
Introduction to
Infrastructure
as Code

A Brief Guide to the Future of DevOps
—
Sneh Pandya
Riya Guha Thakurta

Introduction to
Infrastructure as Code

A Brief Guide to the Future
of DevOps

Sneh Pandya
Riya Guha Thakurta

Introduction to Infrastructure as Code: A Brief Guide to the

Future of DevOps

ISBN-13 (pbk): 978-1-4842-8688-3		 ISBN-13 (electronic): 978-1-4842-8689-0
https://doi.org/10.1007/978-1-4842-8689-0

Copyright © 2022 by Sneh Pandya and Riya Guha Thakurta

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: James Markham
Coordinating Editor: Shrikant Vishwakarma
Copy Editor: Kim Wimpsett

Cover designed by eStudioCalamar

Cover image by Pixabay (www.pixabay.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit www.apress.com/source-code.

Printed on acid-free paper

Sneh Pandya
Vadodara, Gujarat, India

Riya Guha Thakurta
Boston, Massachusetts, USA

https://doi.org/10.1007/978-1-4842-8689-0

For our parents, who have given everything and always
seem to find a way to give more.

v

Part 1: �Concepts���1

Chapter 1: ��Introduction to Infrastructure as Code���������������������������������3

The Culture of DevOps���4

The Evolution from DevOps to Infrastructure as Code���5

What Is Infrastructure as Code?���6

The Perspectives��7

Benefits Adapting Infrastructure as Code��8

Improved Time to Production��9

Reduction in Drifting Configurations��9

Faster and Efficient Development Life Cycle��9

Maximizing the Scope of Provisioning��10

Lowered Costs and Increase in ROI��10

Adapting Tools of Infrastructure as Code���10

Factors Deciding Adaption of Infrastructure as Code�������������������������������������11

Approaches for Infrastructure as Code���12

About the Authors���xiii

About the Technical Reviewer���xv

Acknowledgments���xvii

Introduction��xix

Table of Contents

vi

Best Practices of Infrastructure as Code���13

The Way Ahead���17

Chapter 2: ��Patterns and Principles of Infrastructure as Code�������������19

The Emergence of Infrastructure as Code���20

The Focus with Infrastructure as Code��20

The Challenges with Infrastructure as Code��21

Sprawling Servers��22

Configuration Drift��22

Snowflake Server���23

Fragility of Infrastructure��23

Fear of Automation���24

Erosion of Infrastructure���24

Considerations for Quality Infrastructure���25

In-Depth Knowledge���26

Organizational Workflow���26

Perpetual Steps��27

The Principles of Infrastructure as Code��27

Idempotency���28

Immutability��28

Easily Reproducible Systems���29

Easily Disposable Systems���30

Easily Repeatable Processes��31

Consistent Systems��32

Ever-Evolving Designs��33

Self-Reliant Documentation���34

The Patterns of Infrastructure as Code��35

Updates in Documentation���36

Using GitOps���36

Table of Contents

vii

Securing Your Infrastructure���37

Testing the Infrastructure���42

Concerns with Infrastructure as Code���43

Infrastructure as Code at Scale��45

Evolving Business Requirements���45

Evolving Security Requirements���46

Evolving Provider Requirements���47

The Way Ahead���48

Chapter 3: ��Management of Infrastructure as Code�����������������������������49

The Emergence of Infrastructure Teams��50

Preparing Infrastructure as Code���50

Evaluation of Infrastructure��51

Choosing the Right Security Mechanisms��52

Structuring the Data���52

Automating Workloads���53

Uniform Governance���53

Hybrid Strategies��54

Blue-Green Deployment Strategy���54

Process and Architecture���56

Working Mechanism���57

Preparing Deployments��57

Adapting Simplicity��59

Environment Replicability���60

Configuration Management��61

Process and Architecture���61

The Way Ahead���62

Table of Contents

viii

Chapter 4: ��Production Complexity Management���������������������������������63

Modern Application Infrastructures���64

Managing Deployments Without Downtime���64

Canary Deployment Strategy���66

Process and Architecture���67

Working Mechanism���68

Adapting Simplicity��69

Environment Replicability���70

Rolling Release Deployment Strategy��71

Process and Architecture���73

Steps for Managing Production Complexity���73

Harnessing the Power��74

Fail-Safe Environment Management��74

Monitoring Your Infrastructure��75

Compartmentalizing Releases��75

Adapting Serverless Architecture���76

Feature Flagging���76

The Impact of Deployment Strategies��78

Caveats While Managing Complex Production Environments������������������������������79

