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 Introduction: 

 Sports  involving  rackets  have  been  prominent  since  the  Neolithic  period.  In  1873,  Welsh 

 inventor  Major  Walter  Wingfield  first  invented  a  sport  called  Shpairistrik  è  ,  which  later  evolved 

 into  one  of  the  most  popular  sports:  tennis  1  .  It  was  widespread  for  men  and  first  played  at  a 

 tournament  in  Wimbledon  in  1877.  In  recent  years,  the  tennis  industry  has  expanded  to  numerous 

 demographics,  with  over  87  million  tennis  players  globally  12  and  USD  3.77  billion  in  revenue  as 

 of 2021  7  . 

 I  was  amongst  these  87  million  players.  My  parents  bought  me  my  first  racket  when  I 

 was  seven,  and  I  quickly  developed  a  passion  for  the  sport.  Throughout  the  years,  tennis  has 

 become  a  coping  mechanism  for  me,  helping  me  feel  stronger  and  healthier,  leaving  me  with 

 positivity  throughout  the  day,  and  saving  me  from  living  a  painfully  sedentary  lifestyle  during 

 the  2020  COVID-19  pandemic.  In  addition,  tennis  taught  me  how  to  be  patient,  predict  outcomes 

 before they occur and wait for the right opportunity. 

 However,  my  rationale  for  choosing  this  topic  was  that  I  wanted  to  enhance  my  tennis 

 skills,  specifically  my  serves.  Tennis  services  remain  something  that  I  constantly  struggle  with. 

 When  I  first  started  overhand  serving,  it  enchanted  me  how  much  accuracy  was  involved  in 

 something  seemingly  simple.  To  improve,  I  watched  matches  to  see  how  professionals  served.  It 

 stood  out  how  consistent  they  were  in  their  techniques–  tossing,  jumping,  and  hitting  the  ball  in 

 the  same  manner.  Through  my  interest  in  physics,  I  learnt  that  sports  all  involve  mathematics. 

 This  made  me  wonder  if  there  was  mathematical  reasoning  for  why  professional  tennis  serves  are 

 much better than a regular player. 
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 In  my  exploration,  I  aim  to  analyze  what  the  serve  of  an  average  tennis  player  looks  like, 

 and  what  distinguishes  it  from  the  serve  of  a  recreational  tennis  player.  In  conducting  this 

 analysis, I hope to become a better tennis player and correct my errors. 

 I  will  start  by  determining  what  an  average  tennis  player  physically  looks  like,  using 

 correlation  and  statistics.  I  will  then  use  a  video  of  the  serve  of  this  player,  and  model  aspects 

 like  the  toss  of  their  serve,  and  what  angle  they  hit  the  ball.  I  will  then  use  calculus  and 

 differentiation  to  find  the  velocity  and  acceleration  of  the  ball,  and  to  find  out  how  well  the  serve 

 is.  Using  this  information,  I  am  going  to  compare  the  serve  to  my  serve,  and  evaluate.  Unless 

 stated  otherwise,  I  will  round  my  final  answers  to  3  significant  figures  for  accuracy.  Figure  1 

 below  shows  the  parts  and  dimensions  of  a  tennis  court.  This  will  help  me  with  my  calculations 

 throughout this investigation. 

 Figure 1: Parts and Dimensions of a Tennis Court  13 
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 Part 1: Testing the Correlation Between Height and Serving Speed 

 Prominently,  I  will  see  if  the  height  of  tennis  players  affects  their  serving  speed.  The 

 average  height  of  a  male  tennis  player  is  188cm  and  the  average  height  of  a  female  is  174cm, 

 which  is  taller  compared  to  the  average  height  of  a  human.  Serving  speed  refers  to  the  speed  that 

 the  ball  travels  upon  being  hit  by  the  racket.  High  serving  speeds  are  valuable  as  they  show 

 dominance during a game and make it difficult for their opponent to win. 

 To  do  this,  I  used  correlation  graphs.  This  is  because,  in  comparison  to  histograms  or  box 

 whisker  plots,  correlation  graphs  can  most  clearly  and  visually  tell  me  if  there  is  a  relationship 

 between  two  distinct  variables.  In  physics,  I  learnt  about  torque–  a  rotational  force  that  causes  an 

 object  to  rotate  about  a  point  or  axis.  In  serving,  your  arms,  torso  and  legs  create  this  torque, 

 which  propels  your  body  to  rotate  when  serving  2  .  Based  on  this,  I  predict  that  taller  players  will 

 have a greater torque, giving them a higher serving speed. 

 For  my  test,  I  found  the  heights  and  serving  speeds  of  the  top  50  ranked  male  and  female 

 players  respectively.  Table  1A  below  shows  the  data  for  male  tennis  players  (please  refer  to 

 Appendix  A.1  for  the  full  dataset).  I  recorded  the  heights  to  4  significant  figures  because  I 

 converted  my  units  from  to  and  from  to  ,  and  rounded  my  answers  to  one  𝑚𝑝ℎ  𝑘𝑚     ℎ − 1  𝑓𝑡  𝑐𝑚 

 decimal place to ensure some accuracy in the heights. 

 Height 
 (cm) 

 service 
 Speed 
( 𝑘𝑚     ℎ − 1 )

 Height 
 (cm) 

 service 
 Speed 
( 𝑘𝑚     ℎ − 1 )

 Height 
 (cm) 

 service 
 Speed 
( 𝑘𝑚     ℎ − 1 )

 Height 
 (cm) 

 service Speed 
( 𝑘𝑚     ℎ − 1 )

 182.8  178.0  188.0  169.6  193.0  182.0  182.8  176.1 

 185.4  169.3  175.3  170.6  188.0  167.5  200.1  124.9 

 193.0  177.7  190.5  176.7  188.0  173.8  185.4  176.1 

 Table 1A: Height and Corresponding Serving Speed of Top 50 Male Tennis Players 
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 I then plotted this data in  Graph 1A 

 Graph 1A: Correlation Graph Representing Height and Serving Speed Of 50 Male Tennis Players  18 

 𝑀𝑒𝑎𝑛 ≈     174     𝑘𝑚     ℎ − 1  𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑  𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 ≈  12 .  3  𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ( 𝑟 ) ≈  0 .  452 

 I  repeated  the  same  steps,  this  time  using  the  heights  and  serving  speeds  of  50  female 

 tennis  players.  I  could  not  get  exactly  50  sample  spaces  because  there  is  less  documentation  on 

 top-ranked  female  biographical  data  than  on  men,  as  many  cultures  find  it  disrespectful  to 

 disclose  a  woman's  age,  height,  or  weight.  My  dataset  is  reported  in  Table  1B  (please  refer  to 

 Appendix B  for the full dataset) and is visually graphed  in  Graph 1B. 

