

GATORMUN XXIII

Cold War & Combustion: The Apollo & Kosmos Rocket War

Douglas Plummer

Table of Contents

Letter from the Director	3
Rules of Procedure	4
Introduction to Committee	8
Topic A: Technological Supremacy and the Battle for the Moon	17
Topic B: Propaganda, Prestige, and the Politics of the Stars	18
Guiding Questions	19
Positions	21

Letter from the Director:

Dearest delegates,

It is my utmost pleasure to welcome you to the GatorMUN XXIII crisis committee, "Cold War, and Combustion: The War Between The Apollo and Kosmos Rocket Programs". My name is Douglas Plummer, and I am a Senior studying Electrical Engineering here at the University of Florida. I have done competitive Model United Nations for six years, now taking the role as Treasurer for the entirety of UFMUN (yes, I take bribes). I have staffed, chaired, and directed multiple committees before, but this will serve to be the first committee that I direct in full for SunMUN. I am excited to see what you guys do with the world we built, and I look forward to seeing some great debate.

The idea for this committee started when I was trying to brainstorm a potential JCC for GatorMUN based on a historical STEM-related political topic that has always interested me... The Space Race. I quickly realized the committee I had in mind would better function as a crisis with both parties being in-room for maximum engagement, and so I ended up here. Although you may have never explicitly lived through the events this committee is centered around, the ramifications of the space race as an ideological conflict have proliferated all facets of modern life, including technology, policy, and academic excellence. It was truly one of the first global media sensations and has inspired countless scientists, politicians, and would-be government operatives. This level of impact and scientific prestige is something that I want to see reflected in this committee, because there is no hyperbole when I say this half-century-old conflict has created industries, toppled world leaders, and served as a microcosm to see who could capture the hearts and minds of society.

In this committee, delegates will assume the roles of key scientists, military officials, and government operatives from both the United States and the Soviet Union at the height of the Cold War. As tensions escalate beyond Earth's atmosphere, participants must navigate ideological divides, espionage plots, engineering challenges, and geopolitical brinkmanship. Will you prioritize peaceful exploration or rush to militarize the final frontier? Can scientific collaboration triumph over political paranoia? What happens when prestige, propaganda, and payloads collide? With the eyes of the world watching every launch and lunar step, this committee asks not just which superpower will reach the stars first, but who will define what the space age looks like. The world's future may hinge on your next maneuver.

As such, you guys are expected to lead the debate, bring new ideas to the table, and find unique, creative ways of resolving the issues within the committee. Due to the niche nature of the committee, I don't expect everyone to know each and every facet of the committee; Thus, I will try to do my best to make sure no delegate feels directionless and ensure expectations are clear. I am looking forward to the creative solutions you guys will come up with, as well as the madness that will unfold within the backrooms of this committee. I really hope you guys have as much fun participating as I did planning and researching. I cannot wait to see you in January.

Warm regards, Doug

Rules of Procedure

Quorum

A majority of voting members answering to the roll at each session shall constitute a quorum for that session. This means that half plus one of all voting members are present. Quorum will be assumed consistent unless questioned through a Point of Order. Delegates may request to be noted as "Present" or "Present and Voting."

Motion to Suspend the Rules for the Purpose of a Moderated Caucus

This motion must include three specifications

- Length of the Caucus
- Speaking Time
- Reason for the Caucus

During a moderated caucus, delegates will be called on to speak by the Committee Director. Delegates will raise their placards to be recognized. Delegates must maintain the same degree of decorum throughout a Moderated Caucus as in formal debate. This motion requires a simple majority to pass.

Motion to Suspend the Rules for the Purpose of an Unmoderated Caucus

This motion must include the length of the Caucus. During an unmoderated caucus, delegates may get up from their seats and talk amongst themselves. This motion requires a simple majority to pass. The length of an unmoderated caucus in a Crisis committee should not exceed fifteen minutes.

Motion to Suspend the Meeting

This motion is in order if there is a scheduled break in debate to be observed. (ie. Lunch!) This motion requires a simple majority vote. The Committee Director may refuse to entertain this motion at their discretion.

Motion to Adjourn the Meeting

This motion is in order at the end of the last committee session. It signifies the closing of the committee until next year's conference.

Points of Order

Points of Order will only be recognized for the following items:

- To recognize errors in voting, tabulation, or procedure
- To question relevance of debate to the current Topic
- To question a quorum.

A Point of Order may interrupt a speaker if necessary and it is to be used sparingly.

Points of Inquiry

When there is no discussion on the floor, a delegate may direct a question to the Committee Director. Any question directed to another delegate may only be asked immediately after the delegate has finished speaking on a substantive matter. A delegate that declines to respond to a question after a formal speech forfeits any further questioning time.

Points of Personal Privilege

Points of personal privilege are used to request information or clarification and conduct all other business of the body except Motions or Points specifically mentioned in the Rules of Procedure. Please note: The Director may refuse to recognize Points of Order, Points of Inquiry or Points of Personal Privilege if the Committee Director believes the decorum and restraint inherent in the exercise has been violated, or if the point is deemed dilatory in nature.

Rights of Reply

At the Committee Director's discretion, any member nation or observer may be granted a Right of Reply to answer serious insults directed at the dignity of the delegate present. The Director has the ABSOLUTE AUTHORITY to accept or reject Rights of Reply, and the decision IS NOT SUBJECT TO APPEAL. Delegates who feel they are being treated unfairly may take their complaint to any member of the Secretariat.

Directives

Directives act as a replacement for Draft Resolutions when in Crisis committees, and are the actions that the body decides to take as a whole. Directives are not required to contain operative or preambulatory clauses. A directive should contain:

- The name(s) of the author(s)
- A title
- A number of signatories/sponsors signatures' necessary to
- introduce, determined by the Director

A simple majority vote is required to introduce a directive, and multiple directives may be introduced at once. Press releases produced on behalf of the body must also be voted on as Directives.

Friendly Amendments

Friendly Amendments are any changes to a formally introduced Directive that all Sponsors agree to in writing. The Committee Director must approve the Friendly Amendment and confirm each Sponsor's agreement both verbally and in writing.

Unfriendly Amendments

Unfriendly Amendments are any substantive changes to a formally introduced Directive that are not agreed to by all of the Sponsors of the Directive. In order to introduce an Unfriendly Amendment, the Unfriendly Amendment must be the number equivalent to 1/3 of Quorum confirmed signatories. The Committee Director has the authority to discern between substantive and non-substantive Unfriendly amendment proposals.

