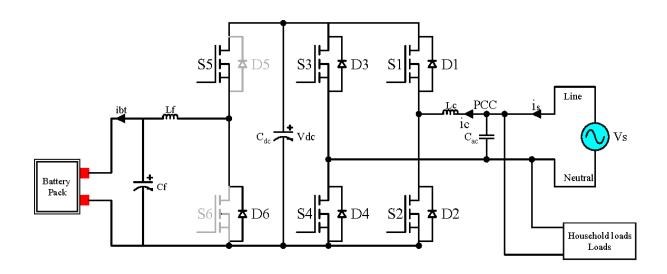


PRODUCT BROCHURE



Product Details

Technical Specifications of Grid Interface Converter

Grid: 220 V +/- 10%AC, 50 Hz (+/- 0.5 Hz)

Power rating: 1 kVA

Controller: Onboard microcontroller

Control: LabVIEW-based GUI for V2V and V2G

Current Control: Yes

DC Voltage: 48 V

Protection: Over Voltage, Under Voltage, Over Current, Under Current, Over

Frequency and Under frequency

Sensors: Non-isolated with isolated ADC via communication to microcontroller

Inductors: On-board fixed

Auxiliary Power supply: Included

Sensors: DC Voltage, AC Current, AC voltage Included and Onboard

Grid Current THD: < 3%

Key Experiments as EV Charger

Experiment 1A: Vehicle-to-Grid (V2G) Current Regulation and Error Analysis

Objective:

To regulate and measure the current fed from the vehicle's battery to the grid through the converter, and analyze any error between the set-point and the actual current.

Version 1: Using POT for Regulation

Procedure:

- Setup
 - Connect the Grid Interface Converter between the vehicle's battery and the grid.
 - Ensure all connections are secure and that the system is powered on.
- 2. **Regulating Current:**
 - Use the potentiometer (POT) on the back of the converter box to adjust the current flow from the vehicle's battery to the grid.
- 3. **Measurement:**
 - Measure the current fed into the grid using a digital multimeter.
 - Record the set-point value manually set by the POT.
- 4. Error Analysis:
 - Calculate the error by comparing the actual measured current with the manually set value.
 - Record and analyze the error, if any.
- 5. **Battery Voltage Drop:**
 - Measure the current flowing from the vehicle's battery.
 - Observe and record the voltage at the battery terminals under no-load and loaded conditions.
 - Analyze the voltage drop and its implications on system performance.

Expected Outcome:

Students will understand how to manually regulate current in a V2G scenario using a potentiometer and will develop skills in measuring and analyzing the difference between

set-point and actual current. They will also observe the impact of current flow on battery voltage stability.

Version 2: Using Software Interface for Regulation Procedure:

1. **Setup:**

- Connect the Grid Interface Converter between the vehicle's battery and the grid.
- Power on the system and launch the proprietary LabView-based software interface.

2. **Regulating Current:**

- Set the desired current flow from the vehicle's battery to the grid using the software interface.
- Monitor the real-time current data displayed in the software.

3. **Measurement:**

- Measure the actual current fed into the grid using the software's measurement tools.
- Record the set-point value as specified in the software.

4. **Error Analysis:**

- Calculate the error by comparing the actual measured current with the software set-point value.
- Record and analyze the error, if any.

5. **Battery Voltage Drop:**

- Measure the current drawn from the vehicle's battery.
- Record the voltage at the battery terminals in both no-load and loaded conditions.
- Analyze the voltage drop and its impact on battery health and converter efficiency.

Expected Outcome:

Students will gain experience in using software interfaces for current regulation in a V2G setup, learning how to measure and analyze deviations from set-point values. Additionally, they will understand the effects of varying current flow on battery voltage and overall system performance.

Experiment 1B: Grid-to-Vehicle (G2V) Current Regulation and Error Analysis

Objective:

To regulate and measure the current fed from the grid to the vehicle's battery through the converter, and analyze any error between the set-point and the actual current.

Version 1: Using POT for Regulation Procedure:

1. **Setup:**

- Connect the Grid Interface Converter between the grid and the vehicle's battery.
- Ensure all connections are secure and that the system is powered on.

2. **Regulating Current:**

• Adjust the current flowing from the grid to the vehicle's battery using the potentiometer (POT) located on the converter box.

3. **Measurement:**

- Measure the current supplied to the battery using a digital multimeter.
- Record the set-point current value manually set by the POT.

4. **Error Analysis:**

- Calculate the error by comparing the actual measured current with the manually set value.
- Record and analyze the error, if any.

5. **Battery Voltage Change:**

- Measure the current received by the vehicle's battery.
- Record the battery terminal voltage under both no-load and loaded conditions.
- Analyze any voltage changes and their effect on battery charging efficiency.

Expected Outcome:

Students will learn how to manually regulate the current from the grid to the vehicle's battery, measure the resulting current, and analyze any deviations from the set-point. They will also gain insight into how current regulation impacts battery voltage during charging.

Version 2: Using Software Interface for Regulation Procedure:

1. Setup: cubated at Indian Institute of Technology, Delhi

- Connect the Grid Interface Converter between the grid and the vehicle's battery.
- Power on the system and launch the proprietary LabView-based software interface.

2. **Regulating Current:**

- Use the software interface to set the desired current flow from the grid to the vehicle's battery.
- Monitor the real-time data on current flow as displayed in the software.

3. **Measurement:**

- Measure the actual current supplied to the battery using the software's measurement tools.
- Record the set-point current value as specified in the software.

4. **Error Analysis:**

- Calculate the error by comparing the actual measured current with the software set-point value.
- Record and analyze the error, if any.