 Height 
 (cm) 

 Serve 
 Speed 
( 𝑘𝑚     ℎ − 1 )

 Height 
 (cm) 

 Serve 
 Speed 
( 𝑘𝑚     ℎ − 1 )

 Height 
 (cm) 

 Serve 
 Speed 
( 𝑘𝑚     ℎ − 1 )

 Height 
 (cm) 

 Serve 
 Speed 
( 𝑘𝑚     ℎ − 1 )

 145.5  175.3  151.5  177.8  151.0  167.6  155.9  185.4 

 141.3  167.6  152  182.9  151.0  175.3  154.3  182.9 

 145.3  170.2  150.8  180.3  151.1  180.3  153.0  180.3 
 Table 1B: Height and Corresponding Serving Speed of Top 50 (43) Female Tennis Players 
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 Graph 1B: Correlation Graph Representing Height and Serving Speed Of 43 Female Tennis Players  18 

 𝑀𝑒𝑎𝑛 ≈  149     𝑘𝑚     ℎ − 1  𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑     𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 ≈  8 .  94  𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ( 𝑟 ) ≈  0 .  255 

 Since  There  is  a  weak  correlation,  meaning  that  height  does  not  impact  serving  𝑟 ≤  0 .  5 ,

 speed.  This  was  opposite  from  what  I  predicted,  so  I  revisited  my  graph.  I  realized  this  was 

 because  of  similar  heights.  For  example,  in  Graph  1A  ,  there  were  huge  vertical  clusters  of  data 

 around  certain  heights,  which  represented  the  mode  of  the  graph.  The  mode  shows  what  the  most 

 common  height  is,  which  in  Graph  1A  was  188cm.  This  was  also  the  mean  male  height.  This  was 

 the  same  case  for  the  female  heights.  However,  the  serving  speed  did  not  have  a  clear  cluster.  I 

 assume  this  is  because  serving  speed  is  a  measure  of  strength  and  technique,  which  is  slightly 

 different  for  everyone.  I  realized  that  since  males  and  females  have  different  heights,  I  thought 

 that  if  I  combined  the  heights  of  all  the  players  into  one  graph  (  Graph  3)  ,  then  my  correlation 

 would be stronger and more accurate. This is seen on  page 6. 
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 Graph 2: Correlation Between Heights and Serving Speed of the Top 93 tennis players  18 

 𝑀𝑒𝑎𝑛 ≈  162     𝑘𝑚  ℎ − 1        𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑     𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 ≈  16 .  7  𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ( 𝑟 ) ≈  0 .  710 

 In  Graph  2  the  correlation  was  much  higher.  However,  since  does  not  equal  to  1,  this  is  𝑟 

 not  a  strong  correlation.  On  the  contrary,  because  this  is  not  a  weak  correlation,  either.  𝑟 >  0 .  5 ,

 Therefore,  there  is  a  moderate  correlation  between  height  and  serving  speed.  This  signifies  that 

 while  there  is  a  big  relationship  between  these  two  variables,  they  are  not  completely  reliant  on 

 each  other.  This  makes  sense  because  while  most  tennis  players  are  tall,  factors  like  weight,  and 

 experience can also influence their serve speed. 

 After  seeing  the  results,  I  considered  analyzing  someone  that  can  match  this  correlation, 

 and  represent  the  services  of  an  average  professional  tennis  player.  I  did  this  by  using  z-scores. 

 Z-scoring  is  a  statistical  calculation  that  uses  mean  and  standard  deviation.  The  mean  is  the 

 average  of  all  the  data  points,  and  the  standard  deviation  tells  you  how  scattered  the  data  is  from 

 the  mean.  These  are  used  in  Z-scores  to  find  how  many  standard  deviations  a  point  is  from  the 

 mean and will tell me if a player is a good delegate for my analysis, or if they are an outlier. 
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 I  knew  the  mean  serving  speed  is  ,  and  the  mean  height  for  men.  Upon  162     𝑘𝑚     ℎ − 1 

 researching,  I  decided  to  analyze  Russian  tennis  player  Andrey  Rublev  because  he  matched  this 

 average height, and his serves stood out to me. I used the formula below for my calculations: 

 𝑧 =  𝑋 −µ
σ

 where 

 𝑧 =     𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑     𝑠𝑐𝑜𝑟𝑒 

 )  𝑋 =  𝑡𝑒𝑠𝑡𝑖𝑛𝑔     𝑣𝑎𝑙𝑢𝑒    ( 168     𝑘𝑚     ℎ − 1 

µ =  𝑚𝑒𝑎𝑛     𝑣𝑎𝑙𝑢𝑒    ( 162     𝑘𝑚     ℎ − 1 )

σ =  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑     𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛    ( 16 .  7 )

 𝑧 =  168 − 162 
 16 . 7 

 𝑧 =     6 
 16 . 7 

 𝑧 ≈  0 .  359 

 Since the z-score is below 0.5, Andrey Rublev is an accurate physical representation of what a 

 male tennis player looks like, and I will be using him for my analysis. 

