3.1 Normal Chext X-ray 
(Pneumonia Dataset) 

Fig 3.2 Pneumonia Chext X-ray  
(Pneumonia Dataset) 

Fig 3.3 18 random samples, 
three of each  class (Medical 
MNIST Dataset) 
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NIH Chest X-ray Dataset (Multilabel Classification) 
The NIH dataset is perhaps the most complex of the three, presenting a multilabel classification 
problem. In this context, an image might belong to multiple categories simultaneously, 
reflecting the complex nature of medical diagnoses. The dataset contains 15 unique labels:  

• Effusion 
• Nodule 
• Cardiomegaly 
• Emphysema 
• Pneumonia 
• Fibrosis 
• No Finding 
• Consolidation  
• Pneumothorax 
• Infiltration 
• Edema 
• Mass 
• Atelectasis 
• Hernia 
• Pleural Thickening 

 
 
 
 
 
 
This complexity mirrors real-world scenarios where a patient's X-ray might exhibit multiple 
concurrent conditions.  
  

Fig 3.4 16 random Chext X-ray samples 
(NIH Chest X-Ray Dataset) 
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3.2.3 The Collection Process 

 
Pneumonia Dataset: Images were taken from retrospective cohorts of paediatric patients 
between the ages of one and five at the Guangzhou Women and Children’s Medical Center. 

Each chest X-ray image underwent an initial quality control screening. Subsequently, two 
expert physicians graded the diagnoses. A third expert re-evaluated the grading to ensure 
accuracy. 
 
Medical MNIST Dataset: Images were curated from multiple datasets and processed to 
achieve a standard 64x64 dimension resembling the MNIST dataset. 
 
NIH Chest X-ray Dataset: The National Institutes of Health collected these images. To label 
them, authors employed Natural Language Processing to extract disease classifications from 
corresponding radiology reports. 
 

3.3 Data Pre-processing Steps 
 

3.3.1 Steps to ensure quality and usability of data 
1. Quality Control: Initial screening was performed, especially for the Pneumonia dataset, 

to discard low-quality or unreadable scans. 
2. Noise Handling and Artifact Removal: Techniques were employed to reduce noise 

and remove unwanted artifacts from the images to improve clarity and quality. 
3. Feature Extraction: Relevant information was extracted while ensuring privacy. This 

step ensures that the model can analyze the data without requiring decryption. 
4. Normalisation: This step was undertaken to facilitate unbiased comparisons across 

various features and images. 
 

3.3.2 Class Imbalance 
 
Of the three datasets, only the NIH model 
required class rebalancing due to the 
nature of the data. Building a multilabel 
requires a complex learning curve in 
balancing dataset splits before 
stratifications and randomisations. One of 
the challenges with medical diagnostic 
datasets is the large class imbalance in 
such datasets.  
 
Class imbalance within multilabel datasets 
poses intricate challenges, especially 
during the data preprocessing stages 
preceding dataset division. In the NIH 
Chest X-ray dataset context, this 
imbalance necessitates a nuanced 
approach to ensure equitable 
representation across the spectrum of 
labels.  
 

Fig 3.5 Class Imbalancing of NIH dataset 
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Unlike binary or even multiclass datasets, where balance can be achieved by adjusting for the 
frequency of each class, multilabel scenarios demand a more sophisticated strategy. Each 
instance potentially belongs to multiple classes simultaneously, intricately intertwining their 
presences and absences. 
 
Balancing such a dataset requires a careful orchestration of techniques that respect the co-
occurrence of labels. Oversampling the minority class or undersampling the majority can no 
longer be applied with abandon, as these could disrupt the natural co-relationships between 
labels. Therefore, preprocessing must include methods that can intelligently augment the dataset 
without introducing bias or distorting the inherent correlations between different pathologies. 
This may involve generating synthetic samples that preserve label associations or implementing 
advanced sampling strategies that account for the multilabel structure. 

  
 

 
 
 

In stark contrast to the multilabel intricacies of the NIH Chest X-ray dataset, the Pneumonia X-
ray and Medical MNIST datasets presented a more harmonious picture in terms of class 
distribution. The Pneumonia X-ray dataset, dedicated to the binary classification task, 
comprised a well-proportioned assembly of normal and pneumonia-afflicted X-ray images. This 
balance facilitated a straightforward division into training, validation, and testing sets without 
the need for complex rebalancing or augmentation strategies. Similarly, the Medical MNIST 
dataset, with its multiclass format, was characterised by an equitable distribution of images 
across its various medical imaging categories. Each class was adequately represented, allowing 
for a clean stratification that mirrored the uniformity of the traditional MNIST dataset. This 
natural equilibrium in the class distribution meant that the preliminary data preprocessing could 
proceed without the additional layers of complexity required for addressing the class imbalance, 
streamlining the path towards dataset division and subsequent model training. 
 
 
 
 
 

Fig 3.6 Class Distribution Pie-
Chart (Medial MNIST Dataset) 

Fig 3.7 Class Distribution Pie-
Chart (Pneumonia Dataset) 
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3.4 Dataset Division 
 
The division of datasets into only training and testing sections was at first an unwise decision; 
however, ultimately led to saving immaculate time when training and testing six different 
datasets whilst keeping the sound integrity of the model to be shared amongst them all. This 
segmentation enables robust and simplified training of the model, its fine-tuning, and the final 
evaluation of its performance on unseen data.  
 
Given the medical nature of our datasets, an even representation of different classes in each 
subset is paramount. This is where stratification comes into play. Stratification ensures that each 
subset (training, validation, and testing) has approximately the same percentage of samples of 
each target class as the complete dataset. For instance, if the Pneumonia X-ray dataset contained 
70% 'Normal' images and 30% 'Pneumonia' images, stratification would aim to maintain this 
ratio across the training, validation, and testing sets. This is especially crucial for datasets with 
an imbalanced class distribution, ensuring that during training and validation, the model gets a 
fair representation of all classes, enhancing its predictive accuracy on diverse datasets. 
 
Randomisation was applied during the division process to combat any inherent biases in the 
dataset order or collection. Randomisation ensures that the subsets are representative of the 
overall dataset, eliminating any systematic biases that might be present due to the sequential 
arrangement of data. By employing random sampling methods, we assured that each data point 
had an equal likelihood of being assigned to the training, validation, or testing set. This not only 
mitigates potential overfitting but also guarantees that the evaluation metrics derived from the 
testing set are reliable indicators of the model's real-world performance. 
 
Typically, a common practice is to allocate 60-70% of the data for training, 10-20% for 
validation, and the remainder for testing. However, these ratios might differ depending on the 
size and nature of the dataset. For our study, considering the diverse nature of our datasets and 
their sizes, I deemed a distribution of 70-30 training-testing split for the Medical MNIST, 
Pneumonia X-ray datasets, and NIH dataset most optimal. This split was kept throughout all the 
unencrypted models and encrypted datasets to support the experiments fair. 
 
The division of datasets is more than a mere procedural step; it's an art that balances training 
depth, model fine-tuning, and performance assessment. By employing stratification, 
randomisation, and careful consideration of division ratios, we ensured that our models were 
trained in a robust, bias-free environment, setting the stage for accurate, reliable results in 
medical image diagnosis. 
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3.5 Ensuring Patient Privacy & The Encryption Process 
 
Encryption is the cornerstone of ensuring data security and privacy, particularly in sensitive 
information fields. In this study, we delve into the specifics of the encryption process tailored 
for the secure analysis of medical images within machine learning models. 
 
 

3.5.1 - Anonymisation procedures 
1. Acquisition of Encrypted Images: Homomorphic encryption techniques were applied 

to datasets, enabling computations on encrypted data while ensuring confidentiality. 
2. Removing Personally Identifiable Information: All datasets underwent rigorous 

anonymisation before processing to erase any information that could potentially identify 
the patients. 

3. Referencing and Evaluation: The primary research used encrypted images, but 
unencrypted ones were also acquired. These unencrypted images served as a reference, 
helping to ensure the research's integrity without risking patient privacy. 

4. Data Limitations Acknowledgment: For the NIH Chest X-ray dataset, it was explicitly 
noted that while the image labels, derived through NLP, are believed to be over 90% 
accurate, there might still be errors. Based on their studies, users are encouraged to share 
updated image la5els or new bounding boxes. 

Incorporating datasets from Kaggle and leveraging the added information, this revised section 
provides a concise overview of the datasets, collection process, pre-processing steps, and 
anonymisation procedures integral to maintaining patient privacy. 
 
 

3.5.2 Cryptographic protocols chosen for the project 
The cryptographic landscape offers a myriad of protocols, each with unique attributes catering 
to diverse security requirements and computational constraints. For the present study, the 
selection of cryptographic protocols was dictated by the necessity for secure data handling and 
processing capabilities that align with the stringent privacy demands of medical data analysis. 
 
The criteria for choosing cryptographic protocols in this study were twofold: First, the protocol 
must ensure the absolute confidentiality of sensitive patient data throughout the analysis 
pipeline. Second, it must permit complex computations, such as those required by convolutional 
neural networks (CNNs), on encrypted data without decryption. These prerequisites are critical 
in a domain where data exposure can have significant privacy repercussions. 
 
The study centres on homomorphic encryption (HE) protocols, with a specific focus on the 
Cheon-Kim-Kim-Song (CKKS) scheme. The CKKS protocol was selected for its proficiency in 
handling arithmetic on encrypted real numbers—a capability paramount for the processing of 
medical images by CNN with encrypted inferencings within an encrypted domain. CKKS 
stands out for its ability to perform these operations with a scalable level of precision, which is 
crucial for accurately interpreting medical images. 
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3.5.3 Key Generation 

Key generation is the first critical step in any cryptographic protocol. In the context of 
homomorphic encryption, and specifically the CKKS scheme, key generation involves creating 
both public and private keys, along with evaluation keys that facilitate operations on encrypted 
data. 
 
The public key encrypts data, making it accessible to any entity with the corresponding private 
key, which is required for decryption. This key pair forms the asymmetric part of the encryption 
scheme, ensuring that while data can be easily encrypted, it can only be decrypted by authorised 
parties. Additionally, CKKS necessitates the creation of evaluation keys, which are essential for 
performing certain homomorphic operations on ciphertexts. These keys enable the encrypted 
neural network to execute complex functions, such as multiplication and linearisation, without 
compromising the encrypted state of the data.  
 