5. **Battery Voltage Change:**

- Measure the current received by the vehicle's battery.
- Record the voltage at the battery terminals under no-load and loaded conditions.
- Analyze the voltage changes and their effect on battery health and charging performance.

Expected Outcome:

Students will develop proficiency in using software for current regulation in a G2V scenario, learning to measure and analyze deviations from set-point values. They will also observe the impact of current flow on battery voltage during the charging process, gaining insights into battery charging dynamics.

Experiment 2: Efficiency Measurement of the Grid Interface Converter

Objective:

To measure the efficiency of the Grid Interface Converter during both Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) operations.

Procedure:

1. Setup:

- Connect the converter between the battery and the grid.
- Ensure all connections are correct and system parameters are set according to the experiment requirements.

2. Data Collection:

- Measure the input power from the battery and the output power fed to the grid during V2G operation.
- Measure the input power from the grid and the output power supplied to the battery during G2V operation.

3. Efficiency Calculation:

• Calculate the efficiency of the converter for both V2G and G2V modes using the formula:

$$Efficiency$$
 (%) = $(Output Power)/(Input Power) * 100$

4. Analysis:

- Compare the efficiency values obtained for V2G and G2V operations.
- Discuss factors affecting the efficiency, such as internal losses, temperature variations, and loading conditions.

Experiment 3: Harmonic Analysis in Grid-Connected Mode Objective:

To analyze the harmonic distortion introduced by the Grid Interface Converter during grid-connected operations.

Procedure:

1. Setup:

- Connect the converter to the grid and battery as per the standard configuration.
- Ensure the system is operating under normal conditions.

2. **Harmonic Measurement:**

- Use a power quality analyzer to measure the harmonic content in the current fed to the grid.
- Record the Total Harmonic Distortion (THD) and individual harmonic levels (e.g., 3rd, 5th, 7th harmonics).

3. **Data Analysis:**

- Compare the harmonic levels with the acceptable standards (e.g., IEEE 519).
- Analyze the effect of loading conditions on harmonic distortion.

4. **Mitigation Techniques:**

- Implement and test various harmonic mitigation techniques, such as filtering or modifying the control algorithm.
- Measure the effectiveness of these techniques by comparing the THD before and after implementation.

Expected Outcome:

Students will learn how to measure and analyze harmonics in grid-connected systems and explore methods for reducing harmonic distortion to maintain power quality. They will gain practical experience in applying mitigation techniques and evaluating their effectiveness.

Sample Outputs and trend analysis

Power 2 - Power Quality														
Measure nent	Test	Sources	Mean'	Min'	Max'	PK-PK'	Std Dev'	Pop'	Accum Mean	Accum Min	Accum Max	Accum Pk-Pk	Accum Std Dev	Accum Pop
Power Quality	Frequen cy	Ch 1, Ch 2	49.906 Hz	49.906 Hz	49.906 Hz	0.0000 Hz	0.0000 Hz	1	49.938 Hz	49.905 Hz	49.964 Hz	58.480 mHz	19.323 mHz	528
. ,	VRMS		245.14 V	245.14 V	245.14 V	0.0000 V	0.0000 V	1	244.89 V	244.63 V	245.38 V	750.60 mV	144.86 mV	528
	IRMS		3.8797 A	3.8797 A	3.8797 A	0.0000 A	0.0000 A	1	3.8723 A	3.8670 A	3.8797 A	12.710 mA	2.1314 mA	528
	Voltage Crest Factor		1.3936	1.3936	1.3936	0.0000	0.0000	1	1.3933	1.3913	1.3958	4.4258 m	753.10 u	528
	Current Crest Factor		1.4797	1.4797	1.4797	0.0000	0.0000	1	1.4757	1.4601	1.5786	118.44 m	17.756 m	528
	True Power		948.51 W	948.51 W	948.51 W	0.0000 W	0.0000 W	1	945.69 W	943.67 W	949.25 W	5.5781 W	929.06 mW	528
	Reactive Power		69.984 VAR	69.984 VAR	69.984 VAR	0.0000 VAR	0.0000 VAR	1	70.145 VAR	68.233 VAR	77.741 VAR	9.5086 VAR	1.4172 VAR	528
	Apparen t Power		951.09 VA	951.09 VA	951.09 VA	0.0000 VA	0.0000 VA	1	948.29 VA	946.24 VA	951.85 VA	5.6130 VA	951.63 mVA	528
	Power Factor		997.29 m	997.29 m	997.29 m	0.0000	0.0000	1	997.26 m	996.64 m	997.40 m	767.94 u	112.82 u	528
	Phase Angle			4.2198 Degrees	4.2198 Degrees		0.0000 Degrees	1	4.2421 Degrees	4.1291 Degrees	4.7007 Degrees	571.58 mDegre es	84.711 mDegre es	528

Power 1 - Harmonics'												
Measure ment	Sources	Standard	Harmonic s	F1 Mag	F3 Mag	THD-F	THD-R	IRMS	VRMS	Frequenc y	TruePowe r	Status
Harmonic s	Ch 1, Ch 2	IEC	40	3.8765 A	4.1054 mA	1.4316 %	1.4314 %	3.8786 A	245.08 V	49.906 Hz	948.51 W	Pass

Power 2 - Power Quality'												
Measurem ent	Sources	Frequency	VRMS	IRMS	Voltage Crest Factor	Current Crest Factor		Reactive Power	- I I	Power Factor	Phase Angle	
Power Quality	Ch 1, Ch 2	49.906 Hz	245.14 V	3.8797 A	1.3936	1.4797	948.51 W	69.984 VAR	951.09 VA	997.29 m	4.2198 Degrees	