 Part 2: The Analysis of Andrey Rublev’s Serve 

 I  will  first  look  at  the  toss  of  the  ball.  The  toss  is  significant  because  it  builds  a 

 foundation  for  how  the  ball  will  be  hit.  Ideally,  the  ball  should  be  thrown  2  to  3  feet  (60-90cm) 

 above  the  maximum  height  reached  by  the  servicer  and  their  racket  14  .  This  ensures  that  the 

 servicer  has  enough  time  to  hit  the  ball  properly.  Andrey  Rublev  uses  a  Wilson  Six-One  95, 

 which  is  almost  70cm  (2  feet  3  inches)  17  .  Correspondingly,  his  height  is  6  feet  (188cm).  Based  on 

 this,  I  predict  that  the  ball  would  be  tossed  305-335  cm  (10-11  feet)  high.  To  test  this,  I  used 
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 Andrey  Rublev’s  serves  during  the  2021  Australian  Open  and  made  image  sequences  to  show  the 

 gradual  motion  of  the  ball.  I  then  inserted  a  “png  grid”  above  each  image  and  drew  a  cartesian 

 plane, to help me make coordinates.  Figures 2A-2B  represent the toss of the ball. 

 Figure 2A: The Initial Height of the Tennis Ball  11 

 Figure 2B: The Maximum Height Reached by the Tennis Ball  11 

 For  my  scale,  I  counted  the  number  of  grids  from  the  baseline  to  the  service  line,  which 

 was  29  grids.  In  Figure  1,  the  distance  between  the  baseline  and  the  service  line  is  548cm  ( ≈

 18ft),  so  I  divided  548cm  by  29  grids  and  let  every  grid  be  approximately  18.9  0.1  cm.  I  put  a ±

 slight  uncertainty  of  0.1  because  when  finding  the  exact  placement  of  the  ball,  the  decimal  was 

 subjective to who was viewing the grid. However, this will not significantly impact my analysis 

 Table 2  below are the coordinates representing the  motion of the ball. 

 8 



 Toss Length ( 𝑙 ) ±  0 .  1  Toss Height ( ℎ ) ±  0 .  1  Toss Length ( 𝑙 ) ±  0 .  1  Toss Height ( ℎ ) ±  0 .  1 

 -7.5  -6.3  -4.5  5.2 

 -6.5  -6.2  -2.5  10.1 

 -5.5  -2  -2.1  10.2 

 -5.2  0.8  -1.8  10.1 

 -5  2  -1.3  9.5 

 -4.8  3.5  -0.9  7 
 Table 2: The Motion of the Tennis Ball 

 Using  the  coordinates,  I  modelled  the  ball's  motion  through  a  graph  and  found  its 

 equation.  This  will  tell  me  whether  a  ball  should  be  thrown  in  a  smooth,  symmetrical  curve,  a 

 linear  line  or  in  another  way.  Upon  seeing  the  maximum  height  and  seeing  that  the  adjacent 

 points  had  the  same  height,  I  instinctively  assumed  that  the  motion  of  the  ball  followed  a 

 quadratic  function.  I  knew  I  could  have  used  second  differences  to  prove  this,  but  I  chose  not  to. 

 This  is  because  since  this  is  a  real-life  application, 

 environmental  factors  could  have  impacted  the 

 motion  and  path  of  the  ball.  Therefore,  I  decided  to 

 plot  the  coordinates  instead  (seen  in  Graph  3). 

 While  this  graph  is  a  good  fit  during  certain 

 intervals, I did not like how 

 Graph  3:  Motion  of  the  Tennis  Ball  During  the  Toss  6  the  curve  did  not  account  for  the  beginning  and  end 

 of the toss. This made me want to find another equation that could make a better fit. 

 I  knew  this  was  not  a  linear  function  because  the  graph  was  not  straight,  and  this  could 

 not  be  a  trigonometric  function  because  sinusoidal  functions  must  be  periodic  and  symmetrical, 
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 which  my  graph  was  not.  I  noticed  that  the  shape  of  my  graph  changed  from  different  intervals. 

 This prompted me to use a piecewise function to graph. 

 The  first  three  points  are  when  the  ball  is  in  his  hand.  Since  there  are  three  points,  there 

 will only be one second-difference value, resulting in a quadratic function (seen in  Graph 4). 

 The equation  was  The  domain is  𝐻 ( 𝑙 ) =  2 .  05  𝑙  2 +  28 .  8  𝑙 +  94 .  39 . { 𝑙  | −  7 .  5 ≤  𝑙 ≤−  5 .  5 ,     𝑙 ε 𝑅 }.

 Graph 4: Equation of the graph when the tennis ball is still partially in Andrey Rublev’s hand  18 

 The  second  equation  represents  when  the  ball  is  released  from  Rublev’s  hands  (at 

 and  upon  approaching  the  maximum  height  .  I  first  applied  a  𝑙 =−  5 .  5 ) (    𝑎𝑡     𝑙 =−  2 .  1 )

 quadratic function for my curve of best fit, which is seen in  Graph 5A. 

 Graph 5A: Quadratic Curve of Best Fit During the Upward Motion of the Ball  18 
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 While it was a good fit, I decided to compare it to a natural exponential fit, as they have similar 

 structures, and I wanted to see which one made a better fit with my data.  Graph 5b  is seen below. 

 Graph 5B: Natural Exponential Curve of Best Fit During Upward Motion of the Ball  18 

 The natural exponential curve of is more accurate than the quadratic function. 

 The form for an exponential function is: 

 𝐻 ( 𝑙 ) =  𝑎  𝑒 (− 𝑐𝑙 ) +  𝑏 

 where: 

 𝑎  The exponential growth/decay factor. When  , then  as  increases, so does  When  𝑎 >  0  𝑙  𝐻 ( 𝑙 ).  𝑎 <  0 ,
 then as  increases,  decreases.  𝑙  𝐻 ( 𝑙 )

 𝑏  A vertical translation. 

