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PHY 180: Testing the Accuracy of Mathematic Models Using a Homemade Pendulum 

Introduction 
The purpose of this exploration was to 

understand how closely mathematical theory could 

predict the behaviours of a homemade pendulum. 

Aspects of mathematical theory that were tested 

include a) the correlation between amplitude(𝐴) and 

period(𝑇) b) the behaviour of the Q factor in a 

pendulum and c) the impact length(𝐿) has on 

the pendulum’s period and Q factor. 

Pendulums are structures which consist of a 

mass connected to a string hung on a fixed point. The 

mass, when applied to an external force, oscillates. In 

theory, due to Newton’s law of Inertia and energy 

conservation, the motion of a pendulum remains 

constant until external forces are applied, regardless of 

mass and length. This is called “simple harmonic 

motion and is modelled using the equation: 

𝑥(𝑡)  =  𝐴𝑐𝑜𝑠(𝜔𝑡)                      (1) 

Where 𝑥(𝑡) is displacement, 𝜔 is angular speed (rad s-1). 

(The Pendulum, n.d) However, factors like 

friction, air resistance and pendulum length impede its 

motion, creating “damped harmonic motion”, which 

should follow the equation  

𝜃(𝑡) =  𝜃0 𝑒
−𝑡

𝜏 cos(2𝜋 
𝑡

𝑇
+  𝜑0).            (2) 

Where 𝜃(rad) and  𝜏 is in seconds. 

The model provided by Professor Brian 

Wilson states that period and amplitude are 

independent. The period is approximately: 

𝑇 ~ 2√𝐿            (3) 

(Wilson, Brian. PHY 180 Lab Project 2024). 

From my results, the period is constant and 

independent of the 18 different amplitudes at which 

the pendulum is released, supporting the model. It 

followed the quadratic equation, in the form:  

𝑇 =  𝑇𝑜 (1 + 𝐵𝜃𝑜 + 𝐶𝜃𝑜
2)           (4) 

Where 𝑇 and 𝑇𝑜 is the period (s). Since (1 +

𝐵𝜃𝑜 + 𝐶𝜃𝑜
2) is unitless, 𝐵 and 𝐶 have units rad -1. 

The derived equation is y =

0.005(±0.003)x2  − 0.1(±0.1)x +  1.60(±0.01)  

The small C and B values of 

0.005(±0.003)𝑥2  − 0.1(±0.1) 𝑥 indicate a flat parabola, 

alluding zero correlation between amplitude and 

period. These values also prove this is a symmetric 

pendulum. The period was 1.2 ± 0.04s, far from the 

literature value of 0.9s (string length of 0.22 m).  

The Q factor was determined using 1) the 

counting method and 2) a provided Python code. The 

graph showed exponential decay in the form 

(y=𝜃0𝑒−𝑐𝑥) as 𝑦 = 1.4(±0.02)e−0.02x( ±0.001). By 

correlating  

𝜃0𝑒−𝑐𝑥 =  𝜃0𝑒−
𝑡

𝜏                  (5) 

and using the equation  

                                   𝑄 = 𝜋
𝜏

𝑇
                                       (6)  

 the Q factor for the pendulum was 160 ±

8.5% (160 ± 20). Since the range fits in with the 

range for the counting method (140 ± 10), a Q factor 

of 140 ± 20 was chosen (lower uncertainty). 

 The model stated that the data correlation 

between period and length should follow a power law 

function in the form 

     𝑇 = 𝑘𝐿𝑛                             (7) 

where k = 2 and n = 0.5.  

Empirically, the period varied with length. 

The power law function gave the equation 3.4(±0.3) 

x0.44(±0.07). The Q factor follows a natural logarithmic 

trend in the equation with the equation 𝑦 =

 150(±50)𝑙𝑛(𝑥)  −  240(±90).  This report details 

the methodology and analysis and how the results 

compare with the predicted models. 

Experimental Setup 
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Figure 1: Experiment Setup. A nylon string (0.22± 0.005m 

length) is attached to a constant mass (12.9493±0.0001 g). 