The Way Ahead���80

Chapter 5: ��Business Solutions with Infrastructure as Code����������������83

Managing Modern Infrastructures���84

Enabling Business Possibilities��85

Enabling Domain Sustainability���87

Supporting Evolving Strategies��90

Decision-Making for Businesses���92

The Way Ahead���96

Table of Contents

ix

Part 2: �Hands-on Experience��97

Chapter 6: Hands-on Infrastructure as Code with Hashicorp
Terraform���99

Introduction to Terraform���100

Why Choose Terraform?���101

Understanding Terraform���102

Core Concepts��103

Directory Structure���104

How Terraform Works���105

Terraform Core���105

Providers��106

Implementing Terraform in Real Projects���107

Priority Order for Terraform Variables���109

Declaring Output Variables���110

Declaring Terraform Resources��111

Terraform Provider��113

Terraform Modules���116

Terraform Provisioner���117

Terraform State File��117

Example Terraform Configuration���118

Terraform Command-Line Interface���122

Terraform Use Cases��126

Supporting Platform as a Service���127

Managing Self-Service Clusters���127

Performing Multicloud Deployments��127

Managing Parallel Environments��128

Application Infrastructure Automation��128

Table of Contents

x

Managing Software-Defined Networks��129

Policy Compliance��130

The Way Ahead���132

Chapter 7: ��Hands-on Infrastructure as Code with Puppet�����������������135

Introduction to Puppet���136

Why Choose Puppet?���138

Understanding Puppet���139

Architecture��141

Configuration��144

Module Structure��145

Security Mechanisms���146

How Puppet Works���147

Puppet Infrastructure���147

Plugins��148

Indirector��149

Implementing Puppet in Real Projects���149

Getting Started with Puppet���150

Preparing the Repository��152

Running the Repository��153

Setting Up Users���153

Creating Modules���154

Dynamic File Generation��155

Modifying Configurations���157

Managing Repositories���158

Puppet Command-Line Interface��160

The Way Ahead���163

Table of Contents

xi

Chapter 8: ��Introduction to Infrastructure as Code with Chef�������������165

Introduction to Chef���166

Understanding Chef���167

Recipe���167

Cookbook��168

Resource��168

Attributes��169

Metadata��170

Templates���170

Libraries���171

Chef Infrastructure���171

Chef Workstation��172

Configuration of Nodes with Chef Clients���173

Chef Habitat��173

Chef InSpec��174

Final Words��174

�Index��177

Table of Contents

xiii

About the Authors

Sneh Pandya is an emerging Product

Management leader with specialization

in strategic leadership. He advocates for

product strategy, digital transformation, and

sustainable innovation. 

His qualifications and certifications include

a bachelor’s degree in computer science and

engineering and further studies in strategy

management and leadership at the Wharton

School, University of Pennsylvania.

Sneh is also a developer community leader

at Google Developers Group, Baroda, and

has given public talks at several worldwide developer conferences. He is

a cofounder of the NinjaTalks podcast, which brings together experiences

from the world’s leaders, changemakers, and innovators to make

knowledge accessible to all.

With extensive experience in the field of technology, including mobile

and web software applications, DevOps, the cloud, infrastructure

automation, and software architecture, he has written several articles for

various technology publications.

xiv

Riya Guha Thakurta is a graduate student

in Computer Information Systems at Boston

University. Her undergraduate education

includes a bachelor’s degree in computer

science application from the Institute of

Engineering and Management.

She was formerly a Scrum Master in the

realm of technology management, and her

previous experiences with Johnson Controls

include product development across several

business products and software verticals. Riya

also leads Women Techmakers, Kolkata, a diversity, equality, and inclusion

community that encourages women in technology. She is also an Intel

Software Innovator for the Internet of Things.

She is a cofounder of the NinjaTalks podcast, which seeks to share

experiences from the world’s most prominent leaders, changemakers, and

innovators to make knowledge accessible to all.

Her diverse interests include technology and project management,

sustainability, public speaking, and research and development.  

About the Authors

xv

About the Technical Reviewer

Joaquin Gonzalez is a senior reliability

engineer working in the finance sector

developing and implementing observability

and automation software to improve

infrastructure robustness. He has a

telecommunications engineering degree

from Universidad Nacional de San Martín

(Argentina). He completed a master’s program

in analytics at Universidad Torcuato Di Tella

(with a final dissertation in progress). In his

free time, he likes amateur radio, loves to read about science, and is lucky

enough to share his life with his wife and daughter.  

xvii

Acknowledgments

We are forever grateful to our parents; they are our eternal source of

happiness and inspiration. We are also thankful to each other for the

constant support and encouragement while writing this book.

Our special thanks to all the wonderful people who were part of this

journey. We would like to thank our friends and allies in the industry for

sharing their insights and knowledge with us, which helped us produce

this meaningful book.

We want to sincerely thank the people at Apress who made this book

possible: James Markham, Spandana Chatterjee, Mark Powers, Clement

Wilson Kamalesh, Silembarasan Panneerselvam, Shrikant Vishwakarma,

Joaquin Gonzalez, and everyone involved.

We hope you will have as much as fun learning from this book as we

did writing it.

xix

Introduction

The management of information technology systems using a declarative

programming language is known as infrastructure as code. Tools like

source code repositories, build servers, automated testing, DevOps

pipelines, etc., are used to improve the quality of software engineering.

A common practice is to handle infrastructure code in the same manner

as application code. In today’s rapidly transforming world, infrastructure

as code (IaC) has emerged as a futuristic approach to maintain, scale, and

deploy software systems. From small-scale products to enterprise-grade

automation, the field has enormous numbers of opportunities for DevOps-

focused solutions that can transform the industry.

