

PART-A

1. The culprit denied having _____ the crime.

- A) commit
- B) committing
- C) committed
- D) had committed

2. A horse is kept in a _____

- A) kennel
- B) shed
- C) yard
- D) stable

3. I have been living here _____ the last two years.

- A) since
- B) about
- C) for
- D) over

4. Can I stay _____ the week end?

- A) until
- B) by
- C) to
- D) along

5. I _____ hardly hear what you are saying.

- A) can't
- B) don't
- C) can
- D) do

6. _____ do you think you are, any way?

- A) How
- B) Whom
- C) Why
- D) Who

7. I think he did _____ down and hurt himself.

- A) fell
- B) fall
- C) felt
- D) fallen

8. Much _____ since he left the town.

- A) had happen
- B) was happened
- C) had happened
- D) was happen

9. I am sure he is not telling the truth, he has____ to his friends.

- A) lyed
- B) lied
- C) lieyed
- D) lying

10. _____ money is better than none.

- A) Little
- B) A little
- C) The little
- D) Most

11. Choose the appropriate answer for the following:

Roentgen : X-Rays :: Becquerel : ?

- A) Uranium
- B) Radioactivity
- C) Fission
- D) Superconductivity

12. Which number will come in the blank space?

1, 2, 3, 5, 8,____

- A) 9
- B) 11
- C) 13
- D) 15

13. Which of the following is not a member of SAARC?

- A) Bhutan
- B) Burma
- C) Bangladesh
- D) Maldives

14. In a group of 15 people, 7 read French, 8 read English while 3 of them read none of these two. How many of them read French and English both?

- A) 0
- B) 3
- C) 4

D) 5

15. How many rectangles are there in the following figure?

- A) 6
- B) 7
- C) 8
- D) 9

16. Select the most suitable synonym for TACT.

- A) cunningness
- B) diplomacy
- C) intelligence
- D) discrimination

17. Select the most suitable antonym for DEPICT.

- A) misrepresent
- B) portray
- C) misunderstand
- D) sketch

18. Identify the meaning of idiom "Be in two minds".

- A) be burdened
- B) be indifferent
- C) be mischievous
- D) be undecided

19. Who is the author of the book titled "The Z Factor: My Journey as the Wrong Man at the Right Time"?

- A) Mahendra Verma
- B) Vijay Joshi
- C) Narayan Pandit
- D) Subhash Chandra

20. Choose the correct option

$$\frac{1260}{15/7} = ?$$

- A) 12
- B) 58
- C) 122

D 588

21. The average of 7 consecutive numbers is 20. The largest of these numbers is

- A) 20
- B) 22
- C) 23
- D) 24

22. What percent of Rs.2,650 is Rs. 1,987.50?

- A) 60%
- B) 75%
- C) 80%
- D) 90%

23. A sells an article which costs him Rs.400 to B at a profit of 20%. B then sells it to C, making a profit of 10% on the price he paid to A. How much does C pay to B?

- A) Rs.472
- B) Rs.476
- C) Rs.528
- D) Rs.532

24. If $0.75 : x :: 5 : 8$, then x is equal to

- A) 1.12
- B) 1.20
- C) 1.25
- D) 1.30

25. A and B can do a piece of work in 72 days; B and C can do it in 120 days; A and C can do it in 90 days. In what time can A alone do it?

- A) 80 days
- B) 100 days
- C) 120 days
- D) 150 days

PART-B

26. Consider the set $S = \left\{ x \in R: \frac{2x+1}{x+2} < 1 \right\}$, where R is the set of reals. Determine which one of the following statements about S is correct.

- A) S is bounded below but not above and $\inf S = -2$
- B) S is bounded above but not below and $\sup S = 1$
- C) S is bounded both below and above with $\inf S = -2, \sup S = 1$
- D) S is neither bounded below nor above

27. Consider the set $= \left\{ \frac{mn}{1+m+n} : m, n \text{ are natural numbers} \right\}$. Then determine which one of the following statements is correct.