A clear protractor was put behind the pendulum to ensure it 

rested at 
𝜋

2
 radians (1.571 rad) and allowed for the angle on 

Tracker to be calibrated and more accurate. The string 

hangs from a small knob screwed back of a keyboard tray. 

The string is looped around this knob and can be adjusted by 

turning the knob. 

In Figure 1, a 1 m of nylon string is strung 

around a particular screwable knob which is put 

backwards into a screw hole that was pre-made on my 

desk. This allowed the pendulum to hang freely and 

for the string to be adjusted by rotating the screw knob. 

To control the impact of the load on the pendulum, a 

small lock with a mass of 12.9493 ± 0.0001g is tied to 

the bottom of the string. This load creates minor 

tension, allowing for better oscillations.  

A screw was chosen over taping the 

pendulum because it is more secure, allowing for a 

controlled experiment. 

The camera of a Samsung phone has grid 

lines and angle lines ensuring that the phone is straight. 

It was set 1m away on a clear, flat surface, so the 

camera remains stationary. A protractor is put behind 

the pendulum to help calibrate the video tracker, and 

so it can be easily determined what a right angle in real 

life looks like on video. To avoid systematic errors 

associated with stopwatches, the camera was set to 60 

frames per second to capture a slower and more 

accurate trajectory of the mass, giving a default time 

uncertainty of ±0.01s.  

Methodology 

Lab 1 

I predicted that as amplitude decreases, the 

period will decrease since the total distance the 

pendulum travels decreases.  

A Physics Tracker app (Brown et al., Tracker 

2024) was used to test this idea. The pendulum was 

dropped at each angle, and a video was taken to see 

how long it took to reach its initial angle again. To 

lower Type A uncertainties, five trials were conducted 

for each angle and the average uncertainty was taken 

using the equation: 

        𝑢(𝑥)̅̅ ̅ =  
𝜎

√𝑛
                           (8)  

 

To find the Q factor, the software is calibrated 

in terms of length and angle by using the protractor in 

the setup. The data was manually tracked by clicking 

on the mass throughout the cycle. This method was 

chosen because the auto-tracker was unable to 

accurately capture all the points while oscillating due 

to the similar background and mass colour. Using the 

data, the local and absolute maxima values from the 

graph are analyzed using a Python code provided by 

Professor Brian Wilson, and an exponential line of best 

fit is applied. The parameters and uncertainties are 

applied to Equation (5) and (6) to calculate Q factors.  

The second method to find the Q factor is 

using the counting method. To ensure accuracy, a 

video is taken of the pendulum as it begins oscillating 

until it reaches roughly 5% of its oscillation. Since all 

oscillations started at 1.57rad(π/2) from the physical 

protractor, the oscillations should end when the angle 

is around 5%. As it is difficult to estimate exactly 

0.080 radians, the termination of the video was 

estimated when the pendulum had minimum 

oscillations, and the actual termination time was 

determined through the videos.  

Lab 2:  
Using the same video-capturing methods in 

Lab 1, the period was calculated three times for each 

length. The variable lengths of the pendulum were 

0.10±0.005m, 0.15±0.005m, 0.20±0.005 m, 

0.25±0.005m, 0.35±0.005m, 0.40±0.005m and 

0.50±0.005m. From the results in Lab 1 (pg. 4), the 

counting method for the Q factor was used. This 

provides less uncertainty and is more convenient. 

The parameter uncertainty is found using 

Curve Fit and MATLAB’s 95% confidence interval 

(CI). The upper bound CI is subtracted from the 

parameter, and divided by 2, as 95% represents the 

standard deviation of 2𝜎.  

Results 

Lab 1: Period VS. Amplitude Graph 

 

Figure 2: Period VS. Amplitude of a Pendulum. A 

quadratic series is applied (where y = ax2 + bx + c relates 

to T = To (1+Bθo+Cθo2). The equation of the curve of best 

fit is y = 0.005(±0.003)𝑥2  − 0.1(±0.1) 𝑥 +
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 1.60(±0.01) where the parameters are 𝐴 =

 0.005(±0.003), 𝐵 = −0.1 ±  0.1, 𝐶 =  1.60(±0.01)𝑠. 