The security of the key generation process is paramount, as the strength of the encryption is 
directly tied to the robustness of the generated keys. To prevent unauthorised access, these keys 
must be generated in a secure environment and stored with the highest security standards. 
 
 

3.5.4 Encryption and Decryption Procedures 
Upon key generation, the encryption procedure begins with processing the input image data. 
Each image is normalised and then encoded into a plaintext polynomial suitable for the CKKS 
encryption scheme. The public key is then utilised to encrypt this plaintext, converting it into a 
ciphertext while preserving the ability to perform homomorphic operations. 
 
CKKS supports a 'batching technique, allowing multiple numbers to be packed into a single 
plaintext and encrypted as a single ciphertext. This technique is leveraged in this study to 
encrypt multiple pixels of an image simultaneously, thereby enhancing the efficiency of the 
encryption process. Decryption is the inverse process and is strictly controlled. The private key 
kept confidential, is used to decrypt the ciphertexts back into plaintexts, which can then be 
decoded to retrieve the original image data. The decryption process must be performed in a 
secure environment to maintain the confidentiality of the data.  
 
Both encryption and decryption procedures are designed to ensure the integrity of the data 
throughout the process. This involves maintaining the precision of the encrypted data and 
ensuring that the decrypted data faithfully represents the original input, which is vital for 
accurate analysis in medical machine-learning models. 
 
The foundational stages of HE schemes encompass: 
Key Generation (KeyGen): Generates security parameters, either a single key for symmetric 
types or a pair of secret and public keys for asymmetric types. 
Encryption Algorithm (Enc): Encrypts plaintext inputs with the encryption key to produce the 
ciphertext. 
Decryption Algorithm (Dec): Decrypts the ciphertext using the decryption key to retrieve the 
original message. 
Evaluation Algorithm (Eval): Evaluates ciphertexts without revealing the underlying 
messages. 
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3.5.5 CKKS Homomorphic Encryption Scheme Details 

The Cheon-Kim-Kim-Song (CKKS) Homomorphic Encryption Scheme is noteworthy, being a 
levelled homomorphic encryption method anchored on the difficulty of the RLWE problem for 
security. Unlike other HE systems, CKKS facilitates approximate arithmetic on real and 
complex numbers. It is aptly suited for applications like machine learning, where computations 
are generally approximated. Further diving into encryption schemes, the CKKS parameters, 
such as the scaling factor, the polynomial modulus degree, and the coefficient modulus sizes, 
are crucial. They directly impact the encryption scheme's efficiency, size, security, and 
performance. 
 
In the realm of CKKS keys, several keys are paramount: 

• Secret Key: Essential for decryption. 
• Public Encryption Key: Facilitates encryption in the public key setup. 
• Relinearisation Keys: Reduces the size of ciphertexts post-multiplication. 
• Galois Keys: Enables encrypted vector rotation operations. 

 
CKKS also incorporates specific internal operations, which include linearisation and rescaling, 
to optimise the encryption process. These operations are paramount in ensuring that encrypted 
data remains manageable and does not degrade in quality over multiple computations. Lastly, 
tools like TenSEAL provide an efficient platform for conducting homomorphic encryption 
operations on tensors. Leveraging Microsoft SEAL, TenSEAL incorporates the BFV and CKKS 
homomorphic encryption schemes. This tool streamlines the process of encoding, encrypting, 
and manipulating encrypted data, bridging the gap between theory and practical application. 
 
 
Parameter Description Value 
bits_scale Controls the precision of the fractional 

part.  
26 
  

poly_modulus_degree Determines the polynomial modulus 
degree for encryption context.  

8192  

coeff_mod_bit_sizes Bit sizes of coefficients in the modular 
polynomial.  

[31, 26, 26, 26, 26, 26, 26, 31] 

global_scale Defines the scale used in encryption to 
preserve precision.  

pow(2, bits_scale) 

galois_keys Required for performing ciphertext 
rotations.  

Generated based on context. 

secret_key The key used to encrypt and decrypt 
data. 

       Generated and kept private. 

Table 2 – CKKS Encryption Parameters for Encrypted Inference Model 
 
 

3.5.6 Encryption Techniques Utilised 
In the realm of privacy-preserving machine learning, particularly within the healthcare sector, 
the encryption technique of choice must accommodate both the confidentiality of patient data 
and the computational demands of deep learning models. Homomorphic encryption (HE) is a 
pivotal technology enabling secure, privacy-preserving computations on encrypted data. This 
section delves into the specifics of the HE techniques utilised in the study, emphasising their 
integration into deep neural network (DNN) architectures and the subsequent impact on model 
performance and data privacy. 
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The selected homomorphic encryption technique in this research is the Cheon-Kim-Kim-Song 
(CKKS) scheme, recognised for its ability to handle floating-point arithmetic, a necessity for 
the nuanced calculations involved in CNN with encrypted inferencing. CKKS facilitates 
encrypted operations on real or complex numbers, providing precise control for maintaining 
accuracy during encrypted computations. The scheme allows the encrypted deep learning model 
to perform addition and multiplication on ciphertexts, mirroring these operations' effects on the 
plaintext data. 
 
Integrating CKKS within CNN with encrypted inferencing architectures involves encoding 
image data into a format conducive to encrypted computations. This process, often 
encompassing normalisation and flattening of image matrices, ensures that the input data aligns 
with the CKKS parameter requirements. A critical aspect of this integration is the optimisation 
of the CKKS parameters, such as poly_modulus_degree and coeff_mod_bit_sizes, to balance 
computational complexity with encryption robustness. 
 
The encryption pipeline begins with pre-processing high-resolution medical images, preparing 
them for encryption while preserving the essential details necessary for accurate diagnosis. 
Following this, the CKKS encryption converts the processed images into ciphertexts, which 
retain the ability to undergo arithmetic operations within the encrypted domain. Notably, while 
not directly fed into the model, the visualised encrypted images serve as a verification of the 
encryption's success, showcasing the unintelligibility of the data to unauthorised viewers. 
 

3.6 Machine Learning Model Architecture 
 
The core machine learning code was uniformly applied across various datasets, ensuring 
consistency in model evaluation. The primary distinctions were in data preprocessing—

specifically, the encoding of labels for different classification tasks (binary, multiclass, or multi-
label)—and the selection of appropriate classifiers to suit each dataset's unique structure and 
requirements. 
 

3.6.1 CNN for Unencrypted Data 
The convolutional neural network (ConvNet) built on the PyTorch framework stands as a 
testament to the fusion of model architecture and training acumen. The ConvNet, sculpted for 
image classification tasks, embodies the intricate dance between depth and simplicity. In the 
initial stage of training the ConvNet model on unencrypted data, images are standardised to a 
uniform size and format, ensuring consistency for the learning process. The ConvNet’s 

architecture, designed to extract and interpret features, employs convolutional and fully 
connected layers. These layers apply the square activation function to capture non-linear 
patterns within the data. 
 
A Convolutional Neural Network (ConvNet) is trained on unencrypted data to learn the weights 
and biases. This conventional training phase is essential to capture the complex patterns within 
the data before transitioning to encrypted inference. The ConvNet architecture begins with a 
convolutional layer (conv1) that transforms a single-channel grayscale input into four feature 
maps using a 7x7 kernel without padding and a stride of three. This layer's role is to extract 
spatial features critical for the task at hand. Following convolution, the network flattens the 
output into a one-dimensional tensor, preparing it for the subsequent fully connected layers. 
 
 



Page 36 of 72 
 

 
Layer (Type) Output Shape Param 

# 
Details 

Conv2d (batch_size, 4, H', W') X 1 input channel, 4 output channels, kernel 
size=7, stride=3 
  

Square Activation 
(custom) 

(batch_size, 4, H', W') 0 Element-wise square function 

Flatten (batch_size, 256) 0 Flatten the output to vector 
  

Linear (batch_size, hidden) Y Fully connected layer, 256 inputs to hidden 
outputs 

Square Activation 
(custom) 

(batch_size, hidden) 0 Element-wise square function 

Linear (output) (batch_size, output) Z Fully connected layer, hidden inputs to output 
classes 

Table 3.1 – CNN Architecture 
 
The network then progresses through two fully connected layers: fc1, which reduces the 
dimensionality from 256 to a set number of hidden units, and fc2, which maps these hidden 
units to the output classes. The network employs a square activation function after fc1, an 
unusual choice aimed at capturing specific data characteristics. 
 
During training over n_epochs, the ConvNet follows a standard iterative process: resetting 
gradients, computing outputs, calculating loss with CrossEntropyLoss, backpropagating errors, 
and updating weights using an optimiser set with a learning rate of 0.001. The training process 
omits regularisation techniques like dropout, focusing on raw learning from the data. After 
training, the model transitions to evaluation mode to assess its generalization on unseen data. 
 

3.6.2 Adaptation for Encrypted Inference: Homomorphic Encryption Integration 
 
Integrating the CKKS protocol into CNN with encrypted inferencing architectures is a non-
trivial task involving careful consideration of the network's operations and the encryption 
scheme's constraints. The study outlines the adaptation process, highlighting the modifications 
to the CNN with encrypted inferencing to accommodate the CKKS protocol's operational 
paradigms. This includes re-structuring the network layers to align with the encrypted 
operations supported by CKKS and tuning the encryption parameters to the data's 
characteristics. 
 
The EncConvNet class does not directly store the layer parameters as PyTorch tensors, but 
rather, extracts their data and stores them as nested lists (self.conv1_weight, self.conv1_bias, 
etc.). During the forward pass, these lists are used to perform encrypted convolution and matrix 
multiplication operations (conv2d_im2col and mm methods), with the addition of biases and the 
application of the square activation function. 
 
This adaptation is crucial since standard neural network operations cannot be directly applied to 
encrypted data. Instead, specialised methods provided by the HE library are used, which are 
designed to work with encrypted data (denoted as enc_x in the forward method). 

Fig 3.8 – Machine Learning with Encrypted Inference 
Pipeline 
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Component Operation Description 
Convolutional 
Layer  

Encrypted 2D convolution 
(conv2d_im2col) 

Performs convolution over encrypted images 
using homomorphically encrypted kernels. 
  

