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1 Project Goal

We aim to compare neural ordinary differential equations (ODEs) with classical models for predicting
the growth of glioblastoma tumours using MRI images. The machine-learning model (“neural ODE” or “ML
model”) will be trained on publicly sourced MRI data, and its results will be compared with the classical
models to determine the validity and accuracy. Furthermore, we will analyze the bifurcations of glioblastoma
models and how tumour sizes affect their growth. If possible, we will further determine how modifications
can be made to the ML model or preprocessing steps to yield better results, thereby enhancing the model
accuracy for this incurable condition.

More specifically, we will split the publicly sourced MRI data into training and testing sets. The ML
model will be trained using the training sets. The ODEs will be evaluated using the testing set, using
numerical methods, specifically the Runge-Kutta fourth-order method and the Levin method, to maintain
computational accuracy and runtime [6] [3]. The prediction accuracy of the neural ODE will be determined
by comparing its performance with the classical models on the testing set. They will provide a benchmark
for performance and computational efficiency.

2 General Background

Glioblastoma—a neoplastic growth of the glial cell—is the most common and aggressive form of brain
tumour [2]. Like other tumours, it uses chemotaxis, the directed movement of cells or organisms in response
to a chemical gradient, which largely influences tumour growth speed and metastasis. It spreads rapidly
and is incurable. Thus, the only possible course of action is to reduce symptoms and slow their growth.
Glioblastoma tumours are classified based on the width of tumour rings and tumour surface regularity, which
assesses the extent to which a tumour resembles a sphere [11]. Spherical tumours indicate slower progression
compared to ‘spikey’ tumour surfaces [7]. These factors alter the survival rate of patients, and the correlation
can be predicted using PDEs, ODEs, or ML models.

3 Background Math

ODEs and partial differential equations (PDEs) help determine the evolution rates of tumours and how
factors like glucose levels, chemotaxis, chemo-radiation, and different treatments can perturb the proliferation
of the cells. A PDE for modelling cancer cells is:

∂c

∂t
= ∇ · (D∇c) + ρc−G(t)c (1)

Here, D is the diffusion coefficient (the rate of water diffusion through a tumour’s microenvironment), ρ
is the net proliferation rate (how fast cells grow and divide), and c is the cell density at a particular time and
location [13]. G(t)c is a constant added to the otherwise general equation that determines the number of
dead tumour cells from various chemotherapy treatments, providing a ‘heterogeneous drug administration’
approach [12]. We can use Equation (1) to model the inverse trend between the cellularity of tumours and
the diffusion coefficients in various tissues.

3.1 Carrying Capacity

The Gompertz model describes tumour growth as experiencing an ‘initial exponential growth’ before
inflecting as it reaches a carrying capacity/maximum size [9]. However, a stochastic differential equation
was used to represent this behaviour instead of a PDE as it better accounts for varying uncertainty and
randomness based on individual patient health. In a study related to glioblastoma, the stochastic differential
model in Equation (2) notes an inverse relationship between tumour volume and ’specific growth rate’
(SGR) [12], and incorporates it into the Gompertz Model, as seen below [10].
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Here, a(V) is the intrinsic growth rate, V is the tumour size, the term cV
h+

√
V

accounts for white noise

or randomness from the MRI data, and W(t) assesses the probability distribution [1]. The Gompertz curve
is incorporated within the term log b

V , where b is the carrying capacity of the cancer, as cells are depleted
from blood, glucose and oxygen supplies.

3.2 Bifurcation Model

Bifurcation models assess the relation between tumour and non-tumour cells using nonlinear ODEs [8].
As the ODE models discussed above have multiple parameters, both ‘Codimension 1’ and ‘Codimension 2’
bifurcations must be examined. Bifurcation analysis helps us inspect how interactions with effective cells,
cells in the immune system responding to these tumours, can spark invasion, proliferation or cell inaction
within the glioblastoma [4]. Possible bifurcations include transcritical saddle-nodes and Hopf bifurcations
using center manifold and normal form theories, which will be analyzed in our analysis.

4 Background Neural Network

After examining several models, we chose to use DeepSeg, a deep learning architecture that fully auto-
mates the detection and segmentation of the brain with MRIs. This particular model is based on a modified
U-Net architecture, which extracts spatial features from MRI scans and reconstructs them into a probability
map to highlight tumour regions. It has a DSC (dice similarity coefficient) of 0.81-0.84, making it a clinically
useful model for predicting tumour growth [14].

To evaluate the NN in relation to the classical ODEs, we draw inspiration from a similar article [5] that
compared classical ODEs to neural ODEs in tumour growth. The methods used are relative bias, mean-
squared error (MSE), and relative root-mean-squared error (RMSE), serving as a basis for evaluating the
performance of our NN.

5 Scope, Objectives and Milestones

While many of the PDEs and ODEs are used for other cancer cells, we will conduct our analysis specifically
considering the growth of glioblastoma cells. We will limit our MRIs to a single database or characteristic
within a database to minimize the number of uncontrolled parameters that can vary our results.

Based on similar literature, the comparison of neural and classical ODEs is an area of research within
biological system modelling and prediction. Given the relevance of knowing the spread and growth of
glioblastoma cells early on for early prevention and administering care to patients, we believe this topic can
adequately apply MAT292 concepts to address broader healthcare issues.

The following table outlines our milestones:

Table 1: Project Task Timeline

Task Estimated Time Internal Due Date

Broader literature review to finish our research for relevant
models for ODEs and Neural Networks

7 hours Oct 10

Preprocess images from public data sets, train and test NN,
and get performance parameters

7 hours Oct 17

Apply classical ODEs to the MRIs 7 hours Oct 24
Compare and analyze each method’s result, and conduct
specificity analysis

7 hours Oct 27

Bifurcation analysis 5 hours Oct 30
Writing, drafting, editing 10 hours Nov 1
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