Plagiarism

GatorMUN maintains a zero-tolerance policy in regards to plagiarism. Delegates found to have used the ideas of others without properly citing those individuals, organizations, or documents will have their credentials revoked for the duration of the GatorMUN conference. This is a very serious offense.

Crisis Notes

A crisis note is an action taken by an individual in a Crisis committee. Crisis notes do not need to be introduced or voted on, and should be given to the Crisis Staff by sending the notes to a designated pickup point in each room. A crisis note should both be addressed to crisis and have the delegate's position on both the inside and outside of the note.

Motion to Enter Voting Procedure

Once this motion passes, and the committee enters Voting Procedure, no occupants of the committee room may exit the Committee Room, and no individual may enter the Committee Room from the outside. A member of the Dias will secure all doors.

- No talking, passing notes, or communicating of any kind will be tolerated during voting procedures.
- Each Directive will be read to the body and voted upon in the order which they were
 introduced. Any Proposed Unfriendly Amendments to each Directive will be read to the
 body and voted upon before the main body of the Directive as a whole is put to a vote.
- Delegates who requested to be noted as "Present and Voting" are unable to abstain during voting procedure. Abstentions will not be counted in the tallying of a majority. For example, 5 yes votes, 4 no votes, and 7 abstentions means that the Directive passes.
- The Committee will adopt Directives and Unfriendly Amendments to Directives if these
 documents pass with a simple majority. Specialized committees should refer to their
 background-guides or Committee Directors for information concerning specific voting
 procedures.

Roll Call Voting

A counted placard vote will be considered sufficient unless any delegate to the committee motions for a Roll Call Vote. If a Roll Call Vote is requested, the committee must comply. All delegates must vote: "For," "Against," "Abstain," or "Pass." During a Roll Call vote, any delegate who answers, "Pass," reserves his/her vote until the Committee Director has exhausted the Roll. However, once the Committee Director returns to "Passing" Delegates, they must vote: "For" or "Against."

Accepting by Acclamation

This motion may be stated when the Committee Director asks for points or motions. If a Roll Call Vote is requested, the motion to Accept by Acclamation is voided. If a delegate believes a Directive will pass without opposition, he or she may move to accept the Directive by acclamation. The motion passes unless a single delegate shows opposition. An abstention is not considered opposition. Should the motion fail, the committee will move directly into a Roll Call Vote.

Tech Policy

Technology will not be allowed throughout the course of the committee. Delegates are prohibited from using their technology inside the committee room. However, they are encouraged to do research before and during assigned breaks.

The Space Race: Historical Background and Key Events

Cold War Rivalry Reaches for the Stars

In the aftermath of World War II, two superpowers emerged locked in a Cold War: the United States and the Soviet Union. Their rivalry spanned politics, military might, and technology. By the 1950s, both nations were developing long-range rockets that could deliver nuclear weapons, Intercontinental Ballistic Missiles (ICBMs), fueling an intense arms race. This competition set the stage for a new arena of contest: outer space. Each side wanted to prove its system's superiority not just on Earth, but above it. Scientists and military leaders in both countries, many building on captured German V-2 rocket technology, were eager to launch the first artificial satellite. This would be more than a scientific feat, it would be a powerful symbol of national prowess. By the mid-1950s, the space race was on, even if the public didn't yet know it. Both nations announced plans to launch satellites for the cooperative International Geophysical Year (IGY) (1957-58), a global science initiative. In July 1955, the White House declared the U.S. would launch a satellite for the IGY, and the Naval Research Laboratory's Vanguard project was chosen for the task. Meanwhile, the Soviet Union pursued its own secretive program under Chief Designer Sergei Korolev. Tensions and expectations were high, but few could predict how dramatically this cosmic competition would capture the world's attention.

Sputnik: The "Beep" Heard 'Round the World (1957-1958)

On October 4, 1957, history changed. The Soviet Union shocked the world by launching Sputnik 1, the first artificial satellite to orbit Earth. Sputnik was about the size of a beach ball and weighed 184 pounds – tiny by later standards – but its impact was enormous. Circling the globe every 96 minutes, the metal sphere transmitted steady "beep-beep" signals that anyone with a radio could hear. Those cheerful beeps struck fear into the hearts of many Americans. As a technical achievement, Sputnik made headlines worldwide, but it also carried a troubling message: if the USSR could launch a satellite into orbit, it might also launch nuclear missiles across continents. The comfortable American assumption of unquestioned technological superiority was gone "not one iota," as President Dwight D. Eisenhower tried to reassure – Sputnik, he insisted, did "not raise my apprehensions...one iota" about national security. Despite Eisenhower's public calm, the Sputnik crisis had begun. Soviet success was not a one-off. Barely a month later, on November 3, 1957, they launched Sputnik 2, carrying a dog named Laika as the first living creature in orbit.

The Soviet Union basked in the triumph; Premier Nikita Khrushchev bragged that these cosmic firsts were the "greatest triumph of the immortal Lenin's ideas", casting them as victories for communism. Meanwhile, the United States scrambled to respond. The first American satellite attempt, the Vanguard TV-3 mission, ended in a spectacular flop. On December 6, 1957, the Vanguard rocket rose a few feet off its launch pad and then exploded on live television. The press, in a rare moment of cosmic humor, dubbed it "Flopnik" or "Kaputnik". It was a humiliating setback: America appeared to be lagging behind the Russians in the "Space Race," and critics at home lambasted the government for complacency. Chastened but determined, the U.S. accelerated a backup plan. A team led by ex-German rocket scientist Wernher von Braun with the Army's Redstone missile seized the moment. On January 31, 1958, the United States finally had reason to cheer: Explorer 1, the first American satellite, successfully reached orbit. Though much smaller than Sputnik, Explorer 1 carried a scientific instrument that discovered the Van Allen radiation belts around Earth a proud scientific contribution.

The "space age" had officially dawned for both superpowers. The Sputnik crisis spurred rapid change in U.S. policy. Americans, shocked at "lagging behind" in technology, worried that their education system was not producing enough scientists and engineers.

Politicians took action: Congress poured money into science and math education through the National Defense Education Act of 1958, hoping to groom a new generation of engineers and rocket experts. Most visibly, Washington reorganized its space efforts. In 1958, President Eisenhower and Congress created a new, unified civilian space agency, the National Aeronautics and Space Administration (NASA), to lead the nation's push into space. NASA

began operations on October 1, 1958, absorbing the old NACA and other research programs. The U.S. also established the Advanced Research Projects Agency (ARPA) to fund cutting-edge technology (a direct response to Sputnik as well). In short, Sputnik's "beep" jolted America into action, reorganizing government and society for the challenges of the new frontier.