 𝑐  A horizontal stretch or compression. When  there  is a horizontal stretch by a factor of  .  𝑐 >  0 ,  1 
 𝑐 

 When  there is a horizontal stretch by a factor  of  0 <  𝑐 <  1 ,  𝑐 
 Table 3: The Parameters of an Exponential Function 

 The  equation  of  the  graph  is  The  domain  is  𝐻 ( 𝑙 ) =−  0 .  1997  𝑒 (− 0 . 764  𝑙 ) +  11 .  32 .

 I  then  repeated  the  comparison  above,  this  time  to  find  the  curve { 𝑙  | −  5 .  5 ≤  𝑙 ≤−  2 .  1 ,  𝑙 ε 𝑅 }.
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 of  best  fit  for  the  downward  motion  of  the  toss,  ranging  from  until  the  ball’s  𝑙 =−  2 .  1 ,

 intersection with the racket at  The results  can be seen in  Graphs 6A-6B.     𝑙 =−  0 .  9 .

 Graph 6A: Quadratic Curve of Best During the Downward Motion of the Ball  18 

 Graph 6B: Natural Exponential Curve of Best Fit During the Downward Motion of the Ball  18 

 Graph  6B  clearly  hit  more  points  than  Graph  6A,  proving  that  a  natural  exponential  function 

 made  a  better  fit.  The  equation  of  the  graph  is  .  The  domain  is     𝐻 ( 𝑙 ) =−  91 .  42  𝑒 ( 3 . 716  𝑙 ) +  10 .  23 

 . { 𝑙  | −  2 .  1 ≤  𝑙 ≤−  0 .  9 ,  𝑙 ε 𝑅 }

 This proves that a piecewise function best graphs this data. The equation of the function is: 
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 To determine how high the ball was thrown, I used the distance formula below. 

 𝑑 = ( 𝑙 
 2 

−  𝑙 
 1 
) + ( ℎ 

 2 
−  ℎ 

 1 
) 2 

 distance/height between two points  𝑑 =

 horizontal/length coordinate of points 1 and  2(toss length)  𝑙 =

 vertical/height coordinate of points 1 and 2 (toss  height)  ℎ =

 To isolate and the vertical distance, I ignored the  -coordinate, so that the formula looks like this:  𝑙 

 𝑑 = ( ℎ 
 2 

−  ℎ 
 1 
) 2 

 To find the height, I used the minimum value, (-7.5, -6.3), where  = -6.3, and the maximum  ℎ 
 1 

 value, (-2.1, 10.2), where  =10.2  ℎ 
 2 

 𝑑 = [ 10 .  2 − (−  6 .  3 )] 2 

 (the square root and the exponent two  cancel each other out)  𝑑 =  16 .  5  2 

 grid squares  𝑑 =  16 .  5    

 16 .  5     𝑥     18 .  9 =  311 .  85     𝑟𝑜𝑢𝑛𝑑𝑒𝑑     𝑡𝑜     312  𝑐𝑚    ( 10 .  3     𝑓𝑡 )

 From these calculations, the ball was tossed 312cm, which matches the prediction I made, 

 proving that this is an ideal toss. 

 As  a  physics  student,  these  equations  immediately  made  me  wonder  what  the  velocity 

 and  acceleration  of  the  object  would  be.  In  physics,  velocity  is  an  object's  speed  in  relation  to  its 

 time  and  displacement.  It  can  be  found  by  finding  the  derivative,  which  is  the  rate  of  change,  of 
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 displacement.  Acceleration  is  the  rate  of  change  in  velocity,  and  if  something  is  speeding  up  or 

 slowing down. It is found by getting the second derivative of displacement. 

 The  velocity  and  acceleration  will  tell  me  how  fast  the  ball  travels  before  being  hit,  and 

 whether  it  was  slowing  down  or  speeding  up.  For  this  calculation,  I  only  need  the  vertical 

 displacement.  This  is  represented  by  the  toss  height  because  the  height  from  the  origin  is  how  far 

 the  ball  travelled.  However,  a  problem  I  ran  into  was  that  toss  length  and  toss  height  could  not  be 

 negative.  In  addition,  displacement  needs  to  start  from  a  point  of  origin,  which  I  did  not  have.  I 

 decided  to  solve  this  by  translating  the  points  from  Table  2  7.5  units  to  the  right  and  6.3  units 

 upward,  such  that  the  first  point  represents  the  origin  of  the  object,  and  then  multiplying  them  by 

 0.189m (18.9cm), because displacement is expressed in meters.  This is seen in  Table 2A. 

 Horizontal 
 Displacement (m) 

 Vertical 
 Displacement (m) 

 Horizontal 
 Displacement (m) 

 Vertical 
 Displacement (m) 

 0  0  0.567  2.1735 

 0.189  0.0189  0.945  3.0996 

 0.378  0.8127  1.0206  3.1185 

 0.4347  1.3419  1.0773  3.0996 

 0.4725  1.5687  1.1718  2.9862 

 0.5103  1.8522  1.2474  2.5137 
 Table 4A: Horizontal and Vertical Displacement (m) 

 I  did  not  round  my  answers  to  3  significant  digits  because  I  knew  I  was  going  to  need 

 them for further calculations and rounding them would change my answer. 

 I  originally  planned  to  use  derivatives,  as  they  are  the  easiest  way  to  find  the  velocity  and 

 acceleration  of  a  position  time  graph.  However,  because  I  did  not  have  a  position-time  graph  or 

 time, I wan not sure how to mathematically solve for velocity. 
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 This  then  led  me  to  think  of  this  problem  from  a  physics  perspective.  I  recalled  in  physics 

 class that we frequently used work and energy to find the velocity of objects. 

 Part 2.1: Using Physics to Find Velocity and Acceleration 

 Physically,  when  you  do  work,  you  apply  forces  on  an  object,  and  that  causes  the  object 

 to  be  displaced.  For  example,  when  you  walk,  you  are  exerting  a  frictional  force  on  the  floor. 