This book is a balanced mix of fundamental understanding and hands-

on experience. You will understand the importance of DevOps culture as

well as how to adapt to IaC in your workplace. The beginning of the book

helps conceptualize the futuristic goals that DevOps and particularly IaC

has to offer for the adoption and growth in different verticals. With the

solid base prepared, you will then learn the importance, processes, and

outcome of building infrastructure solutions.

This book is aimed at beginners interested in building a career in

DevOps as well as existing professionals looking to gain expertise and

advance in their careers with a mastery of IaC. This book simplifies jargon

for businesspeople and decision-makers, including technical product

managers, architects, and anyone who aims to shape and scale their

infrastructure to provide better products and services to customers.

xx

You will learn the following:

•	 The fundamentals of DevOps and IaC

•	 The ever-evolving ecosystem of modular infrastructure

and the needs of the future

•	 How to avoid potential pitfalls and breakdowns while

working with infrastructure

•	 How to build scalable and efficient IaC solutions that

work on a small, medium, and large scale in a real-life

environment

•	 How to understand and be responsibly aware of the

security concerns related to the domain and how to

address them

Thank you for reading Introduction to Infrastructure as Code: A Brief

Guide to the Future of DevOps.

Introduction

Concepts

PART 1

3

CHAPTER 1

Introduction
to Infrastructure
as Code
As a consequence of the incredible advancement of new technology,

both large and small companies are more reliant on the digital world for

survival and success in the global market. Businesses that are not online

are unable to reap the many advantages of the digital world, and as a

result, they are losing out on a plethora of possibilities. In today’s fast-

paced and competitive corporate environment, there is an extraordinary

demand for a quick development process, rapid deployment and delivery,

bug fixes with little downtime, and prompt release of new features.

All of these many duties are handled either by individual subject-

matter experts or by a specialized team of subject-matter experts.

However, their seemingly lack of direct contact with each other renders

them incapable of completing the task on time or producing the required

product efficiently. Fortunately, DevOps provides a solution to each

of these significant issues. The term has gained a lot of attention in

recent years, and many businesses are incorporating its ideas into their

operations.

© Sneh Pandya and Riya Guha Thakurta 2022
S. Pandya and R. Guha Thakurta, Introduction to Infrastructure as Code,
https://doi.org/10.1007/978-1-4842-8689-0_1

https://doi.org/10.1007/978-1-4842-8689-0_1

4

�The Culture of DevOps
DevOps is more than just a technological accomplishment; it is a paradigm

shift in software engineering that seeks to integrate development and

operations. DevOps aims to shorten development life cycles, increase

frequency of deployment for the end users, and provide robust releases

that are closely aligned with business objectives. It is a vocal proponent of

automation and monitoring across the software development life cycle, from

integration and testing through deployment and infrastructure management.

It’s all about system-level thinking in DevOps, which means focusing

on the end-to-end value delivery process rather than the individual effort

silos that comprise the process. As a result, good communication and

alignment around agreed-upon, measurable objectives are required for

successful cooperation.

DevOps is a combination of the phrases development and operations.

•	 Cross-functional teams: Because there is no distinction

between teams, fast communication is required. This

is particularly true for the development and operations

teams. The information technology department of the

company will be streamlined and well-coordinated.

Creating, deploying, and maintaining software all

require a multiskilled workforce.

•	 Automation: Thanks to container-based technologies

coupled with microservices architecture, it is now

feasible to completely automate all the phases

of software development cycles. This includes

development, testing, deployment, and monitoring.

Monolithic programs and microservices-based

applications are both difficult systems, and

microservices do not make deployment any easier; in

fact, they may make things much more complex during

the implementation phase.

Chapter 1 Introduction to Infrastructure as Code

5

With the recent global trends and demands from the market, many

giant organizations opt for DevOps practices, generating greater reliability,

allowing them to experiment more, and allowing organizations to launch

new products and features on a significantly faster timetable, which was

possible only with the deployment of DevOps. Fundamentally, DevOps

allows developers to own, run, and control an applications or piece of

softwares end-to-end delivery. It reduces ownership ambiguity and

encourages developers toward a single automated, developer-managed

infrastructure.

It is important to realize that DevOps is much more than sim-
ply spinning up software. Rather than that, the primary objec-
tive is to alter an organization’s culture, which, of course, is no
simple task.

Many process methods are now available to assist with DevOps.

Perhaps the most common approach is Agile, which entails small teams

developing apps in chunks, with each piece including user stories.

The goal is to get continuous input and feedback from users and avoid

being mired down in the process of developing a big-bang program, as

development is an iterative process.

�The Evolution from DevOps
to Infrastructure as Code
DevOps refers to a collection of terminology, procedures, techniques, and

ideas aimed at improving the efficiency, security, and speed of software

development. The idea of automation, which involves replacing better

technology for human processes to allow for a more frequent delivery

pipeline, is central to the DevOps philosophy.

Chapter 1 Introduction to Infrastructure as Code

6

Immutable infrastructure is a novel concept in the realm of DevOps.

Rather than requiring updates, immutable infrastructure begins with

each deployment from the ground up. Cloud deployments in general, and

containerization in particular, benefit from immutable infrastructure.