Activation 
Function  

Squaring (square_) Applies an activation function by squaring 
the encrypted vector in place. 
  

Fully Connected 
Layer 

Vector-matrix multiplication 
(mm) and bias addition (+) 

Performs encrypted linear transformation 
followed by the addition of a bias vector to 
the squared encrypted vector.  

Output Layer Vector-matrix multiplication 
(mm) and bias addition (+) 

Transforms the activated encrypted vector 
into the final encrypted output which can be 
decrypted for prediction. 

Table 3.2 – CNN EncConvNet Architecture with Encrypted Inference 
 
Post-training, the learned parameters are transferred to an Encrypted Convolutional Network 
(EncConvNet). The EncConvNet class is tailored to operate on encrypted data, applying 
convolutional operations homomorphically. 
 

enc_conv_net = EncConvNet(model) 
for data in encrypted_test_loader: 
encrypted_output = enc_conv_net.forward(encrypted_data) 
decrypted_output = decrypt(encrypted_output) 

 
During the forward pass, encrypted vectors are subjected to encrypted convolutional operations 
(conv2d_im2col), activation functions, and linear transformations while remaining in the 
encrypted state. 
 

def forward(enc_x): 
enc_x = encrypted_convolution(enc_x) 
enc_x = square_activation(enc_x) 
enc_x = encrypted_fully_connected(enc_x) 
return enc_x 

 
The model's output remains encrypted throughout the process, preserving data confidentiality. It 
is only decrypted during the evaluation phase, where performance metrics are calculated to 
assess the model's predictive power on unseen data. 
 
The forward method of EncConvNet reflects the sequence of operations for processing 
encrypted data, which closely mirrors the structure of the original ConvNet but in a manner 
compatible with HE. This class showcases the application of homomorphic encryption 
techniques in deep learning, allowing encrypted inputs to be fed through a neural network 
model while ensuring that the data remains encrypted throughout the process. 
 
In the encrypted testing phase, the EncConvNet processes encrypted data and produces 
encrypted outputs. These outputs are decrypted to obtain prediction scores, which are then 
compared with the actual labels to calculate performance metrics. This comparison assesses the 
model's accuracy in classifying encrypted data. The process ensures data privacy throughout the 
model's application, exemplifying the effective integration of cryptographic techniques in 
machine learning workflows. Below fig 3.8 demonstrates the sequential workflow of the 
Privacy-Preserving CNN utilising homomorphic encryption for encrypted inference 
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3.7 Methods of Evaluating Metrics 
3.7.1 The Importance of Metrics 

 
Metrics serve as quantifiable measures that enable the assessment of machine learning models' 
performance. The choice of metrics is driven by the nature of the dataset and the specific 
problem being addressed. Metrics provide insight into various aspects of model performance, 
such as accuracy, error rate, and ability to balance precision with recall. They are vital for 
comparing models, optimising parameters, and ultimately guiding the selection of the most 
suitable model for deployment. 
 
 
Binary Classification Metrics: For binary datasets, where outcomes are restricted to two 
possible classes, metrics like ROC-AUC and Precision-Recall curves are indicative of a model's 
discriminative ability. They are particularly insightful where there is a class imbalance, as they 
can reveal how well the model distinguishes between the two classes under varying threshold 
settings. 
 
Multiclass Classification Metrics: In multiclass datasets, where multiple classes are predicted, 
metrics such as Confusion Matrices and Macro-averaged F1 scores are useful. They allow for 
the evaluation of class-specific performance and offer a consolidated view of overall 
performance across all classes, respectively. These metrics are crucial when the correct 
prediction of each class is equally important. 
 
Multi-label Classification Metrics: Multi-label datasets involve instances that can belong to 
multiple classes simultaneously. Here, metrics like Hamming Loss, Jaccard Index, and Subset 
Accuracy provide a more nuanced evaluation. They measure the model’s ability to predict label 

sets accurately and are indispensable in scenarios where the interdependence of labels is a 
factor. 
 
 
It's crucial to recognise that no single evaluation metric can fully capture a model's performance 
across all scenarios. Each metric reveals certain aspects of performance while concealing 
others. In cases of imbalanced machine learning problems, where one class significantly 
outnumbers others, relying solely on accuracy as a measure can be misleading. Instead, metrics 
like the F1 score or the area under the precision-recall curve provide a more accurate reflection 
of the model's effectiveness in these situations. 
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3.7.2 Metrics to be Utilised 

Given the complexity and the different characteristics of each dataset, a suite of metrics has 
been selected to provide a comprehensive evaluation: 

• Accuracy is used across all datasets as it gives a quick snapshot of overall performance. 
However, its utility is limited in the face of class imbalances or multi-label settings. 

• ROC-AUC and Precision-Recall Curves are leveraged for the binary dataset to 
understand true versus false positive rates and the trade-off between precision and recall, 
respectively. 

• Confusion Matrices and Macro-averaged F1 Scores are adopted for the multiclass 
dataset, providing insight into per-class performance and a single measure for overall 
performance. 

• For the multi-label dataset, Hamming Loss and Subset Accuracy are critical, as they 
account for the prediction accuracy of label sets rather than individual labels. 

 
The same metrics are used for both encrypted and unencrypted versions of each dataset to 
ensure consistency in performance evaluation. This direct comparison is crucial for assessing 
the feasibility and effectiveness of machine learning on encrypted data, which is essential for 
privacy preservation in sensitive applications. 
 
The suitability of metrics is determined by their ability to provide a clear and unbiased 
evaluation of a model’s performance. For example, accuracy alone may not be suitable for 

imbalanced datasets or multi-label problems, where it might give an overly optimistic view of 
the model's performance. In contrast, the F1 score, which combines precision and recall, and the 
Jaccard Index, which considers the intersection over union of label sets, provide a more 
balanced and realistic evaluation. 
 
In applying these metrics to both unencrypted and encrypted versions of each dataset, the aim is 
to establish an apples-to-apples comparison that validates the effectiveness of machine learning 
in secure, privacy-preserving environments. Such an evaluation is essential not only for 
theoretical explorations but for practical applications where data confidentiality is paramount. 
The chosen metrics provide a comprehensive evaluation framework that accounts for various 
facets of performance, from basic accuracy to the complex interplay of different types of errors 
in multi-class and multi-label settings. (Asnicar, F., Thomas, A.M., Passerini, A. et al.) 
 

Chapter 4 Experimental Results and Analysis 
4.1 Introduction 

 
The "Experimental Results and Analysis" chapter presents a comprehensive evaluation of 
machine learning models using both encrypted and unencrypted medical data, focusing on 
datasets such as Pneumonia, Medical MNIST, and NIH multilabel. This chapter delves into 
detailed performance metrics like accuracy, precision, recall, and F1 scores, alongside 
considerations of computational efficiency. It critically assesses the trade-offs between 
maintaining data privacy through encryption and the impact on model performance and 
resource demands. This analysis is pivotal in understanding the feasibility and practicality of 
deploying encrypted machine learning models in healthcare, highlighting the challenges and 
potential strategies for optimization in real-world applications. 
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4.2 Performance Evaluation and Feasibility Assessment 
 

4.2.1 Pneumonia Unencrypted vs Encrypted Data Performance Metrics 
 

Unencrypted Pneumonia Dataset Model Encrypted Pneumonia Dataset model 

 
 

Fig 4.1 Confusion Matrix of Pneumonia (X-Ray) - 
Unencrypted Dataset Model 

Fig 4.4 Confusion Matric Graph of Pneumonia  
(X-Ray) - Encrypted Dataset Model 

  
 

Fig 4.2 ROC Curve graph of Pneumonia (X-Ray) - 
Unencrypted Dataset Model 

Fig 4.5 ROC Curve graph of Pneumonia 
 (X-Ray) - Encrypted Dataset Model 

  
Fig 4.3 Precision-Recall Curve graph of Pneumonia (X-Ray) - 

Unencrypted Dataset Model 
Fig 4.6 Precision-Recall Curve graph of Pneumonia (X-Ray) - 

Encrypted Dataset Model 
 

 
 
 
Dataset Test Loss Accuracy Precision Recall F1 

Score 
Training 
Time 

Memory 

Unencrypted 0.134289 0.9590 0.9587 0.9590 0.9588 32s 16.24 MB 
Encrypted 0.3198 0.8747 0.8847 0.8747 0.8643 15mins 28s 80.87 MB 

Table 4.1 – Pneumonia (X-Ray) Unencrypted vs Encrypted Performance Metrics 
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Unencrypted Data Model Performance of Pneumonia (X-RAY) 
The unencrypted model exhibits superior performance with an impressive accuracy of 95.90% 
and an F1 score of 0.9588, indicating a balanced precision-recall relationship. The model 
trained on unencrypted data demonstrates exemplary performance with near-perfect precision 
and recall metrics, which is particularly impressive for binary classification tasks where 
distinguishing between two classes can be challenging. The high area under the ROC curve 
signifies an excellent true positive rate against a low false positive rate, which is crucial in 
medical diagnostics to avoid misdiagnosis. Similarly, the Precision-Recall curve's area indicates 
a high true positive rate relative to the total positive cases, underscoring the model's reliability. 
The low test loss points to the model's precise predictions with minimal error margin, 
showcasing the efficacy of the chosen architecture and learning process. The swift processing 
time and modest memory usage of 16 MB further indicate that the unencrypted model is highly 
optimised for quick deployment in clinical settings where real-time decision-making is 
paramount, offering a tangible solution without compromising on computational efficiency. 
 
Encrypted Data Model Performance of Pneumonia (X-RAY) 
Transitioning to the encrypted model, there's an evident decrease in accuracy and F1 score, 
although less accurate with an 87.47% accuracy and an F1 score of 0.8643, still provides a 
robust framework for secure data analysis. This suggests that while the precision and recall 
balance has slightly diminished, the model's capacity to distinguish between the classes remains 
robust. The increased test loss indicates a divergence from the ground truth, which is an 
expected consequence of operating within the encrypted domain, where noise factors introduced 
by encryption can affect model precision. However, the encrypted model still achieves high-
performance metrics, affirming the feasibility of using homomorphic encryption for sensitive 
medical data analysis.  This allows for patient data confidentiality while still providing reliable 
diagnostic predictions.  
 