- A) S is a bounded set
- B) S is bounded below with $\inf S = 1/3$ but not bounded above
- C) S is bounded above with $\sup S = 1$ but not below
- D) S is neither bounded below nor above

28. Let p, q be two reals such that $p > q > 0$. Define the sequence (x_n) , where $x_1 = p + q$ and $x_n = x_1 - \frac{pq}{x_{n-1}}$ for $n \geq 2$. Then for all n , x_n is equal to one of the following and determine it.

- A) $X_n = \frac{p^{n+1}-q^{n+1}}{p^n-q^n}$
- B) $X_n = \frac{p^{n+1}+q^{n+1}}{p^n+q^n}$
- C) $X_n = \frac{(pq)^n}{p^n+q^n}$
- D) $X_n = \frac{(pq)^n}{p^n-q^n}$

29. Which one of the following statements is wrong?

- A) Every convergent sequence of reals is necessarily bounded
- B) Every sequence of reals has a monotone subsequence
- C) Every monotone increasing sequence which is bounded above is convergent
- D) Every sequence which is bounded above has a convergent subsequence

30. The sequence

- A) Is bounded but not convergent
- B) Is convergent and converges to 0
- C) Is convergent and converges to 1
- D) Is monotone increasing

31. The minimum value of the sum $\sum_{n=1}^a a_k^2$ of reals satisfying $\sum_{k=1}^a a_k = 1$ is

- A) $\frac{1}{\sqrt{n}}$
- B) $\frac{1}{n}$
- C) $\frac{1}{\sqrt{n^2}}$
- D) $\frac{1}{n^3}$

32. Consider the sequences (a_n) and (b_n) , where $a_n = \left(1 + \frac{1}{n}\right)^a$ and $b_n = \left(1 + \frac{1}{n}\right)^{a+1}$ for all $n \in N$.

Then,

- A) both sequences are monotone increasing
- B) both sequences are monotone decreasing
- C) one of these two sequences is monotone increasing and the other one is monotone decreasing
- D) both the sequences are unbounded

33. The series $\sum_{n=1}^{\infty} \frac{n}{3 \cdot 5 \cdot 7 \dots (2n+1)}$ converges to

- A) 1/2
- B) 1/3
- C) 1/4
- D) 1/5

34. The series $\sum_{k=2}^{\infty} \frac{1}{k(\log k)^{\alpha}}$ where α is a real no. and $\log k = \log_e k$

- A) Converges for all α
- B) Converges only for $\alpha \leq 0$
- C) Converges only for all α satisfying $0 < \alpha \leq 1$
- D) Converges only for all $\alpha > 1$

35. The $\lim_{x \rightarrow 0} \frac{\log(\cos x)}{\sin^2 x}$

- A) does not exist
- B) exists and its value is -1/2
- C) exists and its value is 0
- D) exists and its value is 1/2

36. Consider the function $f(x) = \frac{1}{1+e^{1/x}}$ for $x \neq 0$. Then

- A) Left hand limit $\lim_{x \rightarrow 0^-} f(x)$ at $x = 0$ exists but the right hand $\lim_{x \rightarrow 0^+} f(x)$ at $x = 0$ does not exist
- B) $\lim_{x \rightarrow 0^+} f(x)$ at $x = 0$ exists but $\lim_{x \rightarrow 0^-} f(x)$ does not exist
- C) Both $\lim_{x \rightarrow 0^-} f(x)$ and $\lim_{x \rightarrow 0^+} f(x)$ at $x = 0$ exist and they are equal
- D) Both $\lim_{x \rightarrow 0^-} f(x)$ and $\lim_{x \rightarrow 0^+} f(x)$ at $x = 0$ exist and they are not equal

37. The value of $\lim_{x \rightarrow \infty} x \left(\log \left(1 + \frac{x}{2} \right) - \log \left(\frac{x}{2} \right) \right)$ is

- A) 2
- B) 1
- C) 0
- D) -1

38. Define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x) = \begin{cases} \sin |x| & \text{if } x \text{ is rational} \\ 0 & \text{otherwise} \end{cases}$