The A and B parameters of 0.0054 and 0.1096 determine the 

symmetry of the pendulum. The C parameter of 1.5964 

provides the largest measured period. A quadratic model 

was chosen over other models because it provided the largest 

R2 value of 0.404, and thus, a stronger correlation. 

Uncertainty Analysis 

The pendulum is damped and will not always 

make its angle mark before starting another revolution, 

making this a Type A error in calculating the period, of 

±0.05 radians. 

The online protractor measures angles with a 

precision of ±00.1 radians, allowing the Type B 

uncertainty of the protractor to be propagated to be half 

the increment value, of ±0.05 rad. The period 

uncertainty corresponds to ±0.01s.  

The calculated average uncertainty is 0.04.  

To account for errors and better distribution, the 

maximum of 0.01s and 0.04s is taken as the final 

uncertainty for the period.  

Data Analysis 

The period remains constant, especially for 

small angles, while increasing slightly when the angle 

is more than  ±0.50 angles change more rapidly when 

they are bigger. This might be due to small angle 

approximations. To confirm the symmetry of the 

pendulum, a quadratic series with 18-period data was 

plotted. The equation was 0.005(±0.003)𝑥2  −

0.1(±0.1) 𝑥 +  1.60(±0.01). The C and B 

parameters of 0.0054 𝑎𝑛𝑑 0.1096 determine the 

symmetry of the pendulum. A symmetric pendulum 

should have parameters equal to 0. Since the C value 

of 0.005 is less than the period uncertainty of ±0.01s 

the value encompasses a range of values close to 0. 

The variation can be due to the small differences that 

may occur in each video. Ultimately, this pendulum is 

symmetrical, with an average period of 1.2 ± 0.04s. It 

is worth noting that the pendulum's mass, the 

experimental setup and length of the string can cause 

fluctuations in time and period. 

Determining the Q Factor of a Pendulum 
Using Tracker, 2976 frames were analyzed, 

and the local maxima values were plotted to find Tau 

and Q factors. This graph is available in Appendix A.   

 

Figure 3: Amplitude VS. Time Elapsed for a Pendulum. 

Showing the local maxima points plotted using a Python 

code to understand better where the points lie and what type 

of fit they make with the graph. The error bars, show an 

uncertainty of ±0.05 in the angle and an uncertainty of ±0.01 

in time elapsed. A natural exponential line of best fit most 

accurately fits the set of data. The equation of the line (form 

y = 𝑎𝑒−𝑏𝑥 y = 1.4(±0.02)𝑒−0.02(±0.001)𝑥 where the 

parameter uncertainty of A is 1.4±0.02 𝑟𝑎𝑑 The value -0.02 

corresponds to 
𝒕

𝝉
.and the value of x (time) is 94.5 ±0.01. 

𝜏 𝑖𝑠 60 ±  1.6 (𝑟𝑜𝑢𝑛𝑑𝑒𝑑 𝑡𝑜 2.0).  

Uncertainty Analysis 

Since the time elapsed depends on the time of the 

video, there might be a lag in the time between when 

the video was captured, and the pendulum was 

released. This uncertainty is estimated to be ± 0.5s and 

is found by looking at the differences in peak height 

from adjacent points (seen in Appendix A). This 

equation fails to account that oscillations stop when it 

is 4% of its original amplitude, and eventually, the 

function will approach 0. The residuals graph shows 

that these error bars are large, as the points are closer 

to the residual line. Since only 1 trial was conducted, 

the Type A uncertainties are larger than the Type B 

uncertainty, justifying a large error bar.  