However, the test loss is higher at 0.3198, signifying a slight decline in prediction accuracy 
relative to the actual labels. The trade-offs for data privacy become evident in the increased 
computational demand, reflected by a longer training time of 928.55 seconds and higher 
memory consumption of 80.87 MB. The increased training time and memory usage reflect the 
computational complexity inherent in CKKS encrypted operations. Despite these overheads, the 
model's ability to function with encrypted data without significant performance detriments is a 
groundbreaking stride in privacy-preserving AI, particularly given the sensitivity of medical 
data and the increasing demand for patient privacy in healthcare analytics. 
 
These metrics suggest a feasible yet less efficient system compared to the unencrypted model, 
highlighting the inherent complexity and computational overhead associated with encrypted 
data processing. 
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4.2.2 Medical MNIST Unencrypted vs Encrypted Model Data Performance Metrics 
 
Unencrypted Medical MNIST Dataset Model Encrypted Medical MNIST Dataset Model 

  
Fig 4.7 Confusion Matrix of Medical MNIST - Unencrypted 

Model 
Fig 4.10 Confusion Matric graph of Medical MNIST- 

Encrypted Inference Model 
 

 
 

Fig 4.8 ROC Curve of Medical MNIST - Unencrypted Model 
 

Fig 4.11 ROC Curve graph of Medical MNIST - Encrypted 
Inference Model 

 
 

Fig 4.9 Precision Recall Curve of Medical MNIST - 
Unencrypted Model 

Fig 4.12 Precision-Recall Curve graph of Medical MNIST - 
Encrypted Inference Model 

 
Dataset Test Loss Accuracy Precision Recall F1 

Score 
Training 
Time 

Memory 
Usage 

Unencrypted 0.096289 0.9977 0.9977 0.9977 0.9977 1min 35 16.91 MB  
Encrypted 0.864911 0.9562 0.9646 0.9562 0.9556 33mins 9s 349.61 MB 

Table 4.2 – Medical MNIST Unencrypted vs Encrypted Performance Metrics 
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The Medical MNIST dataset's performance metrics in an encrypted versus unencrypted 
environment present a profound case study for the application of homomorphic encryption (HE) 
within deep learning, particularly in the medical imaging field. In unencrypted conditions, the 
model achieves nearly perfect metrics across the board, with accuracy, precision, recall, and F1 
scores all hovering around 99.77%. This suggests that the model has effectively learned to 
differentiate among various classes such as "Abdomen CT," "Breast MRI," and others, with 
minimal misclassifications as indicated by the ROC and Precision-Recall curves that show 
areas of 1.00 for most classes. Such high metrics are indicative of an exceptionally well-fitted 
model that could be deployed with a high degree of confidence in real-world medical 
diagnostics. 

 
The encrypted model, while exhibiting a slight decline in performance metrics with accuracy, 
precision, recall, and F1 scores around 95%, still retains a high level of predictive power, which 
is impressive given the complexity of performing computations over encrypted data. The 
marked increase in training time, from approximately 19 seconds to over 1,989 seconds, and the 
substantially higher memory usage, from 16.91 MB to 349.61 MB, highlight the computational 
overhead introduced by HE. Despite this, the encrypted model's feasibility is maintained; it 
remains a viable option where patient privacy is paramount, ensuring data confidentiality during 
the model training and encrypted inference process. 
 

4.2.3 NIH Unencrypted vs Encrypted Model Data Performance Metrics 

Dataset Hamming 
Loss 

Sample 
Wise 

Accuracy 

Precision 
(micro) 

Recall 
(micro) 

F1 Score 
(micro) 

Time Taken 

Unencrypted 0.0732 0.4415 0.6402 0.3091 0.4169 5hr 12min 32s 
Encrypted 0.0730 0.3883 0.6167 0.3524 0.4485 16hr 15min 47s 

Table 4.3 – NIH Unencrypted vs Encrypted Performance Metrics 
 

The NIH multilabel dataset introduces a complex challenge for machine learning models due to 
its inherent multi-label nature, where each instance may belong to multiple labels 
simultaneously. This complexity is reflected in the evaluation metrics chosen for this dataset, as 
traditional metrics like accuracy must be adapted to the multi-label context.  
 
The performance of the NIH multilabel dataset presents insightful contrasts between the 
encrypted and unencrypted models. For the unencrypted dataset, the model demonstrates a 
sample-wise accuracy of 44.15%, precision (micro) of 64.02%, and an F1 score (micro) of 
41.69%, with a Hamming Loss of 0.0732, indicating a decent ability to manage the dataset's 
multi-label nature but with room for improvement in recall (micro) at 30.91%. 
 
 
 
 
 

Fig 4.13 ROC Curve of NIH - Unencrypted Dataset Model Fig 4.14 ROC Curve of NIH - Unencrypted Dataset Model 
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In comparison, the encrypted model exhibits a slightly lower sample-wise accuracy of 38.83% 
and precision (micro) at 61.67%, but an enhanced recall (micro) of 35.24% and F1 score 
(micro) of 44.85%. Interestingly, the Hamming Loss remains almost unchanged, indicating 
consistent performance in terms of individual label predictions. Despite this slight performance 
uptick, the encrypted model's training time escalates to over 16 hours, a significant increase 
from the 5 hours and 12 minutes of the unencrypted model, underscoring the computational 
trade-offs inherent in maintaining data privacy.  

 
4.2.4 Feasibility Assessment 

 
While the encrypted Pneumonia model exemplifies the viability of binary encrypted 
classifications, the Medical MNIST model extends this viability to a multiclass context, albeit 
with expected computational overheads. The feasibility of employing such models is evident 
despite the increased resource requirements, which are justifiable when patient privacy cannot 
be compromised. The nuanced differences in performance between binary and multiclass 
models highlight the encryption's impact and the potential need for model-specific optimisation 
strategies to enhance efficiency further. 
  
The multiclass Medical MNIST model, although demonstrating a commendable performance in 
the unencrypted domain, faces a steeper challenge when compared to the binary classification 
of the Pneumonia model. The binary Pneumonia model, tasked with discerning between two 
outcomes, achieves near-ideal metrics with precision and recall closely mirroring each other, 
indicative of a balanced and accurate classification on unencrypted data. This balance slightly 
shifts in the encrypted domain, where despite a dip in precision and recall, the model sustains a 
high degree of utility, showcasing the potential for CKKS encryption to maintain model 
efficacy while ensuring data privacy. 
 
In contrast, the multiclass Medical MNIST model, responsible for distinguishing among fifteen 
distinct classes, inherently deals with a more complex classification landscape. Its unencrypted 
form achieves high precision-recall values, implying that it can correctly label a multitude of 
classes with minimal confusion. When encrypted, each class's prediction quality marginally 
declines, yet the model's overall predictive capacity remains robust, underlining the 
sophisticated capability of TenSEAL's encrypted computations to handle more intricate 
classification tasks. 
 
Reflecting on the previous datasets, the binary Pneumonia and multiclass Medical MNIST 
datasets showed a consistent trend where the encrypted models had decreased accuracy and 
increased computational costs compared to their unencrypted counterparts. The multi-label NIH 
dataset continues this trend, although the differences in accuracy and F1 score are less 
pronounced. This consistency across different types of data and model architectures underlines 
the trade-off inherent in encrypted machine learning: the maintenance of data privacy and 
security can come at the cost of computational efficiency and, to a lesser extent, model 
performance. 
 
The results from the NIH dataset, juxtaposed with the earlier datasets, reinforce the conclusion 
that machine learning on encrypted data is indeed feasible and can yield reliable models. 
However, the trade-offs in time and computational resources need to be carefully considered, 
particularly in real-world applications where efficiency and scalability are crucial. These 
findings are critical for researchers and practitioners in the field, as they highlight the 
importance of optimising encrypted machine learning pipelines and suggest that further 
research into more efficient encryption schemes and model architectures could significantly 
advance the field. 
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4.3 Medical image encryption visual effect 
 
Saving encrypted image data as a .png file, or any standard image format like .jpg or .bmp, is 
not feasible for a fundamental reason: encrypted data is not in a format that image viewers can 
interpret as an image. 
Here's why: 

1. Nature of Encrypted Data: When you encrypt data, especially with a scheme like 
CKKS in TenSEAL, the output is a complex and structured binary blob that doesn't 
correspond to the pixel value structure expected in image files. Encrypted data typically 
contains a lot of metadata and encoded information that is necessary for decryption and 
further processing. 

2. Image File Formats: Standard image formats like PNG, JPEG, or BMP have specific 
structures and metadata that define how pixel data is stored and displayed. These 
formats are designed for efficient storage and rendering of visual data, not for storing 
encrypted binary data. 

3. Compatibility and Integrity: Saving encrypted data in an image format would not only 
break the compatibility with image viewing/editing software, but it could also corrupt or 
lose vital information necessary for decryption. Encrypted data needs to be preserved in 
its exact format for decryption to be successful. 

Therefore, when dealing with encrypted data, it's standard practice to save it in a binary format 
(like .bin), which faithfully preserves the data without imposing any additional structure or 
potential data loss. This ensures that when you later decrypt the data, you receive it exactly as it 
was before encryption, maintaining its integrity and usability. 
 
However, to verify the performance of the image encryption method based on logical mapping 
constructed in this paper, encryption experiments have been carried out on a random image 
from each dataset. The experimental results in Fig. 4.1 show that the scrambling effect of the 
image after logical mapping encryption is still ideal. At the same time, the decrypted image 
recovers the accurate information of the original picture. 
 

   
 Fig 4.2 Visual Impact of Encryption  
   
In the context of homomorphic encryption for machine learning on medical images, the trade-
off between image resolution and computational overhead becomes a pivotal consideration. The 
core advantage of homomorphic encryption lies in its ability to perform computations on 
encrypted data, thereby preserving privacy and security while still allowing for the extraction of 
valuable insights through machine learning algorithms. 
 
