

PART-A

1. If the difference between simple interests for 3 years and 4 years at 5% annual rate is 42, then the amount will be,

- (A) Rs.210
- (B) Rs.280
- (C) Rs.750
- (D) Rs.840

2. The sum of three consecutive even integer is 54. What is the smallest number?

- (A) 18
- (B) 14
- (C) 16
- (D) 12

3. Area of circle and a square is equal. Ratio of one side of the square to radius of the circle will be,

- (A) $1:\sqrt{\pi}$
- (B) $\sqrt{\pi}:1$
- (C) $1:\pi$
- (D) $\pi:1$

4. Fill in the blank to complete the series: 181, 174, 178, _____, 175, 182.

- (A) 174
- (B) 176
- (C) 178
- (D) 180

5. 'Tree' is related to 'Forest' in the same way as 'Soldier' is related to

- (A) Battle
- (B) Army
- (C) Gun
- (D) General

6. Pointing to a gentleman, Deepak said. "His only brother is the father of my daughter's father." How is that gentleman related to Deepak?

- (A) Father
- (B) Grandfather
- (C) Brother-in-law
- (D) Uncle

7. Complete the series BEP, CIQ, DOR, FUS, GAT,.....?

- (A) HEV
- (B) HIT
- (C) IET
- (D) IEU

8. Convert 36 km/hr into meters per second.

- (A) 10
- (B) 12
- (C) 15
- (D) 20

9. 'Wings of Fire' was written by_____.

- (A) APJ Abdul Kalam
- (B) Salman Rushdie
- (C) Amitav Ghosh
- (D) Shashi Tharoor

10. 'Chhau' dance is associated with which of the following states?

- (A) Punjab
- (B) Maharashtra
- (C) Jammu Kashmir
- (D) Jharkhand

11. Mineral rich 'Jharia' is located in which of the following states?

- (A) Bihar
- (B) West Bengal
- (C) Utter Pradesh
- (D) Gujrat

12. Jhansi was annexed by which of the following Governor General?

- (A) Lord Bentinck
- (B) Lord Dalhausie
- (C) Lord Cornwallis
- (D) Lord Clive

13. Who among the following personalities stated "Swaraj is my birth right and I am going to have it."

- (A) Bal Gangadhar Tilak
- (B) Subhas Chandra Bose
- (C) Mahatma Gandhi
- (D) Jawahar Lal Nehru

14. Choose the correct word to fill in the blank. The students_____ the teacher on teacher's day for twenty years of dedicated teaching.

- (A) Facilitated
- (B) Felicitated
- (C) Fantasized
- (D) Facillitated

15. Choose the correct word to fill in the blank. Dhoni as well as the other team members of Indian team____present on the occasion

- (A) were
- (B) was
- (C) has
- (D) have

16. Choose the word most similar in meaning: Awkward

- (A) Inept
- (B) Careful
- (C) Suitable
- (D) Dread full

17. Choose the correct verb to fill in the blank below

Let us_____

- (A) Introvert
- (B) Alternate
- (C) Atheist
- (D) Altruist

18. Select the most suitable Synonym for the word 'RESILIENT'.

- (A) Stretchable
- (B) Spirited
- (C) Rigid
- (D) Buoyant

19. Select the most suitable Synonym for the word 'ZEST'.

- (A) Humour
- (B) Keen Interest
- (C) Attitude
- (D) Liking

20. Select the most suitable Antonym for the word 'ROBUST'.

- (A) Sturdy
- (B) Ridiculous
- (C) Muscular
- (D) Feeble

21. Select the most suitable Antonym for the word 'DULL'.

- (A) Monstrous
- (B) Horrid
- (C) fascinating
- (D) Ghastly

22. Select the pair which shows the same relationship as CANE: BAMBOO

- (A) Wood : Woodpecker
- (B) Timber : Tree

(C) Rubber : Malaysia
 (D) South Africa: Apartheid

23. Why were you absent _____ your dance classes yesterday?

(A) for
 (B) from
 (C) in
 (D) to

24. A man is facing towards South. He take 135° anticlock wise, 180° clockwise rotation then what was facing side of the man?