Superpower Ambitions Take Flight (1959-1961)

With satellites orbiting Earth, both superpowers set their sights even higher... literally. Unmanned space probes soon pushed the competition beyond Earth orbit. In 1959, the USSR's Luna series of probes scored more firsts: Luna 2 became the first human-made object to impact the Moon, and Luna 3 photographed the Moon's far side for the first time. Each Soviet accomplishment was trumpeted as proof of communist scientific might. The United States was still playing catch-up, but gaining momentum under NASA's guidance. The next great milestone would be putting a human being in space, and once again the Soviets struck first. On April 12, 1961, the world was astonished by news from Moscow: Yuri Gagarin, a 27-year-old Soviet air force pilot, had become the first human to orbit the Earth. Gagarin's single-orbit flight in his Vostok 1 capsule lasted 108 minutes, but its significance was immense.

He instantly became a global hero that history dubs "an international celebrity and a hero of the Soviet Union". The USSR celebrated Gagarin's flight as a triumph of their system; a jubilant Khrushchev led parades in Red Square and declared that "Gagarin's flight [was] the greatest triumph of Lenin's ideas". Around the world, many saw Gagarin's feat as another "Sputnik moment," convincing some that the Soviet model was outpacing the West. In the geopolitical psychology of the Cold War, the Soviet Union had again seized the high ground – literally and figuratively. The United States, embarrassed and alarmed, responded with new urgency. Less than a month later, on May 5, 1961, Alan Shepard became the first American in space, completing a 15-minute suborbital flight in his Mercury capsule (a shorter mission that did not orbit the Earth). Shortly after, on May 25, 1961, President John F. Kennedy delivered a bold challenge to the nation and a direct counter to Soviet successes. Speaking to a special joint session of Congress, JFK famously declared: "I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth."

A major weakness in the international humanitarian system is the lack of binding enforcement mechanisms, particularly in General Assembly bodies such as SOCHUM. While the UN can pass resolutions and call for aid access, these directives are often ignored without any legal consequence. The UN Security Council has the authority to mandate enforcement actions, but political divisions and the use of veto power often paralyze its ability to act. For example, in the case of Myanmar's Rohingya crisis, Security Council resolutions demanding access for humanitarian actors were consistently watered down or blocked by member states with geopolitical interests (Human Rights Watch, 2021; OHCHR, 2023). Even when resolutions are passed, there is no independent enforcement body capable of compelling states or non-state actors to comply. Past efforts, such as the creation of peacekeeping missions with humanitarian mandates, have sometimes helped but remain limited by rules of engagement, host country consent, and underfunding. Delegates must consider new forms of enforcement, such as automatic consequences for aid obstruction, stronger reporting mechanisms tied to international accountability, or binding humanitarian access agreements backed by regional organizations or multilateral coalitions. Without this, resolutions continue to lack teeth, and civilians remain unprotected in protracted crises.

Several factors drove Kennedy's audacious Moon goal. The Sputnik shock and now Gagarin's flight had demonstrated a yawning "space gap." Additionally, the U.S. had just suffered the Bay of Pigs fiasco in Cuba in April 1961, a Cold War humiliation that added pressure on Kennedy to score a win. After consulting experts – including Vice President Lyndon Johnson (a long-time space proponent) and NASA's administrator James Webb – Kennedy concluded that a Moon landing was one arena where America might "catch up to and overtake" the Soviet Union.

The young President's rousing speeches (at Congress in 1961 and at Rice University in 1962) framed space as "the new ocean" and asserted that the free world had to lead. Thus, the race to the Moon was officially on, and it became the central goal of both nations' space programs in the 1960s. It's important to note that this dramatic Moon pledge was not made lightly. At the time of Kennedy's announcement, the U.S. had a total of 15 minutes of human spaceflight experience (Shepard's flight), and had yet to even put an American into orbit. Landing on the Moon would require leaps in technology and billions of dollars. But the Cold War stakes were high. As Kennedy put it, space was "not merely a race" but part of the larger struggle "between freedom and tyranny," one that the U.S. could not afford to lose.

The U.S. poured resources into Project Mercury (to master basic crewed flight), Project Gemini (to develop advanced techniques like orbital rendezvous and spacewalks), and ultimately Project Apollo (to achieve the lunar landing). On the Soviet side, Premier Khrushchev also accelerated efforts – though he publicly downplayed the American Moon goal, internally the Soviet leadership aimed to beat the Americans to the Moon if possible. The cosmic duel was entering a new phase, with the finish line set at 238,000 miles away on the lunar surface.

New Milestones and Mounting Pressures (1962 - 1966)

In the early 1960s, the U.S.-USSR space race produced a dizzying list of "firsts" as each side sought every possible prestige advantage. The Soviet Union initially maintained its lead in human spaceflight achievements. In August 1962, Gherman Titov spent a full day in orbit on Vostok 2, and in June 1963 Valentina Tereshkova became the first woman in space, orbiting Earth 48 times aboard Vostok 6. Tereshkova's flight - trumpeted as another Soviet triumph - was, in truth, partially a propaganda move to one-up the Americans (who would not send a woman to space until two decades later). In October 1964, the USSR achieved the first multiperson crew with Voskhod 1, squeezing three cosmonauts into a modified capsule (they even flew without spacesuits to fit, an alarming but necessary risk).

Then in March 1965, Soviet cosmonaut Alexei Leonov performed humanity's first spacewalk (EVA) during the Voskhod 2 mission – floating outside his spacecraft for 12 minutes, which nearly turned disastrous when his suit ballooned and he struggled to re-enter the airlock. Each Soviet accomplishment was broadcast as evidence of socialist ingenuity. A proud Pravda article even credited Premier Khrushchev's personal leadership for the USSR's cosmic successes, implying he "directs the development of major technical projects" like the space program. Yet beneath the surface of Soviet triumphs, troubles brewed. The complexity and cost of space endeavors were straining the USSR's centralized system. After Voskhod 2's success, the Soviets quietly canceled further Voskhod missions to focus on the Moon race – a decision influenced by a change in leadership. In October 1964, Leonid Brezhnev pushed aside Khrushchev in a Kremlin power shift.