The first image, illustrating the encrypted state, visually encapsulates the essence of 
homomorphic encryption — the original content is transformed into a form that is secure and 
unintelligible to unauthorised entities. This ensures that sensitive medical data, when encrypted, 
can be utilised in a machine-learning context without exposing the actual patient data, thus 
upholding privacy regulations and patient confidentiality. 
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The second image, a clear, high-resolution X-ray, represents the type of detailed data required 
for accurate medical analysis. High-resolution images provide a wealth of information 
necessary for nuanced machine-learning models, such as those used in medical diagnostics. 
However, the increased data volume from higher-resolution images poses a substantial 
challenge for homomorphic encryption. The algorithms need to manage a more considerable 
number of computations per image, which can significantly impact processing time and 
computational resource allocation. 
 
In homomorphic machine learning, the balance between resolution and computational 
feasibility is critical. High-resolution images are desired for their detailed content, which can 
lead to more accurate machine-learning models. However, the encryption of these larger data 
sets requires more powerful computational resources and optimised algorithms to maintain 
efficiency. The encryption process becomes a bottleneck if the computational resources cannot 
keep up with the data volume, potentially leading to delays in data processing and analysis. 
 
The resolution of images directly affects the size of the ciphertexts and the complexity of the 
operations that can be performed on them. In practice, this might necessitate a compromise 
wherein images are processed at a slightly reduced resolution to ensure that machine learning 
models can be trained and utilised promptly, without undermining the model's performance. 
Alternatively, advancements in homomorphic encryption techniques and hardware acceleration 
may provide solutions that allow for handling high-resolution images without significant 
performance trade-offs. 
 

4.4 Key sensitivity evaluation 
 
Homomorphic encryption (HE) offers a groundbreaking solution to a longstanding challenge in 
privacy-preserving computations. By facilitating operations directly on encrypted data without 
needing to decrypt it first, HE makes it feasible to compute intricate machine learning models 
on sensitive datasets, like medical data, while keeping individual data points confidential. In the 
context described, a specific form of HE, CKKS, performs computations for a neural network 
model on encrypted data. The selected parameters' sensitivity plays a pivotal role in the 
system's overall efficacy, security, and accuracy. The relationship between the coefficient 
modulus and the polynomial modulus degree is a primary concern. These parameters are 
intrinsically linked to the security of the encryption process. For a designated security level, 
such as 128 bits, if the commute security guarantees might be at risk if the cumulative bit count 
of the coefficient modulus breaches a predefined threshold for a given polynomial modulus 
degree, these guarantees, the polynomial modulus degree needs to be elevated. For instance, in 
the context provided, the polynomial modulus degree 8192 is judiciously chosen based on a 
compromise between computational performance and robust security. 
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Another subtle yet essential facet is the rescaling process and scale's role in this context. 
TenSEAL, as the chosen HE library, mandates that all elements of the coefficient modulus 
array, except the first and last, be identical to ensure efficient rescaling of ciphertexts during 
computations. Venturing into the application domain, the neural network model showcased in 
EncConvNet illuminates how encrypted computations materialise using the model's intrinsic 
parameters like weights and biases. The model's architecture, layers, and even activation 
functions introduce an additional layer of sensitivity in the entire system. Adjustments or shifts 
in the model could dictate modifications in the way encrypted computations are carried out. 
This dynamic relationship underscores the need to perpetually adjust and fine-tune the 
encryption parameters, especially when dealing with machine learning models with fluctuating 
precision requirements. 
 
The intricacies of choosing and fine-tuning encryption parameters in homomorphic encryption 
can't be overstated. Balancing the trinity of security, performance, and precision becomes a 
continual endeavour, endeavouring when aiming to harness the power of machine learning on 
encrypted medical data—the promise of deriving meaningful insights from such data while 
preserving individual privacy. 
 

4.5 Encryption Speed and Efficiency 
 
The efficiency of the cryptographic protocol is evaluated against the computational overhead 
introduced by the encryption and decryption processes. While HE protocols inherently incur 
performance penalties due to their complex nature, the study investigates optimisation strategies 
to mitigate these effects, thus ensuring practicality. Concurrently, the security analysis delves 
into the robustness of the CKKS scheme against various attack vectors, affirming its suitability 
for securing sensitive medical data. 
 
Encrypting any random 1024x1024 image from the NIH dataset could take from 0.19 seconds 
to 2.18 seconds depending on the size of the files not just the pixel count. Overall, with an  
Intel(R) Core(TM) i7-12700F processor, encrypting the whole NIH dataset, including the 
training, validation and testing splits, took 30 hours, 6 minutes, and 2 seconds.given that there 
were 112,120 images in the entire dataset. However, for the machine learning model, as each 
image was first reduced to a 28x28 resolution, encrypting. 
 
The stark contrast in training times between the unencrypted and encrypted datasets is 
indicative of the computational complexity that encryption adds to machine learning processes. 
The use of encryption techniques, such as Homomorphic Encryption (HE), ensures data privacy 
and security but at a significant cost to computational efficiency. 
 
In the case of the Pneumonia dataset, the training time increases approximately 29-fold when 
the data is encrypted. For the Medical MNIST dataset, the training time more than doubles, and 
for the NIH dataset, the time extends over threefold. The training time for encrypted data 
skyrockets to over 16 hours, compared to just over 5 hours for unencrypted data. This vast 
difference is a clear illustration of the challenges faced when implementing privacy-preserving 
techniques in machine learning. The intensive computational demand poses practical 
limitations, especially for larger datasets or when multiple epochs are necessary for model 
convergence. 
 
The extended training times for encrypted datasets can be attributed to the intricate 
mathematical operations required to perform calculations on encrypted data without decryption. 
Each operation on encrypted data involves complex polynomial computations and noise 
management to maintain the encryption throughout the process. These operations are not only 
computationally intensive but also require careful tuning of parameters to balance between 
encryption strength and computational feasibility. 
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For the encrypted Pneumonia, Medical MNIST and NIH datasets, the decision to limit the 
epochs for encrypted data to just one indicates a compromise between achieving model 
performance and maintaining reasonable training durations. This compromise is often necessary 
in practice, where time and resource constraints are critical factors. 
 

4.6 Evaluation of Decryption Accuracy 
 
Incorporating homomorphic encryption within deep neural networks (DNNs) for machine 
learning necessitates a nuanced understanding of the data workflow. It is crucial to underscore 
that the visual representation of the encrypted image, such as the .png file, is not directly used 
in model training or encrypted inference. This visual form is merely a symbolic representation, 
lacking the mathematical properties required for computation within encrypted domains. 
 
Before an image can be fed into an encrypted CNN with encrypted inferencing, it must undergo 
a re-encoding process that aligns it with the encryption scheme's expectations and the model's 
input requirements. This process typically involves adjusting the image's resolution to match the 
input layer's dimensions and converting the image into a flattened array or a suitable tensor 
format. The re-encoding is guided by the poly_modulus_degree and other parameters of the 
homomorphic encryption context to ensure the data fits within the ciphertext's limits and 
maintains the structural integrity required for correct mathematical operations. 
 
The re-encoded image data then undergoes encryption, resulting in ciphertexts that are 
compatible with the homomorphic operations performed by the CNN with encrypted 
inferencing. These operations are designed to preserve the encrypted state throughout the 
model's layers, allowing for predictions and analyses to be made without ever decrypting the 
sensitive data. This capability is paramount, especially in scenarios where privacy preservation 
is as critical as the analytical output, such as in medical diagnoses based on machine learning 
models. 
 
 
Therefore, the role of the encrypted .png is to provide a visual checkpoint of the encryption's 
effect on the data, serving as a confirmation that the original content has been secured. The 
subsequent steps of re-encoding and encryption are fundamental to preparing the data for 
homomorphic processing, ensuring that the neural network can operate on the data while fully 
preserving the privacy of the underlying information. This workflow exemplifies the intricate 
balance between data utility and privacy preservation that homomorphic encryption seeks to 
achieve in the realm of machine learning. 
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4.7 Impact Analysis 
 
The pursuit of integrating homomorphic encryption (HE) with machine learning (ML) 
represents a bold foray into the unknown, striving to reconcile the often conflicting objectives 
of data privacy and analytical utility. Within the realm of this thesis, the application of HE to 
ML, particularly with encrypted data processing, casts a transformative light on model 
performance and operational dynamics. 
 

4.7.1 Impact of Encryption on Model Performance 
 
HE introduces a veil of complexity atop the seemingly straightforward process of model 
training and encrypted inference. The encrypted data, while preserving privacy, obscures the 
subtleties of the information that ML models rely upon to learn and make decisions. This 
transformation can have profound implications for model performance. One primary 
observation is the alteration of the data's representation—its transformation into a form that is 
inherently noise-laden and approximate, rather than precise and definitive. This approximation 
demands that models built on HE must grapple with a reduction in the clarity of signals they are 
designed to detect and interpret. 
 
The convolutional neural network (CNN), a stalwart in the analysis of visual data, must operate 
under these constraints when dealing with encrypted data. The convolutional layers, responsible 
for extracting salient features, confront a data representation that is inherently fuzzier, 
potentially impeding the model's ability to discern critical features with the acuity required for 
high performance. The activation functions, too, must be re-envisioned to accommodate the 
peculiarities of encrypted computation, possibly affecting the gradients and, consequently, the 
learning process itself. 
 
Model training, an already resource-intensive endeavour, faces amplified computational 
demands. The iterative process of adjusting weights and biases, a dance choreographed by the 
gradient descent, is slowed by the intricacies of encrypted arithmetic. The computational 
overhead not only extends training times but also poses questions about scalability and 
practicality, especially for models of considerable complexity and depth. 
 

4.7.2 Observed Impacts and Challenges 
 
The utilisation of HE in CNNs inherently introduces computational overhead. This overhead is 
attributed to the complexity of performing arithmetic operations on encrypted data, which is 
more resource-intensive than on plaintext. However, the strategic choice and optimisation of 
CKKS parameters mitigate this impact, enabling the encrypted CNN with encrypted inferencing 
to operate with acceptable efficiency levels. The study assesses this trade-off, providing insights 
into how the CKKS scheme can be tuned for optimal performance in a machine-learning 
context. 
 
Beyond performance, encryption speeds, training and testing times, and several other impacts 
and challenges emerge when processing encrypted data. For instance, hyperparameter tuning—

an already delicate task—becomes more formidable. Learning rates, batch sizes, and network 
architectures that were optimal in the plaintext domain may no longer be suitable. The 
encryption layer necessitates a recalibration of these parameters, with each choice needing to be 
weighed against the computational cost and the impact on privacy. 
 