(A) North-East
 (B) North-West
 (C) South-East
 (D) South-West

25. If the value of "x" is 25% less than the value of "y". How much % y's is more than that of x's?

(A) $33\frac{1}{3}\%$
 (B) 25%
 (C) 75%
 (D) $66\frac{2}{3}\%$

26. Solution of the differential equation $\frac{dy}{dx} = e^{x-y} + x^2e^{-y}$ is

(A) $e^y = x + e^x + c$
 (B) $e^y = x^2/2 + e^x + c$
 (C) $e^y = x^3/3 + e^x + c$
 (D) $e^y = x^4/4 + e^x + c$

=

27. The integrating factor of the differential equation $(1 - x^2)dy/dx + 2xy = x\sqrt{1 - x^2}$ is

(A) $\frac{1}{1-x}$
 (B) $\frac{1}{1-x^2}$
 (C) $1 - x^2$
 (D) $1 - x$

28. The solution of differential equation $\frac{d^2y}{dx^2} + 4y = 0$ with initial conditions $y = 2$ and dy/dx when $x = 0$ is

(A) $y = 2 \sin 2x$
 (B) $y = 2 \cos 2x$
 (C) $y = \sin 4x$
 (D) $y = \tan x$

29. Which of the following is a particular integral of $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{5x}$?

- (A) $\frac{1}{12}e^{5x}$
- (B) e^{-5x}
- (C) e^x
- (D) e^{x^2}

30. Let $D = : d/dx$. Then the value of $\left\{ \frac{1}{xD+1} \right\} x^{-1}$ is

- (A) $\log x$
- (B) $\frac{\log x}{x}$
- (C) $\frac{\log x}{x^2}$
- (D) $\frac{\log x}{x^3}$

31. If $y_1(x)$ and $y_2(x)$ are two solutions of $\frac{d^2y}{dx^2} + 4y = 0$, then the value of Wronskian is

- (A) 0
- (B) 1
- (C) 2
- (D) 3

32. Differential equation of the family of parabola $y^2 = 4ax$, where a is an arbitrary constant is

- (A) $y = 2x(dy/dx)$
- (B) $y = dy/dx$
- (C) $y = 2x + dy/dx$
- (D) $\frac{dy}{dx} + y^2 = x^2$

33. The orthogonal trajectory of the hyperbola $xy = a$ is

- (A) $x^2 - y^2 = a$
- (B) $x^2 = ay^2$
- (C) $x^2 + y^2 = a$
- (D) $x = ay^2$

34. The order of differential equation $\frac{dy}{dx} = \sqrt{x} + \sqrt{y}$ is

- (A) 1
- (B) 2
- (C) 3
- (D) 4

35. Solution of the initial value problem $e^x(\cos y dx - \sin y dy) = 0$ with $y(0) = 0$ is

- (A) $e^x \cos y + 1 = 0$
- (B) $e^x \cos y - 1 = 0$
- (C) $e^y \cos x + 1 = 0$
- (D) $e^y \cos x - 1 = 0$

36. If $F(x, y, z) = xy^2 + 3x^2 - z^2$, then the value of $\nabla F(x, y, z)$ at $(2, -1, 4)$ is equal to

- (A) $13i - 4j - 48k$
- (B) $i - 4j - k$
- (C) $13i + j - 6k$
- (D) $-13i + 4j - 6k$

37. The directional derivative of the function $F(x, y, z) = xy^2 - 4x^2y + z^2$ at $(1, -1, 2)$ in the direction of $6i + 2j + 3k$ is

- (A) $1/7$
- (B) $2/7$
- (C) $54/7$
- (D) 7

38. If $\vec{F} = zi + xj + yk$, then $\text{curl } \vec{F}$ is

- (A) $i + j + k$
- (B) 0
- (C) $i - j - k$
- (D) $2i + j - 2k$

39. Let F be a finite field. Then which of the following may be the possible cardinality of F ?

- (A) 15
- (B) 20
- (C) 25
- (D) 30

40. Every subgroup of an abelian group is

- (A) abelian
- (B) cyclic
- (C) non abelian
- (D) none of the above

41. Let $G = \left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid a \in \mathbb{R} \setminus \{0\} \right\}$ be a group with binary operation defined by usual matrix multiplication. Then the inverse of $\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$ is

- (A) $\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$
- (B) $\begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}$
- (C) $\begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$
- (D) $\begin{bmatrix} 1/8 & 1/8 \\ 1/8 & 1/8 \end{bmatrix}$

42. Let H and K be subgroups of G . Then which of the following is necessarily a subgroup of G ?

- (A) HK
- (B) KH

(C) $H \cap K$ (D) $H \cup K$ 43. Let S_5 be the permutation group on five symbols $\{1, 2, 3, 4, 5\}$. Then order of permutation $\sigma =$
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{pmatrix}$$
 is equal to