The new Soviet leadership was less interested in publicity stunts; they wanted the ultimate prize – beating America to the Moon. To do that, they needed a powerful new rocket (the N1) and a sophisticated lunar spacecraft, all of which were still on the drawing board. A tragic setback hit the Soviet effort in January 1966: Sergei Korolev, the genius chief designer and driving force of their space program, died during surgery. His death was a crushing blow. The Moon program struggled without Korolev's guidance, facing technical woes and bureaucracy. (Notably, the N1 "Moon rocket" would explode in all four of its test launches, and the Soviet crewed lunar program was eventually canceled in 1974).

Meanwhile, the United States was rapidly gaining ground, propelled by a surge of funding and the urgency of Kennedy's deadline. In February 1962, John Glenn became the first American to orbit Earth, circling the globe three times in his Mercury capsule Friendship 7. The achievement boosted U.S. confidence and prestige – President Kennedy traveled to Cape Canaveral to welcome Glenn home as a hero. With Mercury accomplished, NASA moved on to Project Gemini (1965–66), a series of missions crucial for developing Moon-flight capabilities. In these missions, two-man crews practiced orbital rendezvous and docking, spent up to two weeks in space, and perfected spacewalk techniques (astronaut Ed White performed the first American EVA in June 1965). Each success chipped away at Soviet leads. By 1966, Gemini had achieved long-duration flights and rendezvous that the Soviets had not matched, and the U.S. was deploying cutting-edge technology (like the Saturn V heavy lift rocket under von Braun's team) to leap ahead. A turning point had been reached: a chart of achievements by year showed that by 1965, the Americans had caught up and even surpassed the Soviets in some areas of crewed spaceflight.

The race to the Moon was entering its final stretch, but it was not without peril and sacrifice for both sides. 1967 proved a somber year for spacefarers on both sides of the Iron Curtain. On January 27, 1967 – ironically, the very same day the U.S. and USSR signed the landmark Outer Space Treaty pledging the peaceful use of space – tragedy struck NASA's Apollo program. During a routine ground test, a flash fire ignited inside the Apollo 1 command module, killing Gus Grissom, Ed White, and Roger Chaffee before they could escape. The accident revealed deadly design flaws (a pure oxygen cabin and an inward-opening hatch) that forced NASA to pause and redesign the spacecraft. The American public was shocked and mourned the three astronauts, but NASA redoubled its commitment to safety and continued toward the Moon, now with even greater determination. Just three months after Apollo 1, the Soviet Union suffered its own heartbreak. In April 1967, Vladimir Komarov piloted the first test flight of the new Soyuz spacecraft – intended to be the workhorse for Soviet lunar missions. Soyuz 1 was plagued by problems from launch, and as Komarov attempted reentry, its parachutes failed. The capsule crashed at high speed, killing Komarov – the first human to die during a spaceflight.

The cosmonaut's funeral in Red Square (he received hero's honors) masked a grim reality: the Soyuz craft had serious issues, and the Soviet Moon program was in trouble. Both superpowers had received painful reminders that space exploration was exceedingly dangerous. These setbacks slowed each program, but neither side was willing to surrender the ultimate prize.

"One Giant Leap": Reaching the Moon (1968-1969)

By 1968, the United States had recovered momentum and was poised to seize the lead once and for all. In December of that year, Apollo 8 carried three astronauts into lunar orbit - the first humans to travel to the Moon. As they circled the Moon on Christmas Eve 1968, reading from the Book of Genesis on live TV, Apollo 8's crew not only scouted the terrain for a future landing but also gave humanity its first breathtaking view of Earthrise over the Moon's horizon. This deeply moving imagery and the success of Apollo 8 signaled that the U.S. was now ahead in the space race. The Soviets, for their part, attempted some last-ditch robotic lunar missions (and may have considered a crewed loop-around flight), but they could not beat NASA to the finish line. Finally, in July 1969, the race culminated in an event of truly historic proportions. On July 20, 1969, Apollo 11 achieved Kennedy's once-distant goal: American astronauts Neil Armstrong and Edwin "Buzz" Aldrin landed on the Moon, while Michael Collins orbited above in the command module. An estimated 650 million people around the world watched live as Armstrong took humanity's first steps on the lunar surface, declaring, "one small step for [a] man, one giant leap for mankind". It was a triumphant moment not just for the United States, but for humanity, yet it undeniably had political punch. The successful moon landing demonstrated the technological prowess of the U.S. and is widely regarded as the moment the Americans won the Space Race to the Moon.

In completing President Kennedy's challenge with five months to spare, the U.S. had shown that a free society could mobilize science and industry toward an incredible goal. As Armstrong and Aldrin planted the Stars and Stripes on the Moon, even the Soviet press offered brief congratulations, though the Soviet leadership was notably quiet about Apollo 11 in public. (Tellingly, Soviet engineers had been racing a robotic probe, Luna 15, to try to snatch a bit of lunar soil and return it to Earth before Apollo 11's crew could come home, but Luna 15 crashed moments before Armstrong and Aldrin finished their work on the Moon) .The moon landing was the headline of 1969. Celebrations erupted worldwide – in New York, Chicago, London, Tokyo – as people marveled at what had been achieved. Even in parts of the world not aligned with either superpower, there was a sense of shared human accomplishment. Armstrong, Aldrin, and Collins were given ticker–tape parades and toured dozens of countries as global goodwill ambassadors following the mission.

Meanwhile, in Moscow, the Soviet space program turned its focus to other goals (having quietly shelved its failed moon-landing program). In a symbolic sense, Apollo 11 was the checkered flag of the Space Race. A prominent historian later called Apollo 11 a "decisive American victory" in the superpower technological competition. After 1969, the feverish sprint between the U.S. and USSR began to cool – not immediately, but gradually, as both sides shifted priorities. In the early 1970s, the United States completed a few more Apollo Moon landings (five in total with Apollo 11, and a sixth planned mission, Apollo 13, famously survived an in-flight explosion and returned safely without landing). However, the enormous expense of Apollo – and waning public interest after the initial landing – led NASA to cancel the last planned lunar missions. The final Apollo crew left the Moon's surface in December 1972. The Soviet Union, unable to mount a human Moon mission, concentrated instead on space stations (launching the first space station, Salyut 1, in 1971) and automated lunar exploration (they achieved the first robot lunar sample return in 1970 and deployed Lunokhod robotic rovers on the Moon). The era of frantic one-upmanship was drawing to a close, to be replaced by a mix of continued competition and cautious cooperation.