Then f is continuous

- A) at all rational points
- B) at all irrational points
- C) at all $x = k\pi$, where k is any integer
- D) at all $x \neq k\pi$, where k is any integer

39. Let f and $g: [a, b] \rightarrow \mathbb{R}$ be two continuous functions such that $f(a) < g(a)$ and $f(b) > g(b)$. Then

- A) there is a $c \in (a, b)$ such that $f(c) + g(c) = 0$
- B) there is a $c \in (a, b)$ such that $f(c) - g(c) = 0$
- C) for all $x \in (a, b)$, $f(x) = g(x)$
- D) for all $x \in (a, b)$, $f(x) \neq g(x)$

40. Which of the following functions is uniformly continuous on $[0, \infty]$?

- A) $f(x) = x \sin x$
- B) $g(x) = \sin x^2$
- C) $h(x) = e^x$
- D) $k(x) = \sin(\sin x)$

41. Let $f: (1, \infty) \rightarrow \mathbb{R}$ be a function defined by $f(x) = \log_x 2$. Then the derivative of f is

- A) $\frac{1}{x \log x} f(x)$
- B) $-\frac{1}{x \log x} f(x)$
- C) $\frac{1}{\log x} f(x)$
- D) $-\frac{1}{\log x} f(x)$

$$ax + b, \text{ if } x \leq 1$$

42. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x) = \begin{cases} ax^2 + c, & \text{if } 1 < x \leq 2 \\ \frac{dx^2 + 1}{x}, & \text{if } x > 2 \end{cases}$ where a, b, c, d are constants. The values of a, b, c, d so that f is differentiable on \mathbb{R} , are

- A) $a = 0, b = c = 1, d = 1/4$
- B) $a = 0, b = c = -1, d = 1/2$
- C) $a = 1, b = c = -1, d = 1/4$
- D) $a = -1, b = c = 0, d = 1/2$

43. Let $g: (0, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that $g(x) = \frac{1}{x}$ for all x . Define on $(0, \infty)$ by $f(x) = (g(x^2))^3$. Then f is differentiable and $f'(x)$ is equal to

- A) $6x(g(x^2))^2$
- B) $6x^2(g(x^2))^2$
- C) $6(g(x^2))^2/x$
- D) $6(g(x^2))^2/x^2$

44. Define the function f on \mathbb{R} by $f(x) = \sum_{i=1}^0 (a_i - x)^2$ where a_1, a_2, \dots, a_3 are real constants.

Then f' has a relative extremum at the point

- A) $x = \sum_{i=1}^0 a_i$
- B) $x = \frac{1}{n} \sum_{i=1}^0 a_i$

C) $x = \sum_{i=1}^n a_i^2$

D) $x = \frac{1}{n} \sum_{i=1}^n a_i^2$

45. Let $f: (-1,1) \rightarrow \mathbb{R}$ be a function defined by $f(x) = \begin{cases} 2x^4 + x^4 \sin 1/x & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}$

Then

- A) $f(x)$ has no point of extremum in $(-1, 1)$
- B) $f(x)$ is a decreasing function
- C) $f(x)$ is an increasing function
- D) $f(x)$ is neither a decreasing nor an increasing function in $(-1, 1)$

46. The value of the integral $\int_0^{\pi/2} \frac{\sin^0 x}{\sin^0 x + \cos^0 x} dx$, where n is a natural number is

- A) π
- B) $\pi/2$
- C) $\pi/3$
- D) $\pi/4$

47. Let f be a positive monotone decreasing function on $[1, \infty]$. Then the sequence (a_n) , where $a_n = \sum_{k=1}^n f(k) = \int_1^n f(x) dx$ for $n \in \mathbb{N}$

- A) is not bounded
- B) is not a monotone sequence
- C) is convergent
- D) is oscillatory

48. Let f be a continuously differentiable function defined on an interval $[a, b]$ such that $f(a) = f(b) = 0$ and $\int_a^b f^2(x) dx = 1$. Then the value of $\int_a^b x f(x) f'(x) dx$ is