(A) 5

(B) 4

(C) 3

(D) 6

44. Let G be a group and $a, b, c \in G$ are non-identity elements. Which of the following solves the equation $axb = c$ for x ?(A) acb^{-1} (B) $a^{-1}b^{-1}$ (C) $a^{-1}cb^{-1}$ (D) cb^{-1} 45. Let H be a subgroup of a noncyclic group G . Then which of the following is correct?(A) H is always noncyclic(B) H is always cyclic(C) H is always nonabelian

(D) None of the above

46. Let S_6 be the permutation group on six symbols $\{1, 2, 3, 4, 5, 6\}$. Which of the following is not an even permutation?(A) $(1 \ 3 \ 5 \ 6 \ 2)$ (B) $(1 \ 2 \ 3)(4 \ 5)(4 \ 5)$ (C) $(2 \ 6 \ 3 \ 4 \ 5 \ 1)$ (D) $(1 \ 2)(1 \ 4)(2 \ 3)(4 \ 5)$

47. Which of the following is correct?

(A) Every integral domain is a field.

(B) Every finite integral domain is a field.

(C) There is an integral domain with characteristic equal to 10.

(D) None of the above.

48. Let J be an ideal of commutative ring with unity and let u be an unit element of R such that $u \in J$.

Then

(A) The multiplicative identity $1 \notin J$ (B) J is a proper ideal of R such that $J \neq R$ (C) $J = R$ (D) There is a minimal ideal M such that $J \subset M \subseteq R$

49. Which of the following is a prime ideal of $(\mathbb{Z}, +, \cdot)$?

- (A) $6\mathbb{Z}$
- (B) $2\mathbb{Z} \cap 4\mathbb{Z}$
- (C) $7\mathbb{Z}$
- (D) $4\mathbb{Z} \cap 8\mathbb{Z}$

50. If $Z = 2 - 3i$, then $|Z|$ equals

- (A) 13
- (B) $\sqrt{13}$
- (C) -13
- (D) -1

51. $\int_0^1 ze^{2z} dz$ equals

- (A) $e^2 + 1$
- (B) $(e^2 + 1)/4$
- (C) $(e^2 - 1)/4$
- (D) $e^2 - 1$

52. $\lim_{z \rightarrow i} \frac{z^{10} + 1}{z^6 + 1}$ equals

- (A) $3/5$
- (B) $2/5$
- (C) $5/3$
- (D) $1/3$

53. The integral $\int_{3i}^{1-i} 4z dz$ equals

- (A) $18 - 4i$
- (B) $-4i$
- (C) i
- (D) $-i$

54. If $f(z)$ is analytic in a simply connected domain D and $f'(z)$ is continuous in D , then $\oint_C f(z) dz$ equals

- (A) 0
- (B) 1
- (C) $2\pi i$
- (D) $-2\pi i$

55. The value of the integral $\int_{|z-2|=2} \frac{5z+7}{z^2+2z-3} dz$ is equal to

- (A) πi
- (B) $2\pi i$
- (C) $3\pi i$
- (D) $6\pi i$

56. If $f(z) = u(x, y) + iv(x, y)$ is analytic in a domain D , then

- (A) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$
- (B) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \neq 0$
- (C) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \neq 0$ and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$
- (D) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \neq 0$ and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \neq 0$

57. An entire function is

- (A) infinitely differentiable
- (B) finitely differentiable
- (C) not differentiable
- (D) identically zero

58. Which of the following is incorrect statement?

- (A) If $f(z)$ is entire and bounded in complex plane, then $f(z)$ is constant.
- (B) If $f(z)$ is analytic at z_0 , then $f'(z)$ is also analytic at z_0
- (C) Analytic function is entire.
- (D) Entire function is analytic.

59. The complex line integral is

- (A) path dependent
- (B) independent of end points
- (C) path independent
- (D) none of these

60. The set of all feasible solutions to a linear programming problem (LPP) is

- (A) a concave set
- (B) a convex set
- (C) a bounded set
- (D) an infinite set only

61. A basic feasible solution to a LPP, in which at least one of the basic variables is zero is

- (A) degenerate
- (B) infeasible
- (C) non-degenerate
- (D) unbounded

62. The optimal solution of the LPP: Maximize $Z = 4x_1 + x_2$, such that $x_1 + x_2 \leq 50$, $3x_1 + x_2 \geq 90$, $x_1, x_2 \geq 0$, is

- (A) $x_1 = 30, x_2 = 0$
- (B) $x_1 = 20, x_2 = 30$
- (C) $x_1 = 0, x_2 = 0$
- (D) $x_1 = 0, x_2 = 50$

63. Which of the following is incorrect statement?

(A) Arbitrary intersection of convex sets is a convex set.
 (B) Hyperplane is a convex set.
 (C) Union of two convex sets need not to be a convex set.
 (D) Union of two convex sets is a convex set.