Beyond the Race: Implications and Legacy

The Space Race may have been rooted in Cold War rivalry, but its ripple effects transformed the world in many unexpected positive ways. One immediate outcome was a growing recognition that space, despite being a theater of competition, also held opportunities for cooperation and needed rules to prevent conflict. In 1967, even as the race was in full swing, the U.S., USSR, and other nations signed the Outer Space Treaty. This foundational treaty declared that outer space would be the "province of all mankind," barring nations from placing weapons of mass destruction in orbit or claiming celestial bodies as national territory.

In a sense, the two superpowers agreed to take their rivalry to space peacefully, ensuring the Moon and planets would not become new battlegrounds. This spirit of space as a neutral realm for peaceful purposes has, for the most part, endured. In 1975, the rivals even came together in a historic Apollo-Soyuz Test Project, docking an American Apollo craft with a Soviet Soyuz in orbit. That handshake in space signaled a symbolic end to the two-decade Space Race and the beginning of more collaborative exploration. Beyond diplomacy, the Space Race profoundly affected technology, education, and society. The intense investment in rocket and satellite technology paid dividends that touch our everyday lives today. For example, the launch of satellites during the 1960s revolutionized global communications and weather forecasting. In 1962, the first active communications satellite (Telstar) enabled live television signals to bounce across the Atlantic, a direct result of space-launch capabilities. Today, we take for granted live international video calls, GPS navigation, and instant weather updates from space – all fruits of the space programs. As one NASA history analysis noted, satellite communications have likely had "more effect...on the average person" than any other space technology, spawning a multibillion-dollar industry.

Weather and remote sensing satellites also began providing critical data; by the late 1960s, images from geostationary weather satellites were helping meteorologists track storms from space. Even national security benefited: President Lyndon Johnson once remarked that reconnaissance satellites (which could secretly observe enemy missile bases from orbit) were worth every penny spent on space, as they provided transparency that likely averted misunderstandings. In short, the rush into orbit created a network of satellites that today connects and safeguards the "global village." The drive to win the Space Race also turbocharged scientific research and education in the U.S. and beyond. In America, the Sputnik shock led to massive federal funding for science and engineering education via the National Defense Education Act. School curricula were revamped to emphasize math and science, and universities saw a boom in students. The number of U.S. college students more than doubled from 1960 to 1970 (3.6 million to 7.5 million) in part thanks to scholarships and loans spurred by Sputnik.

A whole generation was inspired to become scientists, engineers, and astronauts – a legacy sometimes dubbed the "Apollo generation." The Space Race also pushed the boundaries of computing, materials science, and avionics. To reach the Moon, NASA had to develop lightweight integrated circuits (boosting the early microchip industry), precision navigation systems, and new materials – innovations that soon found uses in the broader economy. Thousands of spin-off technologies from the 1960s space programs have been documented, from improved camera sensors to freeze-dried food, fueling advancements in medicine, transportation, and even the devices we use every day.

Culturally, the impact was equally profound. The image of Earth taken by astronauts – that small blue marble floating in the black void – reshaped humanity's perspective. Many historians credit the Space Race and especially the Apollo missions with helping kickstart the environmental movement, since seeing our fragile planet from space underscored the need to care for "Spaceship Earth." Around the world, the accomplishments of astronauts and cosmonauts stirred imaginations and optimism. Terms like "astronaut" and "cosmonaut" became new heroes in the global lexicon, celebrated in films, books, and songs. Children everywhere gazed at the night sky and dared to dream of becoming spacefarers. Politically, while the Space Race was a facet of Cold War competition, it arguably provided a safer outlet for U.S.-Soviet rivalry. Rather than clashing directly on the battlefield, the superpowers vied in science and engineering. This "soft power" competition helped sway global public opinion. Many newly independent nations in Asia and Africa, for instance, watched the Space Race and drew conclusions about which economic-political model was more dynamic. American successes like Apollo 11 bolstered the image of the United States as a leader of the free world and demonstrated the capabilities of an open, capitalist society.

Soviet early successes had similarly given a propaganda boost to the socialist camp, though by the 1970s that lustre had faded. In a way, the Space Race's legacy in the Cold War was a mixed one: it heightened national pride and competition, but it also laid groundwork for later arms-control talks and cooperative ventures by showing that mutual restraint (like the Outer Space Treaty) was possible even amid rivalry. Finally, the Space Race left an enduring legacy of international space cooperation once the competition cooled. The technologies and knowledge developed in the 1960s made it feasible for many other nations and private entities to access space in later decades. By the late 20th century, countries like Canada, Japan, China, India, and a unified Europe (via the European Space Agency) all established satellite and launch programs – many directly inspired by the successes of the U.S. and USSR. In the ultimate twist, the International Space Station (ISS) – launched starting in 1998 – became a joint project of former rivals (including the U.S. and Russia) and other nations, working together in space.

The seeds of that global partnership can be traced to the mutual understanding and experience gained during the Space Race. In conclusion, the Space Race (1957-1975) was a period of unprecedented technological rivalry between the superpowers, producing some of humanity's greatest achievements and a few of its worst failures. It began with a beeping Soviet satellite that stunned the world and ended with American astronauts and Soviet cosmonauts sharing a handshake in orbit. The historical events outlined above provide the essential context for our committee's exploration of this era. They remind us that behind every launch, every flag planted, and every triumphant broadcast, there were real political calculations, passionate personalities, and enormous risks. The legacy of the Space Race is still felt today - in our schools and universities, in the satellites circling overhead, in the spirit of international cooperation in space, and in the simple fact that humanity has now left its footprints on another world. As we proceed in committee, remembering this rich history will be vital. It teaches us how far ambition and rivalry can push innovation, and it invites us to consider what choices might have led to different outcomes. The stage is set; the year is 1957 and Sputnik has just streaked across the heavens - the world is watching, and the next moves are up to us. (Any hypothetical or alternate-history scenarios introduced for the committee's purposes will be clearly noted as [non-historical], distinguishing them from the factual record above.)

Topic A: Technological Supremacy and the Battle for the Moon

The primary driver of this topic is the real and escalating competition to be first... first in orbit, first with a space station, and ultimately, first to plant a flag on the Moon. In this arena, delegates will act as policymakers, engineers, military officials, and heads of state tasked with managing the internal mechanics of their respective space programs with a focus on some of the engineering and science-based elements of the topic.

Debate in this topic will center on:

- **Budget construction and allocation:** Delegates must argue for or against expanding spending on specific technologies, diverting funds from other military or scientific projects, or even downsizing risky missions.
- **Personnel recruitment and retention**: Who are the best scientists, astronauts, and engineers and how do you keep them from defecting or being poached?
- Mission planning and risk assessment: Delegates will propose launch schedules, outline backup plans, and debate on innovation; actively making decisions on mission critical elements
- **Internal politics:** Delegates may be forced to navigate party elections, state censorship, or bureaucratic infighting that shapes the future of their space agenda.