Maintaining servers and guaranteeing their availability around the

clock needed dedicated full-time workers almost a decade ago. System

administrators were needed to guarantee server availability at the time to

operate mission-critical applications effectively.

Back-end administration has come a long way. The advancements

in cloud technologies and cloud providers have changed infrastructure

management, while DevOps has affected software development and

delivery. These two game-changing concepts had a major impact on the

field of software development.

Using a multicloud environment may be extremely beneficial for some

businesses depending on their use cases, since it enables them to harness

the advances of several cloud providers. While a multicloud strategy allows

for rapid digitization of operations in response to customer demands,

infrastructure management across public and private clouds—including

edge environments—may be challenging.

�What Is Infrastructure as Code?
Infrastructure as code (IaC) refers to the management of existing

infrastructure components such as storage devices, networking, and

communication channels as well as load balancers and servers. It is also

a method for automating the provisioning of IT infrastructure that uses a

high-level descriptive coding language. Developers are freed of the burden

of manually provisioning and maintaining servers, operating systems,

database connections, storage, and other infrastructure components while

creating, testing, and delivering software applications. Alternatively, they

may go with automation.

Chapter 1 Introduction to Infrastructure as Code

7

Infrastructure management has been a time-consuming full-time

profession for decades. However, critical infrastructure management has

evolved considerably during the last decade. Microsoft Azure, Google,

Oracle, and Amazon Web Services are just a few of the public cloud

providers that provide essential infrastructure management services to its

thousands of customers. You may have heard the term infrastructure as

code as the popularity of public cloud platforms has grown, as has access

to and consumption of the infrastructure the platforms offer.

�The Perspectives
One of the most essential components of software development, the

system infrastructure, serves as the system’s backbone. IaC is a technique

for easing the delivery and management of IT infrastructure via the use

of templates that contain configuration files that look and behave like the

source code used by DevOps teams. This means you may treat device or

system configurations similarly to how you would treat software source

code. By using software development concepts, infrastructure setup

may be made more reliable, repeatable, and observable to save time and

efforts while reducing human errors. As a result, many IaC tools have

been developed, the most notable of which being Kubernetes, Terraform,

and Ansible. IaC is critical in hybrid multicloud environments—or when

companies use a variety of cloud computing services from a variety of

providers—where organizations want to distribute computing resources to

prevent or mitigate the risk of data loss and unavailability.

It is often heard from IT leaders that their companies are having

difficulty effectively adopting DevOps. Instead of utilizing their finest

people to create mission-critical business apps, they have them construct

and manage the DevOps infrastructure. The critical element is to have a

constant beginning point. Creating a common picture that is independent

of any tool or process may be a good place to start. A successful DevOps

Chapter 1 Introduction to Infrastructure as Code

8

team leverages immutable infrastructure and automation to generate

shared images and components that serve as the foundation for

environment provisioning.

�Benefits Adapting Infrastructure as Code
According to Statista,1 the public cloud’s IaaS sales will grow from about

$50 billion in 2020 to more than $80 billion in 2022, representing nearly a

quarter of the total cloud computing industry.

Because of the time and expense involved in physically installing

hardware, installing and configuring operating system software, and

connecting to other systems such as middleware, networks, and storage,

upgrading firmware and systems, etc., is both time-consuming and

expensive manner.

Because virtualization and advancements in the cloud do away

with the need for conventional hardware management, developers may

immediately build their own servers, saving both time and resources.

While virtual infrastructure is deployed, development activities are

paused. Provisioning must still be done for each new deployment, and

there is no easy method to keep track of changes in the environment or

prevent inconsistent behavior that may result in deployment failures.

Infrastructure as code refers to technologies that enable it to treat

the infrastructure as code, which allows facilitation of documentation,

versioning, and deployment, as well as automation of the infrastructure

using continuous integration (CI) and continuous delivery (CD) tools.

Infrastructure as code is the last step in allowing developers to purchase

fully documented, versioned infrastructure by just running appropriate

scripts. The following sections discuss the advantages of IaC.

1 Infrastructure as a service (IaaS), Statistics & Facts, Statista: https://www.
statista.com/topics/2739/cloud-infrastructure-as-a-service/

Chapter 1 Introduction to Infrastructure as Code

https://www.statista.com/topics/2739/cloud-infrastructure-as-a-service/
https://www.statista.com/topics/2739/cloud-infrastructure-as-a-service/

9

�Improved Time to Production
As a consequence of IaC automation, production/market time is

substantially reduced, as is the time necessary to provide infrastructure

based on the use case and scale up or down the infrastructure as

necessary. IaC is able to automate the provisioning of outdated

infrastructure that would otherwise be controlled by tedious procedures

since it codifies and records everything.

�Reduction in Drifting Configurations
When you make ad-hoc configuration changes and updates, you

may experience configuration drift, which appears as mismatched

development, test, and deployment settings. This may lead to difficulties

in deployment, with infrastructure being more vulnerable and open to

risks when building apps and products that must adhere to stringent

compliance requirements, among other consequences. When IaC is used,

the same environment is generated each time, avoiding drift. This ensures

compliance of infrastructure configuration, many times related to security,

standardization of environments, and also regulations that are required for

various industries in the real world.