64. In a linear programming problem constraints are

(A) nonlinear
 (B) linear
 (C) linear as well as nonlinear
 (D) none of the above

65. The sequence $\left\{\frac{1}{n}\right\}$ is

(A) convergent
 (B) divergent
 (C) oscillatory
 (D) unbounded

66. $\lim_{n \rightarrow \infty} \frac{2n-3}{n+1}$ equals

(A) 0
 (B) 1
 (C) 2
 (D) e

67. The series $\sum_{n=1}^{\infty} \frac{n+1}{n^p}$ is convergent for

(A) $0 < p < 1$
 (B) $1 < p < 2$
 (C) $p = 2$
 (D) $p > 2$

68. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ is

(A) convergent
 (B) divergent
 (C) conditionally convergent
 (D) absolutely convergent

69. $\lim_{n \rightarrow \infty} \left(1 + \frac{1}{n}\right)^n$ equals

(A) e
 (B) $\frac{1}{e}$
 (C) 0
 (D) 1

70. Which of the following statements is false?

- (A) Every bounded sequence is convergent.
- (B) Every convergent sequence is bounded.
- (C) Every bounded sequence has a limit point.
- (D) Every convergent sequence has a unique limit.

71. If a series $\sum_{n=0}^{\infty} a_n$ converges, then

- (A) $\lim_{n \rightarrow \infty} a_n = 0$
- (B) $\lim_{n \rightarrow \infty} a_n = \infty$
- (C) $\lim_{n \rightarrow \infty} a_n = 1$
- (D) $\lim_{n \rightarrow \infty} a_n = 10$

72. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x) = |x - c|$, for all $x \in \mathbb{R}$; then

- (A) f is discontinuous
- (B) f is differentiable
- (C) f is continuous but not differentiable
- (D) f is continuously differentiable

73. The function $f(x) = \begin{cases} x \sin 1/x & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$ is

- (A) continuous at $x = 0$
- (B) derivable at $x = 0$
- (C) discontinuous at $x = 0$
- (D) infinitely differentiable at $x = 0$

74. If Rolle's theorem holds for $f(x) = x^3 + ax^2 + bx$ on $[-2, 2]$ at $x = 1$, then

- (A) $a = 1/2, b = -4$
- (B) $a = 2, b = -4$
- (C) $a = -1/2, b = 4$
- (D) $a = 4, b = 1/2$

75. The local maxima of $x^3 - 3x + 3$ is attained at

- (A) $x = -1$
- (B) $x = 1$
- (C) $x = 0$
- (D) $x = 3$

76. The function $f(x) = \sin 3x, x \in [0, \pi/2]$ is increasing in the interval

- (A) $(0, \pi/6)$
- (B) $(\pi/6, \pi/2)$
- (C) $(0, \pi/2)$
- (D) $(\pi/3, \pi/2)$

77. The function $f(x) = x^2$ is not uniformly continuous on the interval

- (A) $[-1,1]$
- (B) $[1, 2]$
- (C) $[0, \infty]$
- (D) $[0,1]$

78. Every compact set of real numbers is

- (A) open
- (B) closed
- (C) closed and bounded
- (D) open and bounded

79. The set \mathbb{R} of real numbers is

- (A) closed
- (B) bounded
- (C) countable
- (D) none of the above

80. The upper limit of the sequence $\{(-1)^n\}$ is

- (A) 1
- (B) -1
- (C) 0
- (D) 2

81. If $f(x, y)$ is a homogeneous function of degree n in x and y and has continuous partial derivatives, then $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$ is equal to

- (A) f
- (B) nf
- (C) 0
- (D) $n(n - 1)f$

82. $\lim_{(x,y) \rightarrow (2,1)} (x^2 + 2x - y^2)$ equals

- (A) 0
- (B) -7
- (C) 7
- (D) -1

83. The radius of convergence of the series $1 + 2x + 3x^2 + 4x^3 + \dots$ is

- (A) 0
- (B) 1
- (C) ∞
- (D) 2

84. The value of the integral $\int_0^1 \int_0^x e^{y/x} dx dy$ is

- (A) $\frac{(e-1)}{2}$
- (B) $\frac{(e+1)}{2}$
- (C) e
- (D) e^2

85. The value of the surface integral $\iint_S (x^3 dy dz + y^3 dz dx + z^3 dx dy)$ over the sphere $x^2 + y^2 + z^2 = a^2$ is