- A) $-\frac{1}{2}$
- B) 0
- C) $\frac{1}{2}$
- D) 1

49. The improper integral $\int_1^{\infty} \frac{dx}{x^n}$

- A) converges if $n < 1$
- B) converges if $n = 1$
- C) converges if $n > 1$
- D) converges for all values of n

50. The improper integral $\int_0^{\infty} e^{-\pi j} \sin x dx$, where $y > 0$ satisfies which one of the following?

- A) does not converge for some $y > 0$
- B) converges for all $y > 0$ but not uniformly on $[a, \infty)$ for any $a > 0$
- C) converges uniformly on $(0, \infty)$

D) converges uniformly on $[a, \infty)$, where $a > 0$

51. Consider the function $f : R^2 \rightarrow R$ of two variables defined by

$$f(x, y) = \begin{cases} 0, & \text{if } (x, y) = (0, 0) \\ \frac{xy^2}{x^2 + y^2}, & \text{if } (x, y) \neq (0, 0) \end{cases}$$

Determine which one of the following facts about f is not true.

- A) f is differentiable at $(0, 0)$
- B) f is continuous at $(0, 0)$
- C) f has directional derivative at $(0, 0)$ in the direction of any vector $u = (a, b) \neq (0, 0)$
- D) partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $(0, 0)$ exist

52. Let $f: R^2 \rightarrow R$ and $g: R^2 \rightarrow R$ be two functions given by $f(x, y) = (x^2 + y^2, x^2 - y^2)$ and $g(x, y) = 2xy$, Define $h: R^2 \rightarrow R$ by $h = g \circ f$. Then h is differentiable at each $(x, y) \in R^2$ and it is a 1×2 matrix given by

- A) $h'(x, y) = (2x^3, 2y^3)$
- B) $h'(x, y) = (8x^3 - 8y^3)$
- C) $h'(x, y) = (-8x^3, 8y^3)$
- D) $h'(x, y) = (4x^3, 4y^3)$

53. The function $f: R^2 \rightarrow R$ given by $f(x, y) = xy$

- A) has a critical point at $(0, 0)$ which is a relative minimum
- B) has a critical point at $(0, 0)$ which is a relative maximum
- C) has a critical point at $(0, 0)$ which is a saddle point
- D) has no critical point

54. The area of the largest rectangle that can be inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

- A) $ab/2$
- B) ab
- C) $\pi ab/2$
- D) πab

55. The value of the integral $\int_C \frac{dx}{x+y}$ where C is the curve whose parametric representation is $x = at^2, y = 2at, 0 \leq t \leq 2$, is

- A) $\log 2$
- B) $\frac{1}{2} \log 2$
- C) $\frac{1}{3} \log 2$
- D) $2 \log 2$

56. The value of the integral $\iint_S x^2 y^2 dx dy$, where S is the region $x \geq 0, y \geq 0$ and $x^2 + y^2 \leq 1$, is

A) $\pi/96$
 B) $\pi/48$
 C) $\pi/24$
 D) $\pi/12$

57. The value of the integral $\iiint_D (a^2b^2c^2 - b^2c^2x^2 - c^2a^2y^2 - a^2b^2z^2)^{1/2} dx dy dz$ where D is the region $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \leq 1$, is

A) $a^2b^2c^2\pi^2$
 B) $\frac{1}{4}a^2b^2c^2\pi^2$
 C) $\frac{1}{3}a^2b^2c^2\pi^2$
 D) $\frac{1}{2}a^2b^2c^2\pi^2$

58. The gradient vector ∇f of $f(x, y, z) = e^{xy} - x \cos(yz^2)$ at $(1, 0, 0)$ is

A) $\vec{i} + \vec{j}$
 B) $\vec{i} - \vec{j}$
 C) $-\vec{i} + \vec{j}$
 D) $(-\vec{i} + \vec{j} + \vec{k})$