�Faster and Efficient Development Life Cycle
IaC can securely expedite every step of the software delivery life cycle by

simplifying provisioning and guaranteeing infrastructure consistency

across all environments. CI/CD environment pipelines along with

sandboxes may be rapidly created by developers. QA can provide full-

fidelity test environments in a short period of time. Operations may

provide infrastructure for security and usability testing in a short period of

time. Furthermore, after the code has been verified, the infrastructure and

application on which it performs can be deployed in minimal steps.

Chapter 1 Introduction to Infrastructure as Code

10

�Maximizing the Scope of Provisioning
To optimize and improve efficiency, provisioning is often outsourced to a

small number of highly qualified engineers or IT employees in companies

without an IaC. When one of these domain experts leaves the business,

oftentimes the team is left to rebuild the infrastructure as well as processes.

Furthermore, IaC guarantees that provisioning intelligence is always kept

inside the company.

�Lowered Costs and Increase in ROI
Infrastructure as a service (IaaS) allows businesses to fully utilize cloud

computing’s pay-as-you-go pricing structure by substantially lowering

the amount of time, effort, and specialized expertise needed to provide

and expand infrastructure. Furthermore, it allows the teams to dedicate

less effort and more time on creating creative, highly critical solutions,

resulting in significant time savings.

�Adapting Tools of Infrastructure as Code
There are a number of well-known IaC solutions available on the

market that assist in automating infrastructure configuration and setup

(such as Ansible, Terraform, and Helm). An IaC platform is in charge of

administering and supporting a wide range of IaC frameworks, public

cloud platforms, and cloud-native environments on a single infrastructure.

Also supported are version control systems such as GitHub, GitLab, and

BitBucket, to name a few.

Infrastructure automation is now a must-have for every team in a

company. There is an urgent need to transition from manually maintained

and configured infrastructures to IT or automated infrastructures for easier

and more efficient system operation and administration. Many tools and

Chapter 1 Introduction to Infrastructure as Code

11

techniques are available for this automation. One tool will not be able to

meet the needs of an organization or team. For example, some business

use cases that can be solved by Terraform may not be solved by Ansible,

and vice versa. As a result, tools should be chosen based on the needs

of the business as well as a variety of other criteria such as cost, skill set,

functionality, etc.

�Factors Deciding Adaption of
Infrastructure as Code
It is critical to determine whether to create a mutable or immutable

infrastructure environment initially when implementing IaC and choosing

an IaC solution. This decision must be made early in the process, or else it

can hamper the processes in the next stages, and the team may need to put

extra efforts into fixing or starting over entirely.

Mutable infrastructure is defined as infrastructure that is changeable

or modified even after it has been constructed. With a changeable

infrastructure, development teams may make server changes on the fly to

better fit the needs of the product or service or to address a critical security

vulnerability. However, it undermines a fundamental IaC benefit—the

capacity to maintain consistency between deployments or inside versions

and may significantly complicate infrastructure version monitoring.

As a consequence of these considerations, the vast majority of IaC

infrastructure is built using immutable technology—that is, technology

that cannot be changed once it is deployed. If immutable infrastructure

needs to be modified, new infrastructure must be built in its place. Given

the ease with which cloud-based infrastructure, especially IaC-based

infrastructure, may be built, immutable infrastructure is more feasible and

practical than it may seem at first sight.

Immutable infrastructure logically develops IaC, basically hardening

it to guarantee that the advantages it provides continue to be realized.

Chapter 1 Introduction to Infrastructure as Code

12

Furthermore, it virtually eliminates configuration drift, making it

considerably simpler to maintain consistency across test and production

systems. Furthermore, the management and monitoring of multiple

infrastructure versions are streamlined, as is the safe rollback to any

previous version as required.

�Approaches for Infrastructure as Code
The infrastructure specs are defined and written by the developers in a

domain-specific language (DSL). The generated files are subsequently

transmitted to a management API, master server, or code repository. The

platform then performs all of the steps required to generate and configure

the computing resources.

The imperative method and the declarative method are the two

primary approaches to infrastructure as code. Both techniques base IaC

setups on a template, in which the user defines the resources required for

each server in the infrastructure. Let us learn more about these techniques

and grasp the differences between them.

The imperative method specifies the specific actions or instructions

required to accomplish the desired configuration. It also specifies the

sequence in which these instructions must be executed. Essentially,

it is concerned with the “how,” i.e., how we arrived at our intended

configuration. When choosing a viable solution, infrastructure automation

should be approached from both a declarative and an imperative

perspective, since both have their advantages and disadvantages.

This method defines the system’s desired state. Other than the state,

only extra information such as needed resources and attributes must

be specified, and the IaC tool will configure everything for you. The

declarative technique, otherwise known as the functional approach, is

suited best to the vast majority of businesses. You specify the desired

infrastructure state, and the IaC platform handles the remaining tasks—

spinning up the virtual machine, installing and configuring the required

Chapter 1 Introduction to Infrastructure as Code

13

software, resolving system and application dependencies with each other,

and maintaining versions—all while you focus on other tasks.