Mechanically, Topic A debate will influence:

- The pacing of mission development
- Crisis updates related to launch failures or breakthroughs
- The success of espionage or sabotage attempts
- Whether the Moon landing is a triumph... or a tragedy and the scientific advancements that result from either outcome

Topic B: Propaganda, Prestige, and the Politics of the Stars

If Topic A is the jet engine of the committee, Topic B is the public-facing dashboard. The Space Race was just as much about perception as propulsion, and here, delegates will need to craft narratives, control messaging, and weaponize soft power on a global stage.

Debate in this topic will center on:

- **State propaganda and media control:** Delegates may propose censorship laws, PR campaigns, or disinformation to reshape global opinion.
- International image-building: How should your program be branded to the world? As a peaceful endeavor? A defense initiative? A symbol of ideological superiority?
- **Crisis transparency:** Should accidents and failures be covered up? Will the truth win hearts, or weaken resolve?
- **Political Espionage:** What's the best way to ensure the "enemy" will not prevail? Is it a game of smoke and mirrors or deceptive ploys?
- **Cultural exports:** Delegates may introduce films, posters, speeches, and symbols that become defining elements of their national legacy.

Mechanics supporting Topic B include:

- The ability to launch propaganda campaigns or journalistic exposés
- "Public Opinion" and "Global Alignment" trackers, which influence neutral nation support
- Media leaks or whistleblower updates
- Collaborations with fictionalized global press actors or internal journalists

Strategic Interplay Between Topics

Topic A and Topic B are not isolated — in fact, they are meant to collide. A successful Moon landing may mean little if the world doesn't believe it happened. A failed launch may be salvaged if spun as a heroic sacrifice. Delegates must balance hard science with soft power, knowing that no crisis, decision, or speech occurs in a vacuum — even in space. Ultimately, the superpower that dominates the skies won't just be the one with the best rocket — but the one with the best story.

Guiding Questions

The Space Race was not merely a sprint to the Moon, but it was a crucible for political strategy, scientific ambition, ideological warfare, and cultural legacy. The following questions are designed to help delegates navigate the layered complexity of this crisis committee. Delegates should consider not only how to win the race, but what that victory means, how it's achieved, and who it truly serves.

Scientific and Strategic Dilemmas

- How do we balance scientific ambition with engineering feasibility and public safety?
- What risks are acceptable in the pursuit of technological milestones?
- Should military applications of space technology be prioritized alongside or over civilian exploration?
- How can espionage, sabotage, or tech theft affect the pace and integrity of a space program?
- What level of transparency should exist between the government, scientific institutions, and the public?
- Who controls intellectual property: the state, the engineer, or the world?

Political, Budgetary, and Bureaucratic Tensions

- What role should the state play in the day-to-day operation of a space program?
- How should funding be allocated between space programs and domestic needs (education, defense, infrastructure)?
- How do internal politics, elections, military rivalries, or shifting party lines affect progress?
- How can we maintain program morale and manage competition between internal factions or agencies?

Propaganda, Media, and Global Perception

- How should setbacks (explosions, deaths, malfunctions) be reported; if at all?
- Is truth more important than public trust?
- What kinds of propaganda or media narratives are most effective in garnering domestic or global support?
- How does global public opinion, especially from non-aligned or newly independent states, influence the stakes of the Space Race?
- Should cultural production (films, broadcasts, children's education, literature) be used as a tool of soft power in an endeavor this big?

Guiding Questions

Ethical, Ideological, and Long-Term Considerations

- Should the Moon be a site of national ownership or global cooperation?
- Who has the moral right to be first, and what does "being first" actually accomplish?
- Is space exploration an extension of imperialism or an escape from it?
- Should we fear what the other side might do in space, or what we ourselves might become?

Big-Picture Questions

- Will humanity be remembered for the science we achieved... or the politics we let corrupt it?
- Is the Space Race a contest of innovation or a carefully managed illusion of progress?
- What are we racing toward? And what might we lose in our attempt to get there first?

Positions

Government & Political Figures

1. Lyndon B. Johnson - President of the United States (1963-1969)

Assuming the presidency after JFK's assassination in November 1963, Johnson carried the torch of the Apollo Program during its most aggressive phase. By 1966, NASA's budget peaked at \$5.9 billion (approximately 4.41% of the federal budget), the highest ever. Johnson viewed space exploration as a Cold War imperative and lobbied fiercely for the Moon landing to assert American technological and ideological supremacy. Yet, he juggled this ambition alongside the Vietnam War, domestic unrest, and his Great Society reforms. LBJ's role in this committee is central: he controls the purse strings and public messaging, but will have to weigh whether scientific glory is worth the cost amidst mounting political and financial pressures.

2. Leonid Brezhnev - General Secretary of the Communist Party of the Soviet Union (1964–1982). Rising to power after the ousting of Khrushchev in October 1964, Brezhnev prioritized internal stability and military expansion over high-profile space spectacles. He inherited a Soviet space program at a crossroads—still reeling from the death of chief designer Sergey Korolev in January 1966 and quietly lagging behind the U.S. in manned lunar efforts. Brezhnev's leadership will test whether the USSR can pivot toward unmanned scientific achievements, space-based surveillance, or even military space infrastructure to maintain ideological parity without direct Moon competition. He must also manage internal dissent and the political optics of space spending amid Soviet economic stagnation.

3. Valentina Tereshkova – First Woman in Space (Vostok 6, 1963)

Launched on June 16, 1963, aboard Vostok 6, Tereshkova orbited the Earth 48 times and became a national icon. A trained engineer and former textile worker, she was heavily used in Soviet propaganda to showcase gender equality under communism. By the mid-1960s, however, her flight remains singular—no other women have flown in space. In this committee, she straddles a fine line: does she toe the party's ideological messaging, or advocate for a genuine role in future missions and engineering decisions? Her voice represents both scientific progress and questions of gender equity within deeply patriarchal institutions.

Positions

Government & Political Figures

4. James E. Webb - NASA Administrator (1961-1968)

As the second NASA Administrator, Webb oversaw the Mercury, Gemini, and most of the Apollo programs. He led NASA through a period of unprecedented growth, increasing the agency's staff from 10,000 to over 36,000 by 1967, and managing a sprawling web of over 400,000 contractors. Webb fiercely defended NASA's scientific mission and budget before Congress, even in the face of growing public scrutiny over space spending. His background in law and public administration (rather than science) makes him a savvy political actor—balancing technical timelines, internal morale, and political optics. Webb's ability to keep the Moon landing on track hinges on his leadership under fire.