 This  is  what  causes  you  to  move  forward.  Energy  is  related  to  work  because  whenever  work  is 

 done,  the  total  energy  changes.  This  is  why  when  you  are  walking,  you  are  using  energy.  Energy 

 is  measured  in  Joules  (J)  and  comes  in  different  forms.  The  most  common  are  gravitational 

 potential energy  and kinetic energy ( 𝐸 
 𝑃 
) ( 𝐸 

 𝐾 
).

 Gravitational  potential  energy  is  the  amount  of  energy  needed  to  do  work  against  gravity. 

 In  tennis,  when  we  throw  the  tennis  ball,  the  ball  works  against  gravity  to  move  from  one  point 

 to  another.  As  the  higher  the  ball  travels,  the  more  force  it  exerts  to  fight  against  the  gravitational 

 constant  This  results  in  an  increase  in  work  and  gravitational  potential  energy  to ( 9 .  8  𝑚     𝑠 − 2 ).

 keep  the  ball  moving.  Because  of  this  concept,  an  object  has  the  most  gravitational  potential 

 energy  when  it  is  at  its  maximum  height  because  that  is  when  all  the  energy  the  ball  has  is 

 allocated  towards  keeping  the  ball’s  upward  motion.  After  that,  there  is  insufficient  energy  to 

 keep  the  ball  up,  which  is  why  the  ball  eventually  descends.  The  equation  for  gravitational 

 potential energy is. 

 𝐸 
 𝑃 

=  𝑚𝑔ℎ 

 Where 

 𝐸 
 𝑃 

=     𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙     𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙     𝑒𝑛𝑒𝑟𝑔𝑦 
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 𝑚 =     𝑚𝑎𝑠𝑠     𝑜𝑓     𝑡ℎ𝑒     𝑜𝑏𝑗𝑒𝑐𝑡 

 𝑔 =     𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙     𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡    ( 9 .  8  𝑚  𝑠 − 2 )

 ℎ =     ℎ𝑒𝑖𝑔ℎ𝑡    

 According to the conservation of energy, energy cannot be created nor destroyed, it can 

 only be transformed from one form to another The concept states that: 

Σ 𝐸 
 𝑇𝑂𝑇𝐴𝐿 

= Σ 𝐸  ' 
 𝑇𝑂𝑇𝐴𝐿 

 This reiterates that the energy before action must equal the energy after it. My favourite 

 example of this is a car collision. Before a crash, the car uses kinetic energy to drive forward. 

 However, when the car is forced to stop during a car crash, the energy that was once used for 

 kinetic energy becomes converted to other forms of energy like heat energy, light energy, and 

 sound energy, which is why we hear sounds when a car crash occurs. 

 In tennis, when the ball descends from its maximum height, the gravitational potential 

 energy decreases. However, to conserve this total energy, the gravitational potential gets 

 transformed into kinetic energy. Kinetic energy is what causes an object to be in motion, which is 

 seen when the ball descends. The formula for kinetic energy is 

 𝐸 
 𝐾 

=  1 
 2  𝑚  𝑣  2 

 Where: 

 𝐸 
 𝐾 

=     𝑘𝑖𝑛𝑒𝑡𝑖𝑐     𝑒𝑛𝑒𝑟𝑔𝑦 

 𝑚 =     𝑚𝑎𝑠𝑠 

 𝑣 =  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

 An increase in gravitational potential energy causes a proportional decrease in kinetic 

 energy. Therefore, when  is at a maximum,  as no other energies are involved here.  𝐸 
 𝑃 

 𝐸 
 𝐺 

=  0 ,
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 𝐸 
 𝑃 

+  𝐸 
 𝐾 

=     𝐸 
 𝑇𝑂𝑇𝐴𝐿 

 We  can  use  these  concepts  to  find  velocity.  The  mass  of  an  average  tennis  ball  is  51 .  8  𝑔 

 Since  I  know  the  height  of  the  ball  at  its  maximum  height,  we  can  find  by  finding  the  𝐸 
 𝑇𝑂𝑇𝐴𝐿 

 maximum gravitational potential energy  when  the maximum height is  . ( 9 .  8  𝑚ℎ )  ℎ =  3 .  12 

 + 0  𝐸 
 𝑇𝑂𝑇𝐴𝐿 

=  58 .  1 ×  9 .  8 ×  3 .  1185    

 J  𝐸 
 𝑇𝑂𝑇𝐴𝐿 

≈  1776 

 This  means  that  the  energy  will  have  to  be  1776  no  matter  what.  Using  this  information,  𝐽 

 we  can  find  out  what  the  kinetic  energy  would  have  to  be  when  the  ball  is  not  at  maximum 

 height. We can do this by using the conservation of energy equation. 

 𝐸 
 𝑃 

+  𝐸 
 𝐾 

=  𝐸 
 𝑇𝑂𝑇𝐴𝐿 

 𝑚𝑔ℎ    +  1 
 2  𝑚  𝑣  2 =  𝐸 

 𝑇𝑂𝑇𝐴𝐿 

 Rearrange the equation to solve for  𝑣 .

 𝑣 =
 2 ( 𝐸 

 𝑇𝑂𝑇𝐴𝐿 
− 𝑚𝑔ℎ )

 𝑚 

 Since I need to find the velocity when the ball intersects the racket, the height at that point is 

 2.5137. 

 𝑣 =  2 [ 1776 −   ( 58 . 1 )( 9 . 8 )( 2 . 5137 )]   
 58 . 1 

 .  𝑣 ≈  3 .  44  𝑚     𝑠 − 1 

 Therefore,  the  velocity  of  the  ball  is  .  I  did  not  know  how  fast  this  𝑣 ≈  3 .  44  𝑚     𝑠 − 1 

 quantity  was  exactly,  but  as  someone  who  is  learning  to  drive,  I  usually  drive  at 

 , and I find it fast.  Therefore, I believe that the ball travels at a fast pace.  20  𝑘𝑚  ℎ − 1    ( 5 .  56  𝑚     𝑠 − 1 )
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 Since velocity is the derivative of displacement-time graphs, the formula for velocity is 

 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ( 𝑣 ) =  𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 ( 𝑠 )
 𝑇𝑖𝑚𝑒    ( 𝑡 )

 To find  , I rearranged the formula and divided  by  𝑡  𝑠  𝑣 .