59. A unit normal to the surface $\sin xy = e^x$ at $(1, \frac{\pi}{2}, 0)$ is

A) $(\vec{i} + \vec{j} + \vec{k})/\sqrt{3}$
 B) \vec{i}
 C) \vec{j}
 D) \vec{k}

60. The equation of the tangent plane to the surface $3xy + z^2 = 4$ at $(1, 1, 1)$ is

A) $3x + 3y + 2z = 8$
 B) $3x - 3y + 2z = 8$
 C) $3x + 3y - 2z = 8$
 D) $-3x + 3y + 2z = 8$

61. Suppose y is a differentiable function of x satisfying $e^{x-y} + x^2 - y = 1$. Then the value of $\frac{dy}{dx}$ at $(0, 0)$ is

A) 0
 B) 1/2
 C) 1/3
 D) 1/4

62. The divergence of the vector field given by $\vec{F} = x^2y\vec{i} + z\vec{j} + xyz\vec{k}$ is

A) xy

B) $2xy$
 C) $3xy$
 D) $4xy$

63. The curl of the vector field $\vec{F}(x, y, z) = xy\vec{i} - \sin z\vec{j} + \vec{k}$ is

A) $\cos z\vec{i} + x\vec{j}$
 B) $\cos z\vec{i} + x\vec{k}$
 C) $\cos z\vec{j} + x\vec{k}$
 D) $\cos z\vec{i} - x\vec{k}$

64. Which one of the following vector fields is not a gradient vector field?

A) $\vec{F}(x, y, z) = (y + z)\vec{i} + (z + x)\vec{j} + (x + y)\vec{k}$
 B) $\vec{F}(x, y, z) = y\vec{i} - x\vec{j}$
 C) $\vec{F}(x, y, z) = 2xy^2\vec{i} + 2(x^2 + z^2)y\vec{j} + 2y^2z\vec{k}$
 D) $\vec{F}(x, y, z) = \frac{y}{x^2 + y^2}\vec{i} - \frac{x}{x^2 + y^2}\vec{j}$, where $(x, y) \neq (0, 0)$

65. Let $f(x, y, z)$ and $g(x, y, z)$ be two function defined on R^3 having second order partial derivatives with respect to x, y, z . Determine which one of the following fact about the Laplacian operator ∇ is true.

A) $\nabla^2(fg) = (\nabla^2f)(\nabla^2g)$
 B) $\nabla^2(fg) = g\nabla^2f + f\nabla^2g$
 C) $\nabla^2(fg) = g\nabla^2f + f\nabla^2g + \nabla f \cdot \nabla g$
 D) $\nabla^2(fg) = g\nabla^2f + f\nabla^2g + 2(\nabla f \cdot \nabla g)$

66. The initial value problem $\frac{dy}{dx} = \sqrt{|y|}, y(0) = 0$ has

A) no non-trivial solution
 B) only trivial solution
 C) two solutions
 D) more than two solutions

67. The primitive of the differential equation

$\left(2x \sin h \frac{y}{x} + 3y \cos h \frac{y}{x}\right) dx - 3x \cos h \frac{y}{x} dy = 0$ is given by

A) $x^2 = K \sinh^3 \frac{y}{x}$
 B) $x^2 = K \sinh^2 \frac{y}{x}$
 C) $x^2 = K \cosh^3 \frac{y}{x}$
 D) $x^2 = K \cosh^2 \frac{y}{x}$

Where K is an arbitrary constant.

68. An integrating factor of the differential equation $y(2xy + 1)dx + x(1 + 2xy - x^3y^3)dy = 0$ is

A) $\frac{1}{x^5 y^5}$
 B) $\frac{1}{x^4 y^4}$
 C) $\frac{1}{x^3 y^3}$
 D) $\frac{1}{x^2 y^2}$

69. The primitive of the differential equation $6y^2 \left(\frac{dy}{dx}\right)^2 + 3x \frac{dy}{dx} - y = 0$ is given by

A) $y^3 = Kx^2 + \frac{1}{3}K^2$
 B) $y^3 = Kx^2 + \frac{2}{3}K^2$
 C) $y^3 = Kx^3 + \frac{1}{3}K^2$
 D) $y^3 = Kx + \frac{2}{3}K^2$

Where K is an arbitrary constant.