5. John McCone - Director of the Central Intelligence Agency (1961-1965)

Serving during the Cuban Missile Crisis and early Apollo development, McCone used satellite imagery and U-2 reconnaissance flights to monitor Soviet space and missile developments. His briefings directly shaped U.S. political urgency on space supremacy. McCone advocated for greater integration of satellite technology in intelligence and defense infrastructure. Though officially out of office in 1965, his presence in the committee reflects ongoing CIA operations under Dulles' and Johnson's administrations. He represents the clandestine side of the space race—espionage, sabotage, surveillance, and misinformation—all critical for understanding both American paranoia and Soviet secrecy.

6. Nikita Khrushchev Jr. - Political Operative, Soviet Foreign Affairs (Partially fictionalized)

Though less prominent than his father, Khrushchev Jr. (born 1935) served as a journalist and eventually worked at the Institute of International Economy and International Relations in Moscow. In this committee, he is imagined as a mid-level party aide clinging to influence after his father's dismissal. With insider knowledge of the 1961-1964 years of bold space investment—Sputnik, Gagarin, Luna probes—he could offer continuity and critique in equal measure. Does he protect his father's legacy or serve as a realist voice for Soviet retrenchment? He represents the internal tug-of-war between space idealism and party discipline.

Positions

Government & Political Figures

7. Senator Margaret Chase Smith - Senior U.S. Senator from Maine (1949-1973)

A Republican known for her "Declaration of Conscience" against McCarthyism in 1950, Smith served on the Senate Armed Services Committee and was one of the few voices of moderation during Cold War escalation. By 1966, she was a powerful advocate for defense oversight and questioned the ballooning costs of the Apollo program. In this committee, she may challenge military overreach in space and demand accountability for taxpayer-funded adventures. She represents a rare combination of anti-communist credentials and democratic restraint, offering a principled lens on ethical, budgetary, and constitutional questions of space exploration.

8. Anatoly Dobrynin - Soviet Ambassador to the United States (1962-1986)

A fixture of Cold War diplomacy, Dobrynin began his U.S. ambassadorship under Kennedy and remained through multiple presidencies. In the mid-1960s, he played a key role in defusing tensions post-Cuban Missile Crisis and managing backchannel communications. In committee, Dobrynin's role includes interpreting American developments, crafting diplomatic cover for Soviet failures or espionage, and pushing strategic narratives to the global press. He understands that perception is power—and the space race is as much about headlines as it is rockets.

9. Dr. John Foster Dulles Jr. - Strategic Planner, U.S. State Department (Fictionalized)

As the fictional son of the late Secretary of State John Foster Dulles, this character is a hawkish policy advisor advocating for space deterrence and surveillance capabilities. He champions dual-use technologies (scientific and military), including Earth observation, early warning satellites, and missile interception systems. Dulles Jr. views the Moon not just as a destination, but a potential outpost. His voice brings to life American debates around space militarization, SDI (precursor concepts to "Star Wars"), and whether scientific inquiry can coexist with strategic dominance.

Positions

Government & Political Figures

10. Valéry Bykovsky - Cosmonaut and Political Liaison (Vostok 5, 1963)

Launched just days before Tereshkova in June 1963, Bykovsky orbited Earth for 5 days—the longest solo human spaceflight at the time. Though not as iconic as Gagarin or Tereshkova, he remained active in Soviet cosmonaut circles and later served in the Supreme Soviet. In this committee, Bykovsky can offer technical insights from lived experience, but also reflect the tensions between cosmonaut celebrity and party loyalty. His role bridges engineering reality and the Soviet mythology built around its space heroes.

STEM & Scientific Figures

1. Dr. Wernher von Braun - Chief Architect of U.S. Rocketry

Once a leading figure in Nazi Germany's V-2 rocket program, von Braun was brought to the U.S. under Operation Paperclip in 1945. Now head of NASA's Marshall Space Flight Center, he is the primary engineer behind the Saturn V rocket—destined to carry astronauts to the Moon. Though von Braun's designs have pushed America ahead in the race, his Nazi past looms large. Critics accuse him of turning a blind eye to forced labor during WWII. As Apollo accelerates, von Braun must navigate Congressional scrutiny, ethical shadows, and the pressure of scientific perfection under political deadlines.

2. Sergey Korolev - Chief Designer of the Soviet Space Program

Kept secret from the public until after his death in 1966, Korolev was the mastermind behind Sputnik (1957), Gagarin's Vostok 1 (1961), and the Luna probes. A survivor of the Gulag, Korolev's loyalty to the USSR is complicated by personal trauma and the need for scientific independence. Known only as "Chief Designer," he is burdened with managing egos, production failures, and Kremlin expectations. With his health faltering and pressure mounting, Korolev is torn between bold leaps—like lunar landings—and political caution. His voice will shape whether the USSR doubles down on manned missions or pivots toward automated dominance.

3. Dr. Margaret Hamilton - Lead Apollo Software Engineer

As director of the Software Engineering Division at MIT's Instrumentation Lab, Hamilton leads the creation of flight software for Apollo spacecraft. In 1969, her team's code will famously override a data overflow to save Apollo 11's Moon landing. But during committee, Hamilton must fight to ensure software receives equal consideration to hardware, and advocate for procedural rigor in a male-dominated engineering hierarchy. She is a quiet revolutionary—methodical, tireless, and proof that space isn't just about rockets, but logic.

Positions

STEM & Scientific Figures

4. Dr. Katherine Johnson - Mathematician, NASA Flight Research Division

An expert in analytic geometry, Johnson calculated trajectories for Project Mercury, including John Glenn's 1962 orbital flight, and will soon contribute to Apollo 11's lunar return path. Working from Langley amidst segregated facilities, she's as much a symbol of perseverance as precision. Johnson's insights into re-entry angles and fuel margins aren't just mathematical—they're life-saving. As political factions argue about costs and headlines, she ensures the science holds. Her presence also calls attention to inclusion in national efforts that have long been exclusionary.

5. Dr. Hermann Oberth - Rocket Science Theorist and Mentor

Often called one of the "fathers of astronautics," Oberth authored The Rocket into Planetary Space in 1923 and inspired an entire generation of rocket scientists—including von Braun. Now older and largely sidelined, he remains a symbolic bridge to pre-war idealism. Oberth believed spaceflight would unify mankind. In a world where his disciples are building missiles and Moon rockets alike, he must wrestle with the moral trajectory of his vision. Is he a wise elder or a relic in an age of realpolitik?