 .  𝑡 =  0 .  730     𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 I repeated the same calculation for all my heights that represent the downward motion to find the 

 velocity and time. My  results are seen below in  Table  3. 

 Displacement (s)  (  𝐸 
 𝑃 

 𝐽 )  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ( 𝑣 )  Time (t) 

 3.1185  1776  0  0 

 3.0996  1764  0.59  5.25 

 2.9862  1700  1.61  1.85 

 2.5137  1431  3.44  0.730 
 Table 5: Velocity and Time  During Different Heights ( 𝑡 )

 I then graphed the following points to make a velocity-time graph. This is seen in  Graph 7. 

 Graph 7: Velocity- Time Graph of the Downward Motion of the Ball 

 The equation of the graph is  𝑣 ( 𝑡 ) =  5 .  554  𝑒 (− 0 . 8891  𝑡 ) +  0 .  5378 

 Using  the  velocity  time  graph,  I  can  find  the  acceleration  by  taking  the  first  derivative  of 

 the  graph.  I  chose  to  use  derivatives  as  opposed  to  formulas  because  it  is  much  more  efficient  to 
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 substitute  a  time  value  and  get  my  answer,  and  it  limits  the  chances  of  making  errors.  I  know  that 

 acceleration  can  be  found  by  getting  the  first  derivative  of  velocity.  I  am.  To  find  the  derivative,  I 

 used  the  chain  rule  formula.  The  chain  rule  is  used  to  find  the  derivative  of  a  function  that 

 composes another function. The rule is described below. 

 𝑎 ( 𝑡 ) =  𝑑𝑣 
 𝑑𝑡 =  𝑑𝑣 

 𝑑𝑢 
 𝑑𝑢 
 𝑑𝑡    

 Where 

 , which represents acceleration.  𝑑𝑣 
 𝑑𝑡     𝑖𝑠     𝑎 ( 𝑡 )

 is the derivative of  in terms of variable  .  𝑑𝑣 
 𝑑𝑢  𝑣  𝑢 

 is the derivative of  in terms of  .  𝑑𝑢 
 𝑑𝑡  𝑢  𝑡 

 (the derivative  of a constant is zero)  𝑣  ' ( 𝑡 ) =     5 .  554  𝑒 (− 0 . 8891  𝑡 ) +  0 .  5378 

 𝑣  ' ( 𝑡 ) =     5 .  554  𝑒 (− 0 . 8891  𝑡 ) × (−  0 .  8891 )

 𝑣  ' ( 𝑡 ) =  𝑎 ( 𝑡 ) −  4 .  94  𝑒 (− 0 . 889  𝑡 )

 I substitute  into the equation to find the  acceleration at that time.  𝑡 =  0 .  73 

 𝑎 ( 𝑡 ) =−  4 .  94  𝑒 [− 0 . 8891 ( 0 . 73 )]

 .  𝑎 ( 𝑡 ) ≈    −  2 .  5  𝑚     𝑠 − 2 

 To  find  out  if  the  object  is  accelerating  or  decelerating,  you  can  take  the  product  of  the 

 acceleration  and  the  velocity.  If  ,  the  object  speeds  up.  If  the  object  𝑉 ( 𝑡 ) 𝐴 ( 𝑡 ) >  0  𝑉 ( 𝑡 ) 𝐴 ( 𝑡 ) <  0 ,

 slows  down.  Since  acceleration  is  negative,  but  velocity  is  positive,  the  product  of  the  two  will 

 be negative. This means that the object is slowing down. 

 From  this  analysis,  I  can  conclude  that  an  ideal  toss  involves  the  ball  being  thrown  with  a 

 reasonable  amount  of  force  so  that  the  ball  is  not  very  slow  while  descending  but  is  also  thrown 
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 gently  so  that  it  does  come  down  with  great  force.  When  I  first  saw  the  negative  acceleration,  I 

 was  confused  because  I  assumed  that  the  object  would  speed  up  while  descending.  However,  in 

 my  equations  and  calculations,  I  did  not  account  for  any  air  resistance,  even  though  it  could  have 

 had  an  impact  on  the  motion  of  the  ball.  If  the  air  resistance  were  strong  enough,  the  ball  could 

 have slowed down while descending. 

 This  made  me  wonder  what  angle  the  ball  made  with  the  racket  during  its  point  of 

 intersection.  The  angle  of  incidence,  which  is  the  angle  at  which  something  is  hit,  reflects  the 

 angle  and  the  motion  at  which  the  object  is  then  reflected.  It  is  important  that  the  ball  passes  the 

 opponent’s service line but is not too wide that the ball goes past the opponent’s baseline. 

 From  Figure  3A,  you  can  see  that  the  angle  is  not  perpendicular  to  Point  C,  which  is 

 horizontal. This means that the angle was not hit from a right angle. 

 Figure 3: The Angle at Which the Racket Intersects the Tennis Ball  9 

 To  find  the  angle,  I  inserted  an  image  on  GeoGebra,  and  using  the  angle  tool,  added 

 points  C,  D  and  F,  to  create  angle  CDE,  which  was  79.9  o  .  I  know  that  it  is  best  to  hit  an  angle  at  ∠ 

 an  acute  angle,  so  that  it  can  clear  the  net  at  a  lower  height,  making  it  hard  for  the  player  to 
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 receive  the  ball.  The  optimal  angle  to  hit  a  tennis  ball  is  between  60  o  to  80  o  ,  or  10-30  o  to  the 

 perpendicular. Since this angle is approximately 80  o  ,  this would be considered an optimal angle  5  . 

 From  this  exploration,  I  noticed  that  tennis  players  have  a  very  consistent  style  of  serving. 

