Wi-Fi Air Quality Monitor using ESP8266 & Arduino

Project Overview

This Wi-Fi Air Quality Monitor uses sensors to measure air pollutants (PM2.5, CO2, VOCs,
and temperature/humidity) and sends the data to a web dashboard for remote monitoring. It
can help track air pollution levels indoors or outdoors, making it useful for schools, offices, and
homes.

Objectives

</ Measure real-time air quality parameters (CO2, PM2.5, VOCs, temperature, humidity).
< Send data wirelessly to a cloud dashboard (ThingSpeak, Blynk, Firebase).

</ Display air quality on an OLED/LCD screen for local monitoring.

</ Trigger alerts when pollution levels exceed safe limits.

Components Required

. ESP8266 (NodeMCU or ESP-01) — Microcontroller with Wi-Fi capability.

. MQ135 Gas Sensor — Measures air quality (CO2, NH3, alcohol, benzene, smoke).

. DHT11/DHT22 Sensor — Measures temperature and humidity.

. OLED Display (0.96" 12C) / 16x2 LCD with I12C — Displays real-time air quality data.
. Jumper Wires & Breadboard — For circuit connections.

. 5V Power Supply (USB Adapter/3.3V Regulator) — Powers the ESP8266 and sensors.

How the System Works

. Sensors collect air quality data (CO2, PM2.5, VOCs, temperature, and humidity).

. ESP8266 processes the data and uploads it to the cloud.

. Users access real-time air quality reports on a web dashboard.

. The OLED/LCD screen displays live air quality readings locally.

. If air pollution exceeds safe limits, alerts (buzzer, LED, notifications) are triggered.

Circuit Diagram

Connections for MQ135 Sensor:

MQ135 ESP8266 (NodeMCU)
VCC 33V/5V

GND GND

A0 A0 (Analog Input)

Connections for DHT11 Sensor:

DHT11 ESP8266
VCC 33V/5V
GND GND
DATA D4

Connections for OLED Display (12C):

OLED (I2C) ESP8266
vCC 3.3V/5V
GND GND
SDA D2

SCL DI

Arduino Code for Wi-Fi Air Quality Monitor

This code reads air quality data and uploads it to ThingSpeak.

#include <ESP8266WiFi.h>
#include <DHT.h>

#define DHTPIN D4
#define DHTTYPE DHT11
DHT dht (DHTPIN, DHTTYPE) ;

const char* ssid = "Your WiFi Name";

const char* password = "Your WiFi Password";
const char* server = "api.thingspeak.com";
String apiKey = "Your ThingSpeak API Key";

WiFiClient client;
int MQ135 PIN = AO;

void setup() {
Serial.begin(115200) ;
dht.begin () ;

WiFi.begin(ssid, password);
while (WiFi.status() != WL CONNECTED) ({
delay (1000) ;
Serial.println ("Connecting to Wi-Fi...");

}

Serial.println ("Connected!");

}

void loop () |
float temp = dht.readTemperature() ;
float hum = dht.readHumidity () ;
int air quality = analogRead(MQ135 PIN);

if (isnan(temp) || isnan (hum)) {
Serial.println("Failed to read from DHT sensor!");
return;

}

Serial.print ("Temp: ");
Serial.print (temp) ;

Serial.print ("°C, Humidity: ");
Serial.print (hum) ;
Serial.print ("%, Air Quality: ");
Serial.println(air quality);

if (client.connect (server, 80)) {
String data = "GET /update?api key=" + apiKey + "&fieldl=" +
String (temp) + "&field2=" + String(hum) + "&field3=" + String(air quality):;
client.print (data);
client.stop();
}

delay (30000); // Upload data every 30 seconds

How to Use the System

Upload the code to ESP8266.

Connect to Wi-Fi and check the IP address in the Serial Monitor.
Visit the ThingSpeak dashboard to view real-time air quality data.
The OLED/LCD screen will display air quality readings locally.

If pollution levels are too high, LED/Buzzer alerts will activate.

Features & Benefits

</ Wi-Fi Connectivity — Monitor air quality remotely.
< Real-Time Updates — Sensor data updates every 30 seconds.
</ Cloud Storage — Logs air quality for historical analysis.

7 Local Display — View readings without needing an app.
< Air Quality Alerts — Buzzer, LED, or notifications for unsafe levels.

Future Enhancements

SMS/Email Alerts when air pollution exceeds safe limits.
Mobile App Integration for real-time monitoring.
Battery-Powered Version for portable use.

CO & NO?2 Sensors for advanced air quality analysis.

Would you like me to add mobile app support or email alerts for air pollution warnings?