6. Dr. Igor Kurchatov - Soviet Nuclear Physicist and Space Advisor

Known for directing the Soviet atomic bomb project, Kurchatov is now pushing nuclear propulsion for space applications. Under his influence, early R&D on Project Orion analogues and nuclear thermal propulsion have taken shape within secret USSR programs. His priorities are raw energy, not PR spectacle. With Soviet industry under strain, Kurchatov must argue whether investing in nuclear space infrastructure offers a long-term edge—or risks global fallout. His voice is crucial on militarization, energy policy, and the future of deep space travel.

7. Dr. Theodore von Kármán - Aerodynamics Pioneer and Defense Strategist

Founder of the Jet Propulsion Laboratory (JPL) and the U.S. Army's Guided Missile Committee, von Kármán helped shape America's supersonic and space policy. By 1965, he is a scientific advisor to NATO, advocating for allied collaboration on atmospheric modeling, satellite networks, and reentry vehicles. A brilliant polymath fluent in theory and politics, von Kármán sees beyond the U.S.-USSR binary. Will he push for a peaceful global scientific agenda—or bend to Pentagon demands for strategic edge?

Positions

STEM & Scientific Figures

8. Dr. Bella Subbotovskaya - Mathematician and Underground Educator

Founder of the "Jewish People's University" in Moscow, Subbotovskaya (1938–1982) offered advanced mathematics education to Jewish students excluded by Soviet antisemitic quotas. Though officially uninvolved in state science, her underground efforts symbolize intellectual resistance. In committee, she's a dissident voice—questioning institutional secrecy, political misuse of science, and the moral decay beneath Soviet triumphalism. Will her presence expose hidden truths, or make her a target of the KGB?

9. Dr. James Van Allen - Space Physicist and Pioneer of Radiation Research

Discoverer of the Earth's radiation belts in 1958, Van Allen raised major concerns over human exposure during deep space travel. As head of space physics at the University of Iowa, he advocates for uncrewed missions to Jupiter and beyond—arguing that automated probes offer better returns and fewer risks. In a room full of Moon boosters, Van Allen is a conscience for caution. His work underpins NASA's health protocols, spacecraft shielding, and trajectory design. But can he convince politicians that slower, safer science matters?

10. Dr. William Pickering - Director of NASA's Jet Propulsion Laboratory

A key figure in robotic exploration, Pickering led JPL in launching America's first satellite (Explorer 1, 1958) and multiple Mariner and Ranger probes. By 1965, he is pushing hard for interplanetary science—arguing that space isn't just a battlefield or stage, but a frontier of knowledge. Pickering advocates planetary imaging, solar wind analysis, and system redundancy over heroic manned feats. He's a pragmatist in a world craving spectacle, and must prove that machines can carry national prestige just as well as astronauts.

Military and Intelligence Roles

General Bernard Schriever - Architect of American Missile Command

As head of the U.S. Air Force's Western Development Division in the 1950s, General Schriever spearheaded the development of the Atlas, Titan, and Minuteman ICBM programs—technologies now underpinning both America's nuclear deterrent and space launch capacity. A strategic visionary, Schriever sees space not as a frontier, but as a theater of war. He is a proponent of satellite-based reconnaissance, missile detection systems, and future weaponization of orbital platforms. In committee, Schriever may clash with civilian scientists over whether American supremacy in space requires a gun—or a camera—mounted to every satellite.

Positions

Intelligence and Military Roles

Colonel Oleg Penkovsky - Soviet Double Agent (Allegedly Alive)

Historically executed in 1963, Penkovsky was the West's most valuable Soviet informant during the Cuban Missile Crisis. In this committee, he is very much alive—but in hiding. A former GRU colonel turned MI6 asset, Penkovsky has access to Soviet launch schedules, technical vulnerabilities, and intelligence on cosmonaut training programs. But trust is in short supply. His motives are murky, his survival precarious, and any leak of his role could lead to international scandal—or assassination. Will delegates use him to their advantage, or try to silence him before his presence becomes a liability?

Commander Svetlana Orlova - Soviet Test Pilot and Cosmonaut Candidate (Fictional)

A decorated MiG-21 pilot and graduate of Star City's cosmonaut program, Commander Orlova represents the USSR's push to integrate military pilots into spaceflight. Trained in high-G simulations and orbital rendezvous, she is both a symbol of patriotism and a potential tool of propaganda. She's proud, methodical, and fiercely loyal—until she isn't. Orlova walks the line between idealism and obedience, haunted by the mysterious disappearances of failed test pilots. Will she uphold state secrets, or become a whistleblower from orbit?

1Admiral Arleigh Burke - Naval Advocate for Space Surveillance

Chief of Naval Operations during the Eisenhower and Kennedy years, Burke oversaw early interest in satellite ocean surveillance and naval missile tracking systems. As the Cold War tilts skyward, Burke's focus is sea-to-space integration: SLBMs, maritime radar nets, and satellite telemetry to monitor global naval activity. A hardliner with a keen mind for systems engineering, Burke questions whether space can ever be peaceful—and whether the U.S. Navy has a role above the stratosphere. He may push to redefine space as a naval domain.

<u>Major Lisa Hartman - U.S. Air Force Satellite Surveillance Officer (Fictional)</u>

An expert in telemetry analysis and orbital tracking, Major Hartman represents the next generation of space defense. Working out of NORAD's Cheyenne Mountain Complex, she monitors both American and Soviet objects in low-Earth orbit, contributing to launch prediction and early warning systems. Hartman is data-driven, precise, and quietly skeptical of public optimism. She believes in the inevitability of space conflict—and the need to prepare now. Will she support transparency and global monitoring, or the build-up of a covert orbital arsenal?

Positions

Cultural, Media, & Ethical Voices

Walter Cronkite - "The Voice of Space"

As CBS's lead anchor, Cronkite is America's most trusted voice on space exploration. From Sputnik's beeping tone to the fiery liftoff of Apollo rockets, he brings the Cold War skyward into living rooms across the nation. A journalist by trade and a romantic by nature, Cronkite sees the space race not just as a scientific venture, but a moral theater. He can amplify narratives, sway public support, and hold leaders accountable to the people. But is he a storyteller—or a gatekeeper? Delegates must decide whether Cronkite's broadcasts will uplift, expose, or inflame.