70. Given below four sets (f_1, f_2, f_3) of functions defined on R . Determine which set is linearly dependent.

A) $(f_1(x) = x^2, f_2(x) = x^4, f_3(x) = x^{-2})$
 B) $(f_1(x) = x, f_2(x) = x + 1, f_3(x) = x + 2)$
 C) $(f_1(x) = \cos x, f_2(x) = \sin x, f_3(x) = 1)$
 D) $(f_1(x) = e^x, f_2(x) = e^{-x}, f_3(x) = 1)$

71. The general solution of the differential equation $x^2 y'' + xy' - y = (x^3 + 3x^2) e^x$ is

A) $y = C_1 x + C_2 x^2 + x e^x$
 B) $y = \frac{C_1}{x} + C_2 x + e^x$
 C) $y = \frac{C_1}{x} + C_2 x + x e^x$
 D) $y = \frac{C_1}{x} + \frac{C_2}{x^2} + x e^x$

Where C_1, C_2 are arbitrary constants.

72. Let V be the vector space of all functions from the interval $[-1, 1]$ into R . Determine which one of the following subsets of V is not a subspace of V .

A) $V_1 = \{f \in V: f(x^2) = f(x)^2 \text{ for all } x \in [-1, 1]\}$
 B) $V_2 = \{f \in V: f(x) + f(-x) = 0 \text{ for all } x \in [-1, 1]\}$
 C) $V_3 = \{f \in V: f(0) = f(1)\}$
 D) $V_4 = \{f \in V: f \text{ is a continuous function}\}$

73. Determine which one of the following sets of vectors from R^3 does not form a basis for R^3 .

A) $((1, 0, -1), (2, 5, 1), (0, -4, 3))$
 B) $((1, 2, -1), (1, 0, 2), (2, 1, 1))$
 C) $((-1, 3, 1), (2, -4, -3), (-3, 8, 2))$

D) $(2, -4, 1), (0, 3, -1), (6, 0, -1)$

74. The rank of the matrix $\begin{pmatrix} 1 & 2 & 3 & 1 & 1 \\ 1 & 4 & 0 & 1 & 2 \\ 0 & 2 & -3 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$ is

- A) 1
- B) 2
- C) 3
- D) 4

75. Let $P = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 1 & 1 \\ 0 & 5 & -1 \end{pmatrix}$ be a 3×3 matrix over R . Then for a given vector $Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \in R^{3 \times 1}$

the vector space of all 3×1 matrices over R , the system $PX = Y$ has a solution if

- A) $y_1 - y_2 + y_3 = 0$
- B) $2y_1 - y_2 + y_3 = 0$
- C) $y_1 + y_2 - y_3 = 0$
- D) $2y_1 + y_2 - y_3 = 0$

76. Let V be a finite dimensional vector space over a field F and $T: V \rightarrow V$ be a linear operator. Which one of the following statement is true?

- A) If T has an eigen-vector then it has infinitely many distinct eigen-vectors
- B) Sum of two eigen-values of T is an eigen-value of T
- C) Sum of two eigen-vectors of T is an eigen-vector of T
- D) Eigen-values of T are necessarily non-zero scalars

77. Which one of the following statements about similar matrices is wrong?

- A) Two similar matrices have the same determinant
- B) Every square matrix is similar to its transpose
- C) Two similar matrices have the same minimal polynomial
- D) If two $n \times n$ matrices have the same characteristics polynomial then they are similar

78. The minimal polynomial of the matrix $\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$ is

- A) $x^2(x^2 - 4)$
- B) $x^2(x - 2)$
- C) $x(x^2 - 4)$
- D) $x^2(x + 2)$

79. Which one of the following statements is not correct?

A) A linear operator T on a finite dimensional vector space V is diagonalizable if and only if the multiplicity of each eigen-value λ of T is equal to the dimension of the eigen-space $W = \{x \in V : Tx = \lambda x\}$ corresponding to λ