 However,  I  realized  that  one  of  the  main  reasons  we  consider  professionals  so  superior  is  that  we 

 never  compare  them  to  regular  people,  and  just  see  the  career  they  make  out.  To  put  how  good 

 these  players’  services  are,  I  am  going  to  be  looking  at  a  prominent  aspect  that  determines 

 service  success:  aces.  A  tennis  ace  is  a  legal  service  in  which  your  opponent  cannot  receive  the 

 service  because  it  is  far  too  difficult  to  get  it.  They  are  hard  to  get  because  of  the  large  amount  of 

 speed  that  you  must  put  in,  and  only  some  individuals  can  master  them.  To  determine  the  true 

 success of Rublev’s services, I am going to find the probability of him getting two aces in a row. 

 The  probability  of  him  getting  one  ace  is  8.6%  (0.086)  8  .  I  let  represent  the  𝑃 ( 𝐴 )

 probability  of  him  serving  an  ace.  I  know  that  the  probability  of  something  cannot  exceed  1,  so  I 

 subtracted  0.086  from  1  to  get  the  probability  of  Rublev  failing  to  hit  an  ace,  represented  by 

 , which was 0.914.  𝑃 ( 𝐴  ' )

 I  then  made  a  tree  diagram  to  visualize  the  probability  of  him  hitting  two  aces  in  a  row,  which  is 

 seen in  Figure 4. 

 Figure 4: A Tree Diagram Representing the Probability of Getting an Ace. 
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 I  know  that  the  probability  of  him  getting  one  ace  does  not  directly  impact  his  ability  to  get 

 another  ace  because  they  both  require  the  same  energy  and  the  same  format.  Due  to  this,  I  used 

 the independent events probability formula below. 

 𝑃 ( 𝐴 ∩  𝐴 ) =  𝑃 ( 𝐴 ) 𝑃 ( 𝐴 )

 Where 

 is the probability of getting  twice.  𝑃 ( 𝐴 ∩  𝐴 )  𝑃 ( 𝐴 )

= ( 0 .  086 )( 0 .  086 )

 0.007396 ≈

 The probability of getting two aces in a row is approximately 0.007 or 0.740%. 

 On  average,  the  average  percentage  of  aces  is  7%.  2  From  this  information,  the  first  aces  are 

 similar  in  percentages,  and  this  means  that  Andrey  Rublev  is  an  above-average  servicer  in  tennis 

 and has a better probability of hitting two aces in a row than many other players. 

 Part C: Comparing This To The Serve of A Recreational Tennis Player 

 The  second  part  of  my  aim  wants  to  briefly  compare  the  services  of  a  professional  tennis 

 player  to  a  recreational  tennis  player.  From  all  my  knowledge,  I  compared  the  service  of  Andrey 

 Rublev  to  the  service  of  my  father.  He  is  178cm  tall,  a  recreational  tennis  player,  and  my  coach.  I 

 chose  to  analyze  him  instead  of  myself  because  I  realized  that  biologically,  I  am  shorter  and  have 

 a  smaller  mass  than  him,  so  these  techniques  may  not  be  as  ideal  to  me  as  they  would  be  for  my 

 father, which is why he is replicating the services. 

 I  first  started  by  using  png  grids  to  find  the  height  of  the  toss  of  the  tennis  ball.  Figures  4A-B 

 show  the  height  of  the  toss  of  the  tennis  ball.  For  my  scale,  I  saw  that  the  length  of  the  center 

 service  line  was  17.9  grids.  Using  Figure  1,  the  center  service  line  is  640  cm  (21ft),  meaning  that 
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 each  grid  was  35.8cm  (1.17ft).  This  number  might  be  slightly  inaccurate  because  the  video  was 

 taken at an angle, and the perspective you look at the court slightly changes its dimensions. 

 Figure 4A: The Initial Position of the Tennis Ball  Figure 4B: Maximum Height of the Tennis Ball 

 In  Figure  4A,  the  initial  position  of  the  ball  is  at  and  in  Figure  4B,  it  is  at (−  18 , −  5 .  5 )

 .  Using  the  altered  distance  formula  from  Page  9,  I  calculated  the  vertical  distance (−  15 ,  7 )

 between  the  heights.  My  answer  was  12.5  units,  which  is  approximately  447  cm  (14.6ft).  This  is 

 much  higher  than  how  high  Rublev  tossed  the  ball.  Since  my  dad  is  shorter  than  him  and  the 

 Wilson  Ultra  Power  105  Tennis  Racket  he  used  is  69cm  (2.26ft),  his  toss  should  be  lower.  This 

 can  be  detrimental  to  a  serve  as  it  impacts  the  angle  hit  the  ball.  I  guessed  that  my  dad’s  angle  of 

 intersection was bigger than ideal.  Figure 5  is the  angle of intersection for my dad’s serve. 

 Figure 5: Angle of Intersection Between My Father’s Racket and the Tennis Ball  9 
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 Figure  5  says  that  the  ball  was  hit  at  a  107  o  angle.  As  predicted,  the  angle  is  obtuse  and  greater 

 than  the  angle  that  was  hit  by  Andrey  Rublev,  Proceeding  with  this  investigation,  I  briefly  looked 

 at the path that the tennis ball made, which is seen in  Figures 6A-B 

 Figure 6A: The Motion of the Ball Just After Intersecting the Racket 

 Figure 6B: Motion of the Tennis Ball 
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 Figure 6C: The Tennis Ball Right Above the Tennis Net 

 From  Figure  6  ,  I  sawthat  the  path  of  the  tennis  ball  is  horizontally  stretched.  While  I 

 cannot  compare  this  to  the  path  of  Andrey  Rublev,  I  interpreted  that  this  occurred  because  of  the 

 angle  of  the  intersection.  In  physics,  when  we  learn  about  projectile  motion,  we  talk  about  how 

 the  angle  has  a  huge  impact  on  the  motion  that  the  path  takes  on.  Because  my  dad  hit  the  ball  at 

 an  obtuse  angle,  the  ball  would  have  followed  a  wider  path.  However,  from  Figure  6C,  I  noticed 

 that  the  ball  is  still  close  to  the  net,  and  that  the  ball  did  not  go  outside  the  boundaries.  This  might 

 be  because  of  the  height  difference  between  my  father  and  Rublev.  Since  Rublev  is  taller,  if  he 

 hit  the  ball  at  an  obtuse  angle,  the  ball  would  have  gone  out.  However,  if  my  dad  hit  the  ball  at  an 

 acute  angle,  similar  to  Rublev,  his  ball  would  have  hit  the  net.  This  means  that  along  with  the 

 toss of the ball, the height can also impact the way you hit the ball. 