 While there is a default uncertainty of ±0.05 

radians, there can be a computer error regarding 

whether the angle was tracked from the centre of mass 

each time, increasing the uncertainty to ± 0.1 rad. The 

graph shows a gradual decrease where adjacent peaks 

increase and decrease concerning each other but 

follow a decrease over a larger scale of time. The 

inconsistent peaks can represent uncertainty as the 

point mass may be clicked in a different position from 

the last time, or the angle may not have reached its 

peak before oscillating again. This corresponds to an 

uncertainty of 0.1seconds, since that is the distance 

between a peak and its adjacent points, whether they 
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are higher or lower than the peak being assessed.  

These results can be found in Figure 4. 

The Q factor shows the dampening effect of 

the pendulum and is modelled by the functions:  

And  

A natural exponent line of best fit was 

deemed the best fit, where 𝜃0𝑒−𝑐𝑥 =  𝜃0𝑒−
𝑡

𝜏 . 𝑡 is the 

total elapsed time, in this case 94.5 seconds (1min 

34s). Based on this, of 𝜏 is calculated to be 60 ±20s, 

resulting in a Q factor of 160 ±20. Since the points that 

were believed to correspond to the local maxima were 

all manually picked, a Type B uncertainty could have 

been the omission of points that could have otherwise 

skewed the data and curve of best fit. In the data, there 

were often three or four adjacent points with similar 

angles, creating almost a flat line before decreasing in 

angle again. This can be a setup limitation, as the auto 

tracker may not have been able to distinguish between 

the pendulum bob and the background. To reduce 

discrepancies, these were omitted. They could have 

reduced the number of trials upon inputting them into 

Python, resulting in a high uncertainty for Tau. To 

confirm this value, the number of oscillations was 

cross-referenced by manually counting the local 

maxima points. The counted Q factor is 140 ± 10. The 

uncertainty of 10 counts is type A uncertainty as the 

local maximum was counted three times. This is 

because many points overlap, causing human error in 

counting. The redundancy allows for accurate 

collection.  

Analysis: 
𝜏 = 60 ± 2 𝑠𝑒𝑐𝑜𝑛𝑑𝑠  

𝑄 = 𝜋
𝜏

𝑇
 

Take the largest percent uncertainty. 

𝑄 = 155 ± 8.5% (~160 ± 20) counts 

 

The Q factor was determined to be 137 ± 10 counts 

upon using the counting method, and 155 ± 20 using 

the equation. This creates a range of Q values from 135 

- 175. This range includes the counted Q factor of 137 

± 10 counts, meaning the two values are similar, even 

though the Q factor derived from the equation is lower 

than the Q factor determined through counting. The 

type A uncertainties are greater in the equation method 

than in the counting method, as only one video trial 

was taken to analyze the points, and the values derived 

from the equation were automatically plugged in, 

whereas the points in the graph were counted three 

times to ensure consistency and accuracy in the 

obtained value. This results in lower average 

uncertainty.  Additionally, a limitation is that the curve 

of best fit from Figure 4 fails to account for the 

absolute maximum value of the function (at 𝜃 = 1.6 

rad) and the last angle displacement values (at 𝜃 = 0.3 

rad). If these numbers are used in the calculations 

instead, the Q factor would have been 146 ±10. This 

value would provide the range between 136 – 156, 

encompassing Q factors 140 ± 10 and 160 ± 20. The 

residuals graph shows that the error bars are too large, 

as 79% of the data is near the residual line the data. 

Although the error bars show a Type A uncertainty of 

too few points, it is a Type B uncertainty of 60 ±20 

because the values were manually picked out, causing 

the largest uncertainty.  

Lab 2: Period Versus Pendulum Length 

 
Figure 4: Period VS Length of a Pendulum. This is fitted to 

a power series in the form y = axb, with the equation y = 

3.3(±0.3) x0.42(±0.07). The correlation of the power series in 

the data was 0.9105, proving this is a good fit. This result 

tells us that as length increases, the period also increases, 

but the rate at which this occurs slows down.  

 

1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5

0 0.2 0.4 0.6

Pe
rio

d 
( ±

0.
01

s)

Length (± 0.005 m)

1.2
0.05 0.5

Pe
rio

d 
( ±

0.
01

s)

Length (± 0.005 m)



Shah 5 
 

Figure 5: Period VS Length of a Pendulum (log-log plot). 