- (A) $\frac{12}{5} \pi a^5$
- (B) πa^5
- (C) $\frac{5}{12} \pi a^5$
- (D) πa^2

86. Which of the following sets forms a basis of \mathbb{R}^2 ?

- (A) $\{(1,1), (3,1)\}$
- (B) $\{(0,1), (0,-3)\}$
- (C) $\{(2,1), (1,-1), (3,0)\}$
- (D) $\{(1,0), (2,0)\}$

87. Rank of the matrix $\begin{pmatrix} 2 & 1 & 1 \\ 0 & 3 & 0 \\ 3 & 1 & 2 \end{pmatrix}$ is equal to

- (A) 1
- (B) 2
- (C) 3
- (D) 4

88. Which of the following functions $F: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is not a linear transformation?

- (A) $F(x,y) = (x+y, x-y)$
- (B) $F(x,y) = (x+y, x)$
- (C) $F(x,y) = (2x-y, x)$
- (D) $F(x,y) = (x, 1+y)$

89. The dimension of the vector space of all 3×3 real symmetric matrices is

- (A) 9
- (B) 6
- (C) 3
- (D) 4

90. The determinant of $\begin{pmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{pmatrix}$ is

- (A) $(z-x)(z-y)(y-x)$

(B) $(z - x)^2(z - y)(y - x)$
 (C) $(z^2 - x^2)(z^2 - y^2)(y^2 - x^2)$
 (D) $(z - x)^2(z - y)^2(y - x)^2$

91. If $M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, then M^{2019} equals

(A) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
 (B) $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$
 (C) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 (D) $\begin{pmatrix} 1 & 2019 \\ 0 & 1 \end{pmatrix}$

92. Which of the following matrix is singular?

(A) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 (B) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
 (C) $\begin{pmatrix} 1 & 4 \\ 2 & 10 \end{pmatrix}$
 (D) $\begin{pmatrix} 2 & 2 \\ 3 & 3 \end{pmatrix}$

93. If $M = \begin{pmatrix} 4 & 0 \\ 2 & 3 \end{pmatrix}$, then the eigenvalues of M are

(A) -4 and -3
 (B) 4 and 3
 (C) 2 and 0
 (D) 3 and -3

94. Let $F: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be a linear transformation defined by $F(x, y) = (2x + 3y, 4x - 5y)$. Then the matrix representation of the linear transformation relative to basis $B = \{(1, 0), (0, 1)\}$ is

(A) $\begin{pmatrix} 2 & 3 \\ 4 & -5 \end{pmatrix}$
 (B) $\begin{pmatrix} 0 & -3 \\ 4 & 5 \end{pmatrix}$
 (C) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 (D) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

95. The eigenvalues of a skew-symmetric matrix are

(A) always pure imaginary
 (B) always zero
 (C) either zero or imaginary
 (D) always real

96. If $M = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$ and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, which of the following is a zero matrix?

- (A) $M^2 - 7M - 6I$
- (B) $M^2 - 7M + 6I$
- (C) $M^2 - 6M - 7I$
- (D) $M^2 - 6M - 7I$

97. Let $T: V_n(F) \rightarrow V_m(F)$, where $V_n(F)$ and $V_m(F)$ are finite dimensional vector spaces.

Then

- (A) $\text{rank}(T) + \text{nullity}(T) = \dim(V_n(F))$
- (B) $\text{rank}(T) = \text{nullity}(T)$
- (C) $\text{rank}(T) - \text{nullity}(T) = \dim(V_n(F))$
- (D) $\text{rank}(T) - \text{nullity}(T) = \dim(V_n(F))$

98. The singleton set $\{x\}$ is linearly dependent if

- (A) $x = 0$
- (B) $x \neq 0$
- (C) x is a scalar
- (D) none of these

99. The eigenvalues of an orthogonal matrix are

- (A) zero
- (B) imaginary
- (C) always negative
- (D) of unit modulus

100. Degree of the differential equation $dy = (y + \sin x)dx$ is

- (A) 1
- (B) 2
- (C) 3
- (D) 4