Using the imperative method, also known as the procedural approach,

the solution guides you step-by-step through building automation scripts

that supply your infrastructure one step at a time. As your business expands,

this may take additional effort, but it will be simpler for current administrative

personnel to comprehend and utilize preexisting scripts for setup.

With the imperative method, newly embarking infrastructure teams on

the DevOps path may lack the necessary depth of expertise. Moreover, the

IaC scripts prepared through imperative methods are often less idempotent,

leading to results that differ based on factors such as environments and

customizations. Hence, the imperative method’s major drawback is that it

often requires the employment of an experienced professional or technical

administrator to implement and maintain it, who are experts in the

respective areas and solutions for which they are responsible.

On the other hand, the major drawback of the declarative approach

is the loss of control over the individual steps in various delivery and

provisioning mechanisms. As a result, small adjustments that can be

handled using a simple command-line interface script may not be a good

candidate for declarative programming.

�Best Practices of Infrastructure as Code
IaC may provide your team with a variety of advantages, including

increased speed, security, and dependability. Implementing IaC may

significantly increase the productivity of your teams, since they will

inevitably need cloud infrastructure to fulfill the company’s technological

requirements. It’s important to remember that selecting the appropriate

tool from the start may help you keep the doors open for future third-party

solutions and APIs that will benefit you. Figure 1-1 shows some of the best

practices for making the most of IaC.

Chapter 1 Introduction to Infrastructure as Code

14

Figure 1-1.  Infrastructure-as-code best practices

•	 Continuous integration, testing, and deployment:

Continuous testing is critical for the long-term viability

of DevOps, and the same is true for your IaC. Perhaps

it is even more important to verify your infrastructure

configuration on a regular basis to avoid problems

once the deployment is complete. A continuous

development cycle may involve unit and regression

testing, as well as functional and regression testing,

as well as automated experiments that evaluate

infrastructure configuration for each code update.

•	 Single source of truth: To avoid misunderstandings,

make sure that each infrastructure specification

is stated clearly in the configuration files. You can

guarantee that your configuration files are always

accurate by making them the single source of truth for

all of your infrastructure management problems.

•	 Use immutable infrastructure when possible: An

immutable infrastructure is one in which components

are replaced rather than changed while still in place.

You can write code for the module once, use it

Chapter 1 Introduction to Infrastructure as Code

15

numerous times, and never change it. If you need to

modify, just deconstruct and re-create the module.

Because of the absence of configuration changes,

immutable infrastructure improves security, prevents

configuration drifts, and simplifies troubleshooting.

Moreover, when it’s not possible to do so, tools like

Ansible help maintain desired states of infrastructure

configuration.

•	 Version control: It’s also a best practice to keep all of

your configuration files under source control and

is especially helpful in scenarios when scaling your

infrastructure. Version control is essential for keeping

track of changes and ensuring that every team member

is working on the most recent version. It should be

utilized for any programs and assets on which several

team members are working together. It not only

helps with file management and tracking but aids in

the development and distribution of products. This

is feasible because it improves visibility, improves

communication among team members, and speeds up

product delivery.

•	 Everything should be coded: The goal of IaC is to

automate everything and eliminate as much human

labor as possible, therefore attempting to set up the

whole infrastructure by coding. All infrastructure specs

should be explicitly coded in configuration files. There

should ideally be no need for documentation, and

these configuration files should include everything

relevant to infrastructure administration.

Chapter 1 Introduction to Infrastructure as Code

16

•	 Adapting to modular infrastructure code: When you

deconstruct your infrastructure into various stacks or

modules and then combine them in an automated way,

you have a brilliant concept. The modular architecture

of this method has the significant benefit of reducing

the number of configuration modifications that may

be done without affecting the remainder of the system.

Smaller-scale changes make it simpler to identify

problems, enabling your team to operate with more

agility.

•	 Fewer variations in document specifications:

Essentially, this is about the logical consequences.

Since your configuration files should be the only source

of truth, any extra documentation is superfluous and

should be avoided at all costs. External configurations

may quickly get out of sync with the real settings, while

configuration files, as previously mentioned, do not.

•	 Regulations and compliance: Defects in IaC files may

pose a major liability if they are not detected and

corrected in a timely manner prior to the deployment

of IaC definitions. As a result, scanning all IaC files on a

regular basis is considered a best practice to guarantee

that validating code is run whenever an IaC definition

is generated or modified. If everything went as planned,

IaC scanning would be readily incorporated into the

CI/CD process. You should test and scan IaC rules

before deploying them in the same way that you test

and scan application versions before deploying them.

Chapter 1 Introduction to Infrastructure as Code

17

�The Way Ahead
IaC can provide your team with increased speed, security, and

dependability, to name a few advantages. Because they will ultimately

need cloud infrastructure to fulfill the company’s technical requirements,

adopting IaC may result in a significant increase in your team’s

productivity. It’s important to remember that selecting the correct tools

from the start may enable you to keep the doors open for future third-party

solutions and APIs that will benefit you in the long term.

In the next chapter, you will learn about various principles and

patterns that are fundamental to IaC.