The graph has the equation y = 3.4(±0.3) x0.44(±0.07). The line 

of best fit is qualitatively linear when plotted against a 

logarithmic scale, proving that the power series is a strong 

function. The average uncertainty was ±0.06s. 

Uncertainty Analysis 

To lower type A uncertainties, the period 

trials were conducted three times for each trial, and the 

average uncertainty was ±0.06s, which was larger than 

the period uncertainty. 

The log of the error bars (from Figure 4) is 

taken to find the error bar uncertainties. They are 

found by dividing the uncertainty by the respective x 

or y values (Error Bars in Log Plots 2017).  (they were 

found taking the logarithm of the original uncertainty)  

The Type B uncertainty of period and length 

are consistent as shown in Figure 2.  

Data Analysis: 

 The graph shows a clear correlation between 

the length and the period of the pendulum. The 

parameter uncertainty of y = 3.4(±0.3) x0.44(±0.07) proves 

that this is likely a strong correlation, satisfying the 

prediction provided. The gradual decrease in the rate 

of period change can be due to how much friction is 

added when the length increases. Other comparable 

functions with a high 95% confidence interval and 

correlation were quadratic and quartic functions (R2 

0.92 and 0.94 respectively) 

Q Factor VS. Length of a Pendulum 

 

Figure 6: Q Factor VS. Length of a Pendulum. The trend 

follows a natural logarithmic function in the form 𝑦 =

 𝐴 𝑙𝑛(𝑥)  +  𝑏, with equation y = 150(±30) ln(x) + 460(±40). 

There is a 0.9116 correlation, making this a strong fit.  

Uncertainty Analysis 

There is a Type B uncertainty of ±0.005m for 

the length, measured from the ruler, and a Q factor 

uncertainty of ±30. The parameter uncertainty of the 

equation y = 150(±30) ln(x) + 460(±40) means that 

95% of Q factor values range between 120 to 500, 

which is a large range that encompasses the data, 

making it a suboptimal fit. 

For smaller angles, it was possible to conduct 

three trials because oscillations and Q factor were not 

very large, but for the larger lengths, one trial was 

taken by counting all the oscillations, and the other two 

were counted by counting the first half of the 

oscillations (up until it reaches an angle of 0.698 rad, 

which was thought to be appropriate because of the 

small angle approximations), and multiplied by 2. This 

should result in a maximum uncertainty of 20. 

There is type A uncertainty of the Q factor 

because it was counted three times for the smaller 

angles and was counted halfway three times for the 

larger lengths and then multiplied by 2. Each length's 

standard deviation differed, resulting in average 

uncertainties ranging from 8 to 15.  Although 

theoretically, Q factor should be the same regardless of 

when you experiment, if it depends on string length. 

The standard deviation should remain constant 

throughout all lengths. There can be experimental 

errors like counting, friction or how the pendulum was 

released, giving this range. Therefore, the maximum 

average uncertainty, rounded to 20 was used. 

Conclusion 

 The period of the pendulum with length 

0.220± 0.005 was found to mostly be independent of 

amplitude, which supports the model. This is more 

obvious for smaller angles, than for larger angles, 

which increase lightly, and over larger angle changes. 

This result supports the prediction that period and 

amplitude are generally independent unless the angle 

at which they are released increases significantly. This 

might be due to the extra length the pendulum has to 

travel and the speed of the rope.  

The Q factor was determined to be 140 

± 10 upon using the counting method, and 160 ± 20 

using the equation, making them similar values. There 

was a higher uncertainty in using the Python code 

method than counting. This means that the equation 

model predicted in Equation 2 is an accurate model for 

this experiment. The correlation between the period 
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and the length of the pendulum did follow a power 

series, with equation y=3.4(±0.3) x0.44(±0.07).  closely. 

The correlation between the Q factor and the length 

followed a logarithmic trend, with the equation y = 

150(±50) ln(x) + 470(±80).  