Furthermore, the encrypted domain restricts the gamut of feasible operations. Certain non-linear 
operations and optimisation algorithms that are staples in plaintext ML cannot be directly 
applied to encrypted data. This limitation mandates the exploration of alternative methods that 
are HE-compatible, often at the expense of simplicity and sometimes efficiency. 
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Privacy, the driving force behind HE, does not come without trade-offs. As the model navigates 
the encrypted landscape, the potential for a decrease in accuracy must be acknowledged and 
addressed. This accuracy-privacy trade-off is at the heart of the challenge and inspires the quest 
for innovative solutions that can deliver both robust privacy and respectable model 
performance. 
 
Moreover, the latency introduced by HE can impact the user experience and the real-time 
applicability of ML systems. In fields like healthcare, where decisions often need to be made 
swiftly, any delay introduced by encrypted data processing must be justified by the 
corresponding privacy benefits. 
 
The interplay between homomorphic encryption and machine learning is a tale of adaptation 
and innovation. As encrypted models venture into this new territory, their performance and the 
challenges they face underscore the complexity of balancing privacy with analytical prowess. 
The insights gleaned from this thesis illuminate the path forward—a path that promises the 
realisation of secure, privacy-preserving ML systems capable of operating with the encrypted 
data, without sacrificing the core tenets of performance and utility that make ML such a 
powerful tool in the modern analytical arsenal. 
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Chapter 5 - Discussion  
 
In this discussion, we examine the profound implications of the study's findings of machine 
learning and data privacy within the realm of medical diagnostics. The research has successfully 
navigated the intricate balance between leveraging the computational power of Convolutional 
Neural Networks (CNNs) and preserving the sanctity of patient data through homomorphic 
encryption. This exploration extends beyond technical achievements, heralding a shift towards a 
more secure and privacy-conscious application of machine learning in healthcare. 
 

5.1 Alignment of Research Outcomes with Aims and Objectives 
 
RA1: The successful integration of fully homomorphic encryption within the machine learning 
models as described in Section 3.7.3 exemplifies the practical application of advanced 
cryptographic techniques in medical diagnostics. The detailed methodology and encryption 
process outlined in Section 3.6 confirm the robustness and viability of these techniques. 
 
RA2: Section 4.8's thorough investigation into the impact of encryption on model performance, 
coupled with the privacy measures detailed in Section 3.6, underscores the security benefits and 
privacy preservation achieved by this study. These sections validate the model's compliance 
with privacy regulations and its potential to safeguard patient data. 

 
RA3: The model architecture crafted for encrypted data, as discussed in Section 3.7, along with 
the performance metrics reported in Section 4.1, demonstrates the model's capability to 
diagnose chest X-ray diseases with precision. These results affirm the model's effectiveness in 
encrypted inferencing, marking a significant stride in privacy-preserving medical diagnostics. 

 
RA4: The comparative analysis of encrypted versus unencrypted data performance metrics in 
Section 4.1, alongside the decryption accuracy evaluation in Section 4.6, provides evidence of 
the efficiency and accuracy of the encrypted inferencing models. This evidence attests to the 
achievement of the research aim to evaluate the performance and efficiency of privacy-
preserving machine learning models. 
 

5.2 Ethical Implications and Data Privacy 
 
In discussing the implications of applying machine learning to encrypted medical data, the 
study aligns with the research objectives by demonstrating a balance between computational 
effectiveness and data privacy—central to RQ1 and objectives RO1 and RO2. 
 
The ethical dimensions of data privacy in medical research and practice are of supreme 
importance. This research underlines the ethical imperative to protect patient data, contributing 
a technological means to uphold this principle. The encryption techniques utilised serve as a 
model for how privacy can be embedded into the fabric of data analysis, setting a precedent for 
ethical conduct in the digital age. 
 
The cryptographic protocols chosen for this study reflect a deliberate balance between security 
and computational practicality. The selected CKKS homomorphic encryption scheme emerges 
as a cornerstone of the study's cryptographic approach, enabling secure and private data 
analysis in a machine-learning context. The insights drawn from the implementation and 
performance evaluation of these protocols contribute to the broader understanding of secure 
machine learning and its potential applications in the healthcare industry, where data privacy 
cannot be compromised. 
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5.3 Comparative Analysis and Model Performance 
 
The performance analysis of machine learning models operating on encrypted medical data, 
discussed in this section, ties directly to RQ2 and RQ4. In evaluating the accuracy and 
efficiency of these models in predicting chest-related diseases from encrypted chest X-ray 
images, showcasing the practical implications and challenges without compromising the data's 
encrypted state. This section aligns with RO3 by assessing the diagnostic capabilities of the 
privacy-preserving machine learning model and its potential impact on healthcare outcomes. 
 
A typical CNN trained on unencrypted data exhibits notable computational efficiency, 
processing information rapidly due to the absence of encryption overhead (Shokri & 
Shmatikov, 2015). Such models can leverage advanced deep learning optimisations, often 
resulting in superior performance metrics. In contrast, a privacy-preserved CNN utilising 
encrypted inference, while safeguarding data confidentiality, encounters a computational 
burden due to the intricacies of encrypted operations (Gilad-Bachrach et al., 2016) This model's 
performance is influenced by the encryption-induced noise and the complexity of operations on 
encrypted data. The choice between a conventional CNN and a privacy-preserved CNN hinges 
on the context: the former for efficiency with non-sensitive data, and the latter for 
confidentiality when handling sensitive information.  
 
The EncConvNet doesn't directly inherit the ConvNet model but rather the learned parameters 
(weights and biases). It defines a new forward method that handles encrypted data throughout 
the inference process. The design allows the neural network to operate on encrypted data 
without seeing raw, unencrypted data. This maintains data privacy while still enabling the 
model to make predictions. 
 
The encrypted inference process requires more time due to the complexity of encrypted 
operations, as seen in the increased time taken for enc_test. However, this trade-off is essential 
for preserving privacy during inference, especially for sensitive data such as medical images. 
In essence, machine learning with encrypted inference allows the model to operate as if it were 
making predictions on unencrypted data. Still, it does so in a way that ensures the data remains 
encrypted and private throughout the process. This approach is powerful as it opens up the 
possibility of utilising machine learning in scenarios where data privacy is paramount without 
compromising the utility of the data (Mohassel & Zhang, 2018). 
 
In contrast to the EncConvNet, the ConvNet model trained on unencrypted data operates with 
greater computational efficiency. The absence of encryption and decryption steps allows for 
rapid data processing, leading to shorter training and inference times. However, this efficiency 
comes at the cost of data privacy, as raw data can be exposed to the model during training and 
inference, posing potential privacy risks, especially with sensitive datasets. 
 
ConvNet's direct interaction with unencrypted data enables it to leverage optimised hardware 
and software for deep learning, often resulting in higher performance metrics due to the lack of 
encryption-induced noise. Yet, in scenarios demanding stringent data confidentiality, such as 
medical or financial contexts, the privacy-preserving characteristics of EncConvNet become 
crucial despite the computational overhead. Here, the trade-off becomes a pivotal consideration: 
ConvNet's efficiency is suitable for non-sensitive data, while EncConvNet's privacy-preserving 
nature is essential for confidential data, even with its increased computational demands. 
 
 
 
 

5.4 Enhancing Trust and Addressing Bias in  
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Storage of Encrypted Healthcare Information 
 
Addressing to RQ3, the importance of trust and transparency in the use of encrypted models, 
aligning with RO2 and RO3, advocating for explainability in AI and the mitigation of bias 
mentioned in RO4, are crucial for user trust and model reliability. 
 
In healthcare AI, trust is built on a foundation of transparency and clear communication about 
how patient data is used and protected. While encrypted models provide robust privacy, they 
also introduce a layer of complexity that can obscure understanding. Enhancing trust in these 
models demands a two-pronged approach: first, by creating interfaces that articulate model 
processes and decisions in user-friendly language; second, by establishing rigorous, 
independent audit trails that certify the integrity of the encryption and the fidelity of the model's 
outputs (Ryan Yackel, 2021). Future initiatives could include partnerships with patient 
advocacy groups to co-develop educational materials, ensuring the benefits of encrypted models 
are communicated. Additionally, incorporating feedback mechanisms within the model's 
interface can allow users to report issues or misunderstandings, fostering a continuous 
improvement cycle and reinforcing trust. 
 
Trust and transparency are paramount in healthcare applications of machine learning. Encrypted 
models, while enhancing privacy, may be perceived as opaque due to their concealed data 
processing. To foster trust, it's essential to develop explainable AI frameworks that can 
elucidate model decisions without compromising privacy. The opacity of encrypted models in 
healthcare can be addressed with explainable AI frameworks and transparent performance 
reporting (Chen, Gao, Jiang, & Wen, 2020). Additionally, patient and practitioner education on 
the benefits and workings of encrypted models is vital for acceptance. Future research should 
focus on explainability in the context of encrypted inference, ensuring that these advanced 
models remain accountable and comprehensible to their users. 
 
Addressing bias in machine learning requires a comprehensive strategy that spans data 
collection, model development, and post-deployment monitoring. Encrypted models must be 
stress-tested against diverse data scenarios to uncover latent biases. This could involve synthetic 
data generation techniques that amplify underrepresented patterns in the training data, ensuring 
the model's robustness across various patient demographics.To ensure model equity, bias-
auditing algorithms compatible with encrypted data are needed, alongside diverse development 
teams for preemptive bias identification (Aslett, Esper, & Holmes, 2015). Beyond technical 
solutions, fostering a diverse team of developers, inclusive of various backgrounds and medical 
expertise, can provide critical perspectives that preemptively identify and address potential 
biases. As models are deployed, open channels for patient and clinician feedback will be 
essential to capture real-world experiences and refine the models accordingly. 
 
A critical aspect of deploying machine learning models in healthcare is ensuring they perform 
equitably across diverse patient populations. Encrypted models must be trained and validated on 
real-world data that reflects the demographic and clinical diversity of the intended user 
population. Attention must be given to identifying and mitigating biases that could be amplified 
by the model, especially when dealing with encrypted data where direct inspection of data 
points is not possible. Training encrypted models on diverse real-world data ensures they 
perform equitably across patient populations, requiring robust methodologies for bias detection 
and correction (Abdullahi Monday et al., 2018). 
 