Chapter 1 Introduction to Infrastructure as Code

19

CHAPTER 2

Patterns
and Principles
of Infrastructure
as Code
It’s fairly common for IT architects building large-scale systems to have

several objectives in mind. Naturally, their success is dependent on

meeting business requirements, producing money, and guaranteeing

internal and external customer satisfaction. Building blocks, architectural

patterns, and design patterns may assist less experienced architects. It is

considered that a certain level of organizational maturity is needed to use

the principles, patterns, and practices.

The use of infrastructure as code (IaC) to build and manage large

platform infrastructure installations may soon become complicated. In

this chapter, you will learn about the principles and patterns of IaC and

how they build a fundamental platform for the concept to be utilized

at scale.

© Sneh Pandya and Riya Guha Thakurta 2022
S. Pandya and R. Guha Thakurta, Introduction to Infrastructure as Code,
https://doi.org/10.1007/978-1-4842-8689-0_2

https://doi.org/10.1007/978-1-4842-8689-0_2

20

�The Emergence of Infrastructure as Code
IaC is a method of automating infrastructure that is based on software

development methods. It offers a framework that allows you to manage

the technological stack for an application without manually processing

and configuring individual hardware devices and operating systems. To

overcome the issue of environment drift in the release pipeline, IaC is

capable of installing technologies such as version control systems (VCSs)

and experimenting with development approaches such as test-driven

development (TDD), continuous integration (CI), and continuous delivery

(CD). Before moving into patterns and practices, let’s take a look at some

fundamental concepts for successful IaC.

�The Focus with Infrastructure as Code
The notion is that contemporary tools can address infrastructure in the

same way that software and data are treated. To manage infrastructure,

users may use software development tools such as version control systems,

automated testing libraries, and deployment orchestration to manage

their infrastructure. Also possible are development approaches such as

test-driven development, continuous integration, and continuous delivery,

which may be taken advantage of in this way.

IaC has been successfully implemented in the most demanding

contexts for years. IT systems are not just business vital, but they are

the business for organizations such as Amazon, Netflix, and Google,

among others. Every day, such organizations’ systems process hundreds

of millions of data points. As a result, it should come as no surprise that

enterprises like these are pioneering new approaches for large-scale,

highly dependable information technology infrastructure.

The focus of such organizations is to use IaC to achieve the

following goals:

Chapter 2 Patterns and Principles of Infrastructure as Code

21

•	 Instead of acting as an impediment or a limitation,

information technology infrastructure could be seen as

a facilitator and enabler of change.

•	 In contrast to normal, repetitive jobs, IaC prepares

information technology professionals to devote their

time to beneficial activities that challenge their talents.

•	 IaC provides little to no intervention of IT personnel to

help customers identify, provide, and maintain their

infrastructure on their own.

•	 Organizations want the ability to recover quickly

and readily from failures, rather than assuming that

failure can be totally avoided, allowing teams to

perform better.

•	 Organizations want to achieve constant improvements

rather than implement costly and dangerous

mammoth initiatives.

•	 Organizations want to implement, test, and assess

solutions to issues rather than debating them in

meetings and documentation and want to demonstrate

their effectiveness.

�The Challenges with Infrastructure as Code
Consider the following examples of issues that teams often encounter

while using dynamic infrastructure and automated configuration tools.

These are the issues that infrastructure as code seeks to solve, and

understanding them creates the framework for the ideas and concepts that

will be discussed in further depth later.

Chapter 2 Patterns and Principles of Infrastructure as Code

22

�Sprawling Servers
Cloud computing and virtualization may make provisioning additional

servers from a pool of resources a simple process. If the number of servers

grows faster than the team’s capacity to manage them as effectively as they

would want, the situation might become untenable.

When this occurs, teams find it difficult to keep servers patched and

up-to-date, leaving systems open to known exploits and vulnerabilities.

Occasionally, when issues are detected, remedies are not immediately

applied to all of the systems that might be impacted by them.

The fact that different servers have different versions and settings

means that applications and scripts that function on one computer may

not work on another. This results in inconsistency across all of the servers,

which is referred to as configuration drift.

�Configuration Drift
Configuration drift occurs when servers are originally established and

configured in a consistent manner but over time variations begin to

manifest themselves. Drifts in configuration can be caused by a number

of factors. Configuration drift can occur if administrators make changes

to server settings that are not consistent with the IaC template that has

been established. It is critical to completely incorporate IaC into systems

administration, IT operations, and DevOps techniques, with rules and

procedures that are well-documented and followed.

As soon as adherence to an IaC process is accomplished to build

anything, any external intervention will cause the server environment

to be altered. A machine developed using an IaC process should not be

subjected to any intervention other than that required by an automated,

aligned, and compliant preventative maintenance workflow. Manual or

external updates, even the security patches, may result in configuration

drifting, which has the potential to result in widespread noncompliance

Chapter 2 Patterns and Principles of Infrastructure as Code

23

or even service failure over time if not addressed. Snowflake servers and

automation apprehension are the result of unmanaged diversity among

servers.