The mathematical theory that the function 

𝑇 =  𝑘 𝐿𝑛 will provide an accurate fit aligns with our 

observation. This is accurate because when you 

increase the degree of a polynomial from 𝑇 =

 𝑘 𝐿0.44, to 𝑇 =  𝑘 𝐿4, the correlation increases to 

0.94. This occurs because there are only seven data 

points, giving a quartic function a higher variance and 

more parameters to fit each point. As the n value 

approaches the number of data points, the correlation 

gets closer to 1.00. From Lab 1, the initial 

largest source of error in the experiment was the period 

of the graph before being changed by using a camera 

instead. The largest source of error is from the Q factor 

in part 1 where the oscillations were counted manually 

and omitted manually as well. This method was kept 

because it did provide significance in that it accurately 

showed the length and trajectory of the curve, but this 

can cause fewer data points. If this experiment was 

redone, instead of manually choosing coordinates I 

could have tracked the angle at only the max 

displacements of the oscillations.  

The largest source of error from Lab 2 is 

when finding the Q factor for longer lengths. Only 

calculating half of the Q factor caused the uncertainty 

to double. If this lab were redone, and if possible, an 

oscilloscope or attempt to ‘excite’ the pendulum could 

have been used.  

Q factor describes the dampening of 

oscillators or resonators. Outside of the scope of 

pendulums, Q-factors have applications in electric 

circuits. Tufts University tested a method using 

Gravitational Wave Interferometry to analyze Q-

factors in pendulums (Wielgus, n.d). Connecting 

resonance, a pendulum’s resonance frequency can be 

‘excited’ using a constant higher voltage. Resonance 

frequency is usually the initial frequency of the 

pendulum, when it is at its highest amplitude, and is 

measured using 𝑇 =
1

2
𝜋√

𝐿

𝑔
. Increasing the resonance, 

using high voltage allows to have an increased 

frequency and decreases the amplitude. Measuring 

from an oscilloscope, this should be a much quicker 

and accurate process than manually counting. A 

similar model is by using auto resonance, where the 

resonance frequency of the pendulum is altered such 

that, it matches with the ‘driving frequency’ 

(frequency of a pendulum from external influences) 

and can also be measured through an oscilloscope.   

However, a limitation to using this method requires a 

higher-fidelity pendulum to allow for high voltage 

wire influence, and are more effective in pendulums 

with a higher Q factor, simulated in a vacuum  

 From these learnings, Type A and Type B 

uncertainties are drastically corrected. The largest 

source of uncertainty is a Type B uncertainty of only 

tracking the pendulum halfway for two trials in the 

longer pendulum lengths.  

 If Lab 2 was redone, it would be more 

beneficial to increase the increments of length to 10-

15 cm, and to cover a range until 1m. Since the length 

of the string was quite small until 0.40m, it followed a 

linear trend, while becoming logarithmic near the end. 

At small lengths, drag force does not significantly 

contribute to the speed of the pendulum. However, as 

length increases, the surface area of the string 

increases. In viscous drag, which is where fluids, 

including air, as the length increases, the pendulum 

must endure greater resistance, becoming more 

influential (Physics, n.d). At high speeds, a higher drag 

coefficient would cause velocity to decrease, assuming 

all other factors are held constant. Therefore, I 

hypothesize that if the lengths were increased even 

further to near 1m, the drag force would dominate, and 

the Q factor rate would plateau.   
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Appendix A: Tracker Graph of All the Amplitudes as Time Elapsed (Measured Through 

3000 frames) 

Figure 7: Modelling the Behaviour of A Pendulum to Determine the Q Factor. Made through Tracker outlining the 

position of the mass over 3000 frames (measured through a protractor and cross-referenced with the protractor built 

within my pendulum setup). It can be observed that the amplitude generally decreases as time elapses. However, the 

decrease is not fully consistent as peaks are followed by lower peaks. There is a variance of 0.1rad from the counted 

peak to its adjacent points which are local maxima, but a sinusoidal function does not fit the general decaying trend.  

 

  

  