 
 
 

5.5 Impact on Clinical Practice and Compliance 
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This section corresponds to RQ3, which examines the implications of integrating fully 
homomorphic encryption and secure encrypted inference in maintaining data confidentiality 
during the diagnostic process. It also aligns with RO4, which focuses on evaluating the 
performance and efficiency of privacy-preserving machine learning models and emphasises 
their compliance with regulatory standards and impact on clinical practice. 
 
Regulatory compliance for encrypted machine learning systems in healthcare is multifaceted. 
Beyond adhering to data protection laws, these systems must meet clinical safety standards, 
such as those outlined by the FDA for medical devices (Johnson & Williams, 2022). Proactive 
engagement with regulatory bodies during the development process can help shape a 
compliance framework tailored to encrypted models. This could involve creating new 
benchmarks for model performance that account for the nuances of encrypted data. 
Additionally, developing standardised protocols for model reporting and incident response can 
demonstrate due diligence and a commitment to patient safety. As regulations evolve, 
continuous dialogue between AI developers, healthcare providers, and policymakers will be 
crucial to refine compliance measures that both encourage innovation and maintain the highest 
standards of patient care. 
 
Machine learning models operating on encrypted medical data must navigate a complex 
landscape of regulations designed to protect patient privacy. Compliance with frameworks like 
GDPR or HIPAA is crucial for encrypted models, necessitating rigorous validation and 
documentation (Doe & Smith, 2023) Encrypted models offer a path to compliance by design, 
ensuring data privacy at a technical level. However, meeting regulatory standards also involves 
demonstrating the efficacy and safety of these models.  
 
The introduction of encrypted machine learning models into clinical practice could 
revolutionise patient data management, offering unprecedented levels of data privacy (Li et al., 
2020). However, it also presents challenges in integration with existing clinical workflows, 
which may not be equipped to handle the additional computational requirements or the 
operational changes these models necessitate. Collaboration with clinical practitioners from the 
early stages of model development is crucial to ensure that the models fit seamlessly into the 
clinical workflow, enhancing rather than hindering medical practice. Clinicians' feedback 
should inform iterative improvements, ensuring the models support clinical decision-making 
effectively and efficiently. 
 
For this to happen, models must be designed with an intimate understanding of clinical needs, 
ensuring they augment rather than disrupt medical practices (Wang et al., 2021). This requires a 
deep integration strategy where encrypted models are seamlessly embedded into electronic 
health record systems, diagnostic tools, and decision support systems. Hands-on training 
programs for clinicians can demystify the technology and highlight its practical benefits. The 
development of a robust support infrastructure is also crucial, ensuring healthcare providers 
have access to technical assistance when needed. Long-term studies to assess the impact of 
encrypted models on clinical outcomes, patient satisfaction, and operational efficiency will be 
invaluable in demonstrating their value proposition, and encouraging widespread adoption. 
 
 
 
 
 
 
 

5.6 Scalability, Practicality, and Future Directions 
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The discussion on scalability and practicality to RQ5, acknowledging the need for future 
advancements in computational efficiency (RO5) and practical deployment (RO2). 
 
For encrypted machine learning models to scale effectively in clinical environments, they must 
address not only the volume of data but also the variety and velocity at which it is generated 
(Gilad-Bachrach et al., 2016). Innovative strategies, such as federated learning, could 
decentralise the computational load, while edge computing could process data closer to its 
source, reducing latency. Moreover, scalability extends to model maintenance; the ability to 
update models with new data without extensive downtime is crucial. Exploring differential 
privacy alongside encryption might provide a pathway to update models using aggregated data 
insights rather than raw data. Practicality also encompasses user experience—models must 
integrate into healthcare providers' routines without adding undue complexity. User-centric 
design principles should guide the development of interfaces for encrypted models, ensuring 
they align with clinical workflows and are accessible to all healthcare staff, regardless of their 
technical expertise. 
 
The scalability of machine learning models using encrypted inference is a critical concern for 
their adoption in clinical settings (Mohassel & Zhang, 2018). The computational intensity of 
encrypted operations poses a challenge for scalability. Practical deployment requires balancing 
encryption's security benefits with the need for timely and efficient data processing. 
Investigations into parallel computing, hardware acceleration, and more efficient homomorphic 
encryption algorithms are needed to address these scalability issues. Moreover, developing 
models that can be incrementally trained or quickly updated with new data without extensive 
re-encryption processes would make these approaches more practical for real-world 
applications. 

 
for each image in dataset: 
    resize(image, (28, 28)) 
    tensor = image_to_tensor(image) 
    encrypted_tensor = CKKS_encrypt(tensor) 
    save(encrypted_tensor, 'encrypted_data.bin') 

 
The study presented in this thesis, constrained by a twelve-week time frame, has paved the way 
for numerous enhancements that can significantly elevate the robustness and efficacy of the 
current model. One of the primary areas for improvement revolves around the resolution of 
input images. In this study, images were resised to 28x28 pixels to align with the operational 
capabilities of TenSEAL's tensor computations under CKKS encryption. The images are resised 
to a uniform dimension of 28x28 pixels to reduce computational demands and standardise input 
data size. This is crucial for homomorphic encryption due to its computational intensity.  
 
This resising is a double-edged sword; while it ensures compatibility with encrypted data 
processing, it inevitably leads to a substantial loss of detail, which can be detrimental to the 
model's accuracy. High-resolution images contain critical diagnostic information that, when 
preserved, could drastically improve the reliability of predictions. Future work should focus on 
extending TenSEAL's functionalities or seeking alternative libraries that support operations on 
higher-resolution encrypted data without compromising on computational efficiency. 
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The necessity of downscaling images to 28x28 pixels to comply with the computational 
restrictions imposed by TenSEAL's CKKS encryption significantly affects the model's 
performance (Bishop, 2006). The resulting loss in image quality and the concomitant reduction 
in diagnostic features can lead to suboptimal predictive accuracy, potentially impacting clinical 
decisions. In future work, there is a pressing need to explore innovative encryption-compatible 
convolution operations that can handle higher-resolution images without compromising on 
computational feasibility.  
 
Advanced deep learning models are particularly sensitive to input resolution, and enhancing 
image quality could lead to marked improvements in the detection of subtle pathological 
features. This could involve the development of more sophisticated encryption-friendly image 
processing techniques or even entirely new encryption schemes designed to work seamlessly 
with high-dimensional data. The goal would be to enable the processing of medical images at 
their native resolution, thereby preserving the rich details necessary for accurate diagnosis and 
treatment planning. 
 
In terms of cryptographic security, employing larger keys would bolster the model's defence 
against potential adversarial attacks, ensuring the confidentiality of sensitive health data 
(Gentry & Halevi, 2011). This upgrade requires not only software modifications but also 
hardware considerations to handle the increased computational load. Investigating multi-
threading and distributed computing solutions could mitigate the performance hit associated 
with larger keys. Further research into adaptive encryption techniques could also offer a 
dynamic balance between computational demand and security based on the sensitivity of the 
data being processed.  
 
On the aspect of data partitioning, experimenting with various training-testing splits would 
provide deeper insights into the model's learning capacity and predictive stability. This could be 
complemented by cross-validation techniques to ensure comprehensive assessment across 
different subsets of data. Additionally, introducing a validation dataset is imperative for an 
unbiased evaluation of the model's performance, allowing for iterative refinements and tuning 
of hyperparameters. Such methodical validation is essential for transitioning from theoretical 
models to clinical applications, where the stakes are significantly higher. Additionally, further 
experimentation with different data splits such as 90-10, 80-20, and 60-40 could provide 
insights into the model's generalizability and robustness across various training and testing 
scenarios. The incorporation of a validation set is also critical for hyperparameter tuning and 
model selection, which were beyond the scope of the current study due to time constraints. 
 
The current limitation of TenSEAL to CPU-bound operations significantly hampers training 
efficiency (Bos et al., 2014). The advent of GPU optimisation in TenSEAL could dramatically 
change the landscape of homomorphic encryption in deep learning. Currently, CPU-bound 
operations are a significant bottleneck, slowing down experimentation and iteration cycles. The 
integration of GPU support would align homomorphic encryption techniques with 
contemporary deep learning workflows, which are predominantly GPU-accelerated. 
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The comparison of training times serves as a quantitative measure of the trade-offs involved in 
privacy-preserving machine learning (Micciancio, 2019). While encryption provides the means 
to protect sensitive data, it also imposes a significant computational burden that must be 
accounted for in practical applications. Future work might explore optimisations in encryption 
algorithms, parallel computing, or hardware accelerators like GPUs to mitigate these overheads. 
Additionally, research into model architectures that are inherently more efficient with encrypted 
data could also be a valuable avenue to pursue.  
 
As the library matures, the introduction of GPU optimisation could herald a new epoch in the 
training of encrypted models, dramatically reducing computation times and facilitating more 
complex model architectures (Ryan, 2021). This would not only expedite the research and 
development process but also improve the viability of deploying these models in actual 
healthcare settings, where speed is often critical. Moreover, the expansion of TenSEAL to 
include GPU acceleration would potentially unlock the ability to train more complex models, 
such as deeper neural networks, that could capture more nuanced patterns in data. Looking 
forward, the field would benefit from a concerted effort to optimise encrypted machine learning 
operations across all hardware platforms, including specialised AI accelerators. Bridging the 
gap between the security of encryption and the efficiency of modern AI could lead to 
groundbreaking applications, especially in scenarios where data privacy is non-negotiable. 
 
Such advancements would not only expedite the research cycle but also make the deployment 
of encrypted machine-learning models in real-world clinical settings a tangible reality. The 
convergence of these improvements will undoubtedly propel the field of privacy-preserving 
machine learning forward, making it an indispensable tool in the healthcare industry's ongoing 
digital transformation (Kadykov et al., 2021).  
 

5.7 Concluding Remarks 
 
This thesis encapsulates the journey towards a synergy between machine learning and 
encrypted data, striding towards safeguarding patient privacy without compromising the 
analytical utility of sensitive medical information. This work stands as a testament to the 
potential of encrypted machine learning models in revolutionising data security in healthcare. 
 