B) Two distinct eigen-vectors corresponding to the same eigen-value of a linear operator are always linearly dependent

C) If λ_1, λ_2 are two distinct eigen-values of a linear operator T on a finite dimensional vector space V then $Tx - \lambda_1 x = Tx - \lambda_2 x = 0$ where $x \in V$ implies $x = 0$, the zero vector of V

D) If a vector space V is the direct sum of subspaces M_1, M_2, \dots, M_k of V then, for $1 \leq i, j \leq k$ and $i \neq j$, $M_i \cap M_j = \{0\}$.

80. Let $X = \{x \in \mathbb{R} : x \neq 1, 2, \dots, 100\}$ be a subset of \mathbb{R} . Determine which one of the following statements is true.

A) Integers 1, 2, ..., 100 are the only limit points of X

B) No limit point of X lies between 1 and 100

C) X is a closed subset of \mathbb{R}

D) X is an open subset of \mathbb{R}

81. Let $X = \left\{ \frac{1}{n} : n \in \mathbb{Z}, n \neq 0 \right\}$ be a subset of \mathbb{R} (\mathbb{Z} is the set of all integers). Determine which one of the following properties of X is true.

A) X is a bounded set

B) X is an open subset of \mathbb{R}

C) X is a closed subset of \mathbb{R}

D) X has no limit point in \mathbb{R}

82. The set \mathbb{Z} of all integers

A) is an open subset of \mathbb{R}

B) is a closed subset of \mathbb{R}

C) is a compact subset of \mathbb{R}

D) has infinitely many limit points in \mathbb{R}

83. Determine which one of the following subsets of \mathbb{R} is connected.

A) $(-\infty, 0) \cup (0, \infty)$

B) The set \mathbb{Q} of all rational numbers

C) $\bigcup_{n=1}^{\infty} (-n, n)$

D) $\mathbb{R} \setminus \mathbb{Z}$

84. Consider the set $X = [-1, 1]$ with the subspace topology relative to \mathbb{R} . Which one of the following subsets of X is open in X and in \mathbb{R} ?

A) $\left\{ x \in X : \frac{1}{2} \leq |x| < 1 \right\}$

B) $\left\{ x \in X : \frac{1}{2} < |x| \leq 1 \right\}$

C) $\left\{ x \in X : |x| > \frac{1}{2} \right\}$

D) $\left\{x \in X : \frac{1}{2} < |x| < 1\right\}$

85. Which one of the following statements is true

- A) Every closed interval in \mathbb{R} is homeomorphic to \mathbb{R}
- B) Every open interval of the type (a, b) is homeomorphic to \mathbb{R}
- C) Every interval of the type $[a, b]$ is homeomorphic to \mathbb{R}
- D) Every interval of the type (a, b) is homeomorphic to \mathbb{R}

86. The radius of convergence of the power series $\sum_{n=1}^{\infty} n^{2n} x^n$ is

- A) 0
- B) $1/2$
- C) 1
- D) ∞

87. Consider the power series $\sum_{n=1}^{\infty} a_n x^n$, where $a_n = 1$ if $n = k^2$ for some $k \in \mathbb{N}$, $a_n = 0$, otherwise. Then the region of convergence for this series is

- A) (0)
- B) $(-1, 1)$
- C) $(-2, 2)$
- D) $(-\infty, \infty)$

88. Let $\sum_{n=1}^{\infty} a_n x^n$ be a power series. Determine which one of the following formulas does not define the radius of convergence ρ .