 Conclusion 

 This  intensive  investigation  clearly  answered  my  question  as  to  what  the  serve  of  an 

 average  professional  tennis  player  looks  like  .  As  someone  who  is  below  average  height,  the 

 moderate  correlation  between  height  and  serving  speed  taught  me  that  while  height  does  play  a 

 factor  in  greater  serving  speed,  countless  other  factors  also  influence  it,  and  I  can  do  better  if  I 
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 put  in  the  effort.  Besides  that,  the  piecewise  function  cleared  the  myth  that  all  tosses  travel  in  a 

 quadratic  equation,  and  instead,  they  follow  distinct  paths  depending  on  the  time  and  the 

 circumstances.  My  velocity  and  acceleration  taught  me  that  it  is  ideal  to  gently  toss  the  ball, 

 rather  than  throw  it  upwards  so  that  the  ball  does  not  travel  too  fast  and  speed  up  or  down.  Based 

 on  my  comparison  to  my  father’s  service,  I  learnt  the  importance  of  planning  out  every  move, 

 and  the  importance  of  tossing  the  ball  at  the  right  angle,  which  is  something  that  professionals 

 pay closer attention to, as it sets the groundwork for a service. 

 When carrying out this experiment, some limitations that impacted my investigation are 

 1.  Only  one  tennis  serve  of  Andrey  Rublev  was  analyzed,  and  this  could  not  have  been  one 

 of his best serves, for it to be an accurate representation of how a good service looks like. 

 2.  The  ideal  height  of  a  toss  and  angle  of  incidence  were  recommended  by  a  secondary 

 source,  which  may  have  gathered  its  data  from  another  source.  The  outside  source  may 

 have  been  subjected  to  bias  or  an  incorrect  opinion,  which  could  change  my  findings.  I 

 could  have  solved  this  problem  by  using  a  range  of  projectiles  to  find  the  optimal  angle  or 

 using trial and error to find the optimal height of the toss. 

 A  problem  with  my  investigation  was  the  inability  to  analyze  the  path  that  the  ball  made  while 

 serving.  The  video  that  I  used  to  find  this  service  did  not  properly  highlight  the  motion  and  could 

 have provided me with much concrete evidence as to how these factors impacted the serve. 

 As  someone  who  also  plays  other  sports  like  badmintonthis  exploration  made  me  realize 

 more  prominently  why  the  services  in  each  sport  are  different.  For  example,  in  badminton,  you 

 are  not  allowed  to  use  an  overhand  service.  This  makes  sense  because  the  net  is  much  higher 

 than in tennis, making it extremely difficult to clear the ball over the net. 
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 Appendix A: 

 Height and Serving Speed of Top 50 Male Tennis Players 

 Height (cm)  service Speed 
( 𝑘𝑚  ℎ − 1 )

 Height (cm)  service Speed 
( 𝑘𝑚  ℎ − 1 )

 Height (cm)  service Speed 
( 𝑘𝑚  ℎ − 1 )

 182.8  178.0  188.0  169.6  193.0  182.0 

 185.4  169.3  175.3  170.6  188.0  167.5 

 193.0  177.7  190.5  176.7  188.0  173.8 

 182.8  184.3  185.4  162.1  195.6  171.4 

 198.1  174.0  182.8  176.1  188.0  183.0 

 195.6  180.4  170.2  148.10  188.0  163.2 

 198.1  188.6  195.6  192.0  188.0  165.6 

 188.0  179.0  170.2  165.9  198.1  181.9 

 195.6  191.4  188.0  180.1  182.8  162.1 

 198.1  174.0  208.3  193.3  193.0  184.0 

 185.4  174.9  193.0  185.1  185.4  176.1 

 188.0  172.8  177.8  169.9  182.8  163.5 

 170.2  152.7  190.5  166.7  182.8  176.1 

 200.1  124.9  195.6  178.0  210.8  193.4 

 185.4  176.1  190.5  179.0  188.0  159.3 

 195.6  188  180.3  161.1  193.0  165.9 

 190.5  185.1  188.0  178.0 
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 Appendix B: 

 Height and Serving Speed of Top 50 Female Tennis Players 

 Height (cm)  service Speed 
( 𝑘𝑚     ℎ − 1 )

 Height (cm)  service Speed 
( 𝑘𝑚     ℎ − 1 )

 Height (cm)  service Speed 
( 𝑘𝑚     ℎ − 1 )

 145.5  175.3  151.5  177.8  151.0  167.6 

 141.3  167.6  152.0  182.9  151.0  175.3 

 145.3  170.2  150.8  180.3  151.1  180.3 

 156.8  177.8  143.1  177.8  154.3  182.9 

 159.6  182.9  151.4  175.3  141.6  180.3 

 148.4  172.7  141.8  177.8  160.2  170.2 

 103.7  175.3  148.4  180.3  151.4  175.3 

 143.9  167.6  159.6  175.3  146.3  175.3 

 141.1  170.2  149.3  177.8  140.9  170.2 

 156.3  175.3  151.4  180.3  144.7  170.2 

 154.5  177.8  146.3  175.3  144.7  172.7 

 144.8  175.3  156.3  185.4  149.8  170.2 

 150.5  180.3  152.1  180.3  149.7  175.3 

 140.2  177.8  151.4  180.3  153.0  180.3 

 155.9  185.4  153.0  180.3  140.2  177.8 

 154.3  182.9  151.4  180.3 
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