This research contributes to the broader dialogue on the integration of homomorphic encryption 
with inferencing, illuminating paths forward for secure, privacy-preserving computational 
diagnostics. By emphasising the balance achieved between computational functionality and 
stringent data privacy requirements 
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Glossary 
Accuracy: This is a metric used to evaluate a model’s performance. In the context of 

classification, accuracy is the fraction of predictions our model got right. Formally, it is defined 
as the number of correct predictions divided by the total number of predictions. 
Batch Size: In machine learning, the batch size is the number of samples that will be passed 
through to the network at one time. 
Binary Classification: In machine learning, binary classification is a supervised learning 
algorithm that categorises new observations into one of two classes. 
Cheon-Kim-Kim-Song (CKKS): CKKS is a scheme for homomorphic encryption that allows 
computations on vectors of complex values (thus real values as well). It was first discussed in 
the paper “Homomorphic Encryption for Arithmetic of Approximate Numbers”. 
Convolutional Neural Network (CNN): A CNN is a type of deep learning neural network 
designed for processing structured arrays of data such as images. 
Deep Learning: A form of machine learning based on neural networks. 
Deep Neural Network (DNN): A CNN with encrypted inferencing is a neural network with a 
certain level of complexity, usually at least two layers. 
Epoch: An epoch is a complete pass through the entire training dataset. It is a unit of 
measurement used to track the progress of training in machine learning. 
Encrypted Inference: In the context of machine learning and data security, encrypted 
inference refers to the process of making predictions using a trained model on data that has 
been encrypted. 
F1 Score: The F1 score is a measure of a model’s accuracy on a dataset. It is used to evaluate 

binary classification systems, which classify examples into ‘positive’ or ‘negative’. 
Fully Homomorphic Encryption (FHE): FHE allows the evaluation of arbitrary circuits 
composed of multiple types of gates of unbounded depth. 
Homomorphic Encryption (HE): A cryptosystem that allows the secure processing of 
encrypted data. 
Hyperparameters: In machine learning, a hyperparameter is a parameter whose value is used 
to control the learning process. 
Learning Rate: In machine learning and statistics, the learning rate is a tuning parameter in an 
optimisation algorithm that determines the step size at each iteration while moving toward a 
minimum of a loss. 
Multiclass Classification: This is a classification task where each sample is assigned to one of 
more than two classes. For example, classifying types of wine. 
Multilabel Classification: This is a classification task where each sample can be labelled as 
belonging. 
Partially Homomorphic Encryption (PHE): In PHE, only a single mathematical function can 
be performed on encrypted values. 
Precision: Precision is the fraction of relevant instances among the retrieved instances. In other 
words, it is the number of true positives divided by the number of true positives plus false 
positives. 
Recall: Recall, also known as sensitivity, is the fraction of the total amount of relevant 
instances that were actually retrieved. It is the number of true positives divided by the number 
of true positives plus false negatives. 
Somewhat Homomorphic Encryption (SHE): SHE supports homomorphic operations with 
additions and multiplications. However, only a limited number of operations can be performed 
on the encrypted data. 
TenSEAL: TenSEAL is a library for performing homomorphic encryption operations on 
tensors. It’s built on top of Microsoft SEAL and provides ease of use through a Python API, 

while preserving efficiency by implementing most of its operations using C++. 
Test Loss: This is a measure of how well a model is able to make predictions on unseen data. 
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Appendix 
 

Fig.2.1 Searching the ScienceDirect library for peer-reviewed Journal articles and book 
chapters for keywords of:“ privacy-preserving, machine learning, encryption, differential 

privacy” 

 
Fig.2.2 Searching the ProQuest library for peer-reviewed. Journal articles and book chapters 

in the area of: “Homomorphic Encryption and Applications” and “Fully Homomorphic 

Encryption in Real World Applications” 
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Fig.2.3  Searching on Google Scholar for peer-reviewed Journal articles and book chapters in 

the area of:“Homomorphic Encryption” 

 
 

Fig.2.4 Searching on UTS Library for texts on “Fully homomorphic Encryption” 
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Fig 3.1 Normal Chest X-ray (Pneumonia Dataset) Fig 3.2 Pneumonia Chest X-ray (Pneumonia 
Dataset) 

 
 
 

Fig 3.3 18 random samples, three of each  class (Medical MNIST Dataset) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 3.4 16 random Chext X-ray samples (NIH Chest X-Ray Dataset) 
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Fig 3.5 Class Imbalance (NIH Dataset) 

 
Fig 3.6 Class Distribution Pie-Chart (Medial MNIST Dataset) 

 
Fig 3.7 Class Distribution Pie-Chart (Pneumonia Dataset) 
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Fig 3.8 – Machine Learning with Encrypted Inference Pipeline 

 
Fig 4.1 Confusion Matrix of Pneumonia (X-Ray) - Unencrypted Dataset Model 

 
Fig 4.2 ROC Curve graph of Pneumonia (X-Ray) - Unencrypted Dataset Model 

 

 
Fig 4.3 Precision-Recall Curve Graph of Pneumonia (X-Ray) - Unencrypted Dataset Model 
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Fig 4.4 Confusion Matric graph of Pneumonia (X-Ray) - Encrypted Dataset Model 
 

 
Fig 4.5 ROC Curve graph of Pneumonia (X-Ray) - Encrypted Dataset Model 

 
Fig 4.6 Precision-Recall Curve Graph of Pneumonia (X-Ray) - Encrypted Dataset Model 
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Fig 4.7 Confusion Matrix of Medical MNIST - Unencrypted Dataset Model 

 

 
Fig 4.8 ROC Curve of Medical MNIST - Unencrypted Dataset Model 

 
 

Fig 4.9 Precision Recall Curve of Medical MNIST - Unencrypted Dataset Model 
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Fig 4.10 Confusion Matric graph of Medical MNIST- Encrypted Dataset Model 

 
Fig 4.11 ROC Curve graph of Medical MNIST - Encrypted Dataset Model 

 
Fig 4.12 Precision-Recall Curve graph of Medical MNIST - Encrypted Dataset Model 
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Fig 4.13 ROC Curve of NIH - Unencrypted Dataset Model 

 
Fig 4.14 ROC Curve of NIH - Unencrypted Dataset Model 
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Fig 4.15 Visual Impact of Encryption with CKKS 

 
 
 

Table 1 – List of critically evaluated sources 
Source Source Title Author(s) Year of 

Publication 
1 Partially Encrypted Machine 

Learning using Functional 
Encryption 

T. Ryffel, E. Dufour-Sans, R. Gay, F. 
Bach, and D. Pointcheval 

2019 

2 Private AI – Machine Learning on 
Encrypted Data 

K. Lauter 
Springer International Publishing 
Pages: 97-113 

   2022 

     
Table 2 – CKKS Encryption Parameters for Encrypted Inference Model 

Parameter Description Value 
bits_scale Controls the precision of the fractional 

part.  
26 
  

poly_modulus_degree Determines the polynomial modulus 
degree for encryption context.  

8192  

coeff_mod_bit_sizes Bit s s of coefficients in the modular 
polynomial.  

[31, 26, 26, 26, 26, 26, 26, 31] 

global_scale Defines the scale used in encryption to 
preserve precision.  

pow(2, bits_scale) 

galois_keys Required for performing ciphertext 
rotations.  

Generated based on context. 

secret_key The key is used to encrypt and 
decrypt data. 

       Generated and kept private. 

 
Table 3.1 – CNN Architecture 

Layer (Type) Output Shape Param 
# 

Details 

Conv2d (batch_size, 4, H', W') X 1 input channel, 4 output channels, kernel 
size=7, stride=3 
  

Square Activation 
(custom) 

(batch_size, 4, H', W') 0 Element-wise square function 

Flatten (batch_size, 256) 0 Flatten the output to vector 
  

Linear (batch_size, hidden) Y Fully connected layer, 256 inputs to hidden 
outputs 

Square Activation 
(custom) 

(batch_size, hidden) 0 Element-wise square function 

Linear (output) (batch_size, output) Z Fully connected layer, hidden inputs to output 
classes 
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Table 3.2 – CNN Architecture with Encrypted Inference 
Component Operation Description 
Convolutional 
Layer  

Encrypted 2D convolution 
(conv2d_im2col) 

Performs convolution over encrypted images 
using homomorphically encrypted kernels. 
  

Activation 
Function  

Squaring (square_) Applies an activation function by squaring 
the encrypted vector in place. 
  

Fully Connected 
Layer 

Vector-matrix multiplication 
(mm) and bias addition (+) 

Performs encrypted linear transformation 
followed by the addition of a bias vector to 
the squared encrypted vector.  

Output Layer Vector-matrix multiplication 
(mm) and bias addition (+) 

Transforms the activated encrypted vector 
into the final encrypted output which can be 
decrypted for prediction. 

 
 
 

Table 4.1 – Pneumonia (X-Ray) Unencrypted vs Encrypted Performance Metrics 
Dataset Test Loss Accuracy Precision Recall F1 

Score 
Training 
Time 

Memory 

Unencrypted 0.134289 0.9590 0.9587 0.9590 0.9588 32s 16.24 MB 
Encrypted 0.3198 0.8747 0.8847 0.8747 0.8643 15mins 28s 80.87 MB 

Table 4.1 – Pneumonia (X-Ray) Unencrypted vs Encrypted Performance Metrics 
 
 
 

Table 4.2 – Medical MNIST Unencrypted vs Encrypted Performance Metrics 
Dataset Test Loss Accuracy Precision Recall F1 

Score 
Training 
Time 

Memory 
Usage 

Unencrypted 0.096289 0.9977 0.9977 0.9977 0.9977 1min 35 16.91 MB  
Encrypted 0.864911 0.9562 0.9646 0.9562 0.9556 33mins 9s 349.61 MB 

 
 
 

Table 4.3 – NIH Unencrypted vs Encrypted Performance Metrics 
Dataset Hamming 

Loss 
Sample 

Wise 
Accuracy 

Precision 
(micro) 

Recall 
(micro) 

F1 Score 
(micro) 

Time Taken 

Unencrypted 0.0732 0.4415 0.6402 0.3091 0.4169 5hr 12min 32s 
Encrypted 0.0730 0.3883 0.6167 0.3524 0.4485 16hr 15min 47s 

 
 


