Smart Irrigation System Using Arduino

Project Overview

A Smart Irrigation System automatically waters plants based on soil moisture levels using a moisture sensor and water pump. This system helps conserve water, improve plant health, and reduce manual effort. It can also be enhanced with temperature and humidity monitoring for better control.

Objectives

- ✓ Monitor soil moisture using a sensor.
- Automatically turn the water pump ON/OFF based on moisture levels.
- ✓ Display real-time data on an LCD screen.
- 𝒞 Use temperature and humidity data for climate-based irrigation. ▮
- ✓ Optimize water usage for plant health.

Components Required

- 1. Arduino Uno Main microcontroller.
- 2. Soil Moisture Sensor Detects soil dryness.
- 3. Relay Module (5V) Controls the water pump.
- 4. Water Pump (5V/12V) Pumps water when needed.
- 5. DHT11/DHT22 Sensor (Optional) Measures temperature and humidity.
- 6. 16x2 LCD Display (I2C Module) Displays sensor readings.
- 7. Jumper Wires & Breadboard For connections.
- 8. 5V or 12V Power Supply To power the circuit and pump.

How the System Works

- 1. Soil Moisture Sensor continuously monitors soil moisture.
- 2. If the soil is dry, the relay activates the water pump to irrigate the plants.
- 3. Once the soil reaches the **desired moisture level**, the **pump turns off**.
- 4. The LCD display shows real-time moisture, temperature, and humidity readings.

Circuit Diagram

Soil Moisture Sensor to Arduino

Sensor PinArduino PinVCC5VGNDGNDA0 (Analog) A0

Relay Module to Arduino

Relay PinArduino PinVCC5VGNDGNDIN (Signal)D7

Water Pump to Relay Module

Pump PinRelay Pin+ (Positive)NO (Normally Open)- (Negative)COM (Common)

DHT11 Sensor to Arduino (Optional)

DHT Pin Arduino Pin	
VCC	5V
GND	GND

GND GN Data D6

Arduino Code for Smart Irrigation System

```
#include <DHT.h>
#include <LiquidCrystal_I2C.h>
#define SOIL_MOISTURE_SENSOR A0
#define RELAY 7
#define DHTPIN 6
#define DHTTYPE DHT11
DHT dht(DHTPIN, DHTTYPE);
LiquidCrystal I2C lcd(0x27, 16, 2); // LCD with I2C module
```

ARY BRAINS

```
void setup() {
  pinMode(SOIL MOISTURE SENSOR, INPUT);
  pinMode(RELAY, OUTPUT);
  lcd.begin();
  lcd.backlight();
  dht.begin();
  Serial.begin(9600);
}
void loop() {
  int moistureLevel = analogRead(SOIL MOISTURE SENSOR);
  float temperature = dht.readTemperature();
  float humidity = dht.readHumidity();
  Serial.print("Soil Moisture: ");
  Serial.println(moistureLevel);
  Serial.print("Temperature: ");
  Serial.println(temperature);
  Serial.print("Humidity: ");
  Serial.println(humidity);
  lcd.setCursor(0, 0);
  lcd.print("Moisture: ");
  lcd.print(moistureLevel);
  lcd.setCursor(0, 1);
  lcd.print("Temp:");
  lcd.print(temperature);
  lcd.print("C ");
                              // If soil is dry, turn on pump
  if (moistureLevel < 400) {
    digitalWrite(RELAY, LOW);
   lcd.print("Pump ON ");
  } else { // If soil is wet, turn off pump
    digitalWrite(RELAY, HIGH);
    lcd.print("Pump OFF");
  }
  delay(2000); // Wait before next reading
}
```

How to Use the Smart Irrigation System

- 1. Connect the components as per the circuit diagram.
- 2. Upload the code to the Arduino using the Arduino IDE.
- 3. Place the soil moisture sensor in the soil near the plant roots.
- 4. **Power the system** using a 5V or 12V power supply.
- 5. The LCD will display real-time moisture, temperature, and humidity.
- 6. If the soil is dry, the pump automatically starts watering.
- 7. Once the soil is **moist enough**, the pump **stops**.

Features & Benefits

- Automated irrigation based on soil conditions.
- \checkmark Saves water by only irrigating when needed.
- **Real-time monitoring** of moisture, temperature, and humidity.
- **Prevents overwatering** for healthier plants.
- \checkmark **Expandable system** Can control multiple zones.

Future Enhancements

Integrate Wi-Fi (ESP8266/ESP32) for remote monitoring. Send notifications via IoT platforms like Blynk or Firebase. Add a water level sensor to monitor tank levels. Use multiple soil sensors for different plants. Solar-powered system for off-grid operation.

BINARY BRAINS