- A) $\rho = \frac{1}{\limsup |a_n|^{1/n}}$
- B) $\rho = \frac{1}{\limsup |na_n|^{1/n}}$
- C) $\rho = \frac{1}{\limsup \left| \frac{a_{n+1}}{a_n} \right|}$
- D) $\rho = \frac{1}{\liminf |a_n|^{1/n}}$

89. If power series $\sum_{n=1}^{\infty} a_n x^n$ and $\sum_{n=1}^{\infty} b_n x^n$ have radius of convergence ρ_1, ρ_2 respectively, then the radii of convergence ρ of the power series $\sum_{n=1}^{\infty} (a_n + b_n) x^n$ is given by

- A) $\rho = \rho_1 + \rho_2$
- B) $\rho = \max \{\rho_1, \rho_2\}$
- C) $\rho = \min \{\rho_1, \rho_2\}$
- D) $\rho = |\rho_1 - \rho_2|$

90. Let $\sum_{n=1}^{\infty} a_n x^n$ be a power series with ρ its radius of convergence where $0 < \rho < \infty$. Determine which one of the following facts is correct.

- A) The series converges absolutely and uniformly on any closed interval in $(-\rho, \rho)$
- B) The series converges absolutely and uniformly on any subinterval of $(-\rho, \rho)$
- C) The series converges uniformly on $(-\rho, \rho)$

D) The series converges absolutely on $[-\rho, \rho]$

91. Let G be the set of all rationals $\frac{p}{q}$, where q is an odd integer. With respect to the usual multiplication of reals, G is not a group because

- A) The closure property does not hold
- B) The associative property does not hold
- C) No element of G can be an identity element
- D) Not every element of G can have an inverse

92. Let G be a group and $a, b \in G$. Then which one of the following statements is not true?

- A) If a, b and ab have same order then $ab = ba$
- B) If $a^3 = e$, the identity element of G , and $aba^{-1} = b^2$ then the order of b is 16
- C) ab and ba have same order
- D) b and aba^{-1} have same order

93. Let $G = \{(a, b) \in R^2: a \neq 0\}$. On G define a binary operation by $(a, b)o(c, d) = (ac, bc + d)$.

With respect to this operation on G , which one of the following is true?

- A) G is a group with identity $(1, 1)$ and inverse of (a, b) is (a^{-1}, ba^{-1})
- B) G is a group with identity $(1, 1)$ and inverse of (a, b) is $(a^{-1}, -ba^{-1})$
- C) G is a group with identity $(1, 0)$ and inverse of (a, b) is $(a^{-1}, -ba^{-1})$
- D) G is not a group

94. Which one of the following subsets of G , given in the problem 93, is not a subgroup of G ?

- A) $H_1 = \{(1, 0)\}$
- B) $H_2 = \{(a, b) \in G: a = 1\}$
- C) $H_3 = \{(a, b) \in G: a \text{ is rational}\}$
- D) $H_4 = \{(a, b) \in G: a \text{ is irrational}\}$

95. Let G be a cyclic group of order 9. Then

- A) G has nine generators
- B) G has six generators
- C) G has five generators
- D) G has three generators

96. Let P_4 be the permutation group of 4 elements. Then the order of the element $(1\ 3)(2\ 4) \in P_4$ is

- A) 6
- B) 4
- C) 3
- D) 2

97. Let G be the group of non-zero real numbers under multiplication. Determine which one of the following functions $f: G \rightarrow G$ is not a homomorphism

A) $f(x) = x^2, x \in G$

B) $f(x) = |x|, x \in G$

C) $f(x) = \sqrt{|x|}, x \in G$

D) $f(x) = 2^x, x \in G$

98. Let a_1, a_2, \dots, a_n be the roots of a polynomial $x^n + x^{n-1} + \dots + x + 1$, where $a_1 \neq 1$ for $i = 1, 2, \dots, n$. Then the value of $\sum_{i=1}^n \frac{1}{1-a_1}$ is

A) $\frac{n}{2}$

B) $\frac{n}{3}$

C) $\frac{n}{4}$

D) n

99. Let P_3 be the permutation group of 3 elements. Then the number of elements in P_3 which are conjugate to $(2, 3) \in P_3$ is

A) 1

B) 2

C) 3

D) 6

100. Let G be a group of order 12. Then the maximal number of subgroups of order 4 in G can be

A) 6

B) 5

C) 4

D) 3