�Snowflake Server
A snowflake server differs from any other server on your network in a

number of ways. It’s unique in that it can’t be re-created anywhere else.

Most operations teams have comparable anecdotes about specific servers

that couldn’t be handled, much alone replicated. In other cases, this is not

always due to an unexplained fragility; for example, there may be a vital

software package that operates on a completely different operating system

than the rest of the infrastructure.

Being different isn’t always a negative thing. It becomes an issue

when the team in charge of the server is unable to comprehend how and

why it is different and therefore is unable to re-create it. Any server in an

organization’s infrastructure should be able to be rebuilt with confidence

and speed by the operations team. Creating a new, repeatable process

that can build a server to replace any server should be a top priority for

the team.

�Fragility of Infrastructure
A weak infrastructure is susceptible to disruption and is difficult to

repair. This is the snowflake server issue, but it has been extended to

include a whole portfolio of computer systems. Step-by-step, everything

in the infrastructure must be converted to an extremely dependable and

repeatable infrastructure to get the desired result.

Chapter 2 Patterns and Principles of Infrastructure as Code

24

�Fear of Automation
Many IT professionals are apprehensive about allowing the automation

technologies to operate on their own. IT employees often utilize

automation in a selected manner, depending on their faith in the tools

or the environment, for example, to assist in the construction of new

servers or the implementation of a particular configuration update. This

is generally because the IT employees do not completely believe in the

automation tools or process, and they will often alter the settings each time

they run the process to fit the specific job at hand.

IT workers are apprehensive about using automation appropriately,

either because they lack trust in what they would do as a result of

inconsistent server performance or because they lack thorough knowledge

of automation. Servers are not continuously reliable because automation

is not performed on a regular and/or consistent basis. Many teams are

plagued by the dread of automation, which is understandable. Although

automation saves time, building faith in the system may be a challenging

undertaking, particularly when the code is responsible for filling a

cloud with server instances and supporting infrastructure setup and

infrastructure configuration.

Some IaC tools that keep track of state have the capability of

automatically destroying resources if the code reflects that the resources

have been destroyed. When using IaC in an automation pipeline, it is

possible to get unexpected results, considered as accidental destruction.

�Erosion of Infrastructure
The ideal world would be one in which you would never need to touch

an automated infrastructure after it has been constructed, other than to

support something new or to correct something that has gone wrong.

Unfortunately, the principles of entropy dictate that infrastructure decays

over time even in the absence of a new necessity.

Chapter 2 Patterns and Principles of Infrastructure as Code

25

Erosion is the concept that issues will gradually seep into an operating

system over time, even if no problems are present. In an ideal world, once

an automated infrastructure is in place, it should not need any human

adjustments other than to support new features or to repair things that

have gone wrong with it. Unfortunately, the principles of entropy dictate

that infrastructure decays over time even in the absence of a new necessity.

The concept of erosion refers to the assumption that issues will
gradually seep into an operating system over time.

—Heroku Team

Examples of erosion include the following:

•	 Security vulnerabilities and old-school operating

systems, which are not upgraded for a long period of time

•	 The log files on the server that take a lot of space on the

server’s hard drive

•	 One or more of the application’s processes has crashed

or been stuck, necessitating the need for someone to

log in and restart the processes

•	 Failure of the underlying hardware results in the failure

of one or more whole servers, resulting in the loss of the

application

�Considerations for Quality Infrastructure
When integrating IaC across an organization, several issues should be

taken into account to prevent service failure. The following are some

considerations: take into account the organization’s workflow, deploy code

as often as possible, version everything, consult with the DevOps teams,

and pilot small and scale success are all important considerations.

Chapter 2 Patterns and Principles of Infrastructure as Code

26

�In-Depth Knowledge
A major investment in knowledge and abilities on the part of the IT staff is

required for IaC. The organizational leaders should take into account the

expenditure necessary to retrain existing staff or acquire new personnel.

Hiring fresh talent would need to be a big factor, but it would need to be

combined with other experience in DevOps and programming to get the

greatest applicant recruitment results. Another part of training workers

is to help them overcome their apprehension about automation. It will

be necessary for the business to take into consideration the employee’s

fear of employing automation, as well as their faith in the automation

technologies, while developing training needs.

�Organizational Workflow
For IaC to be effective, it must be carried out inside a closed process system

with the required level of automation. Before implementing IaC across the

organization, think about how it will affect the workflow. Manual additions

and/or modifications often cause the whole system to crash; therefore, it is

reasonable to question whether the present condition of the IT ecosystem

is suitable for such a limitation to be implemented.

Before deploying IaC in its entirety, it is important to carefully consider

which parts of the IT ecosystem can be implemented and managed

with IaC and which parts cannot. Piloting and small case studies are

highly recommended to assist an organization in achieving a level of

understanding and maturity on the subject matter. If your organization

relies heavily on manual processes, identify areas where you can

experiment with IaC. However, do not rely on IaC for mission-critical

business applications until you have gained some experience with it.

Chapter 2 Patterns and Principles of Infrastructure as Code

27

�Perpetual Steps
As a first step, teams should evaluate the present service catalog to

identify areas where IaC might be used to increase efficiency, save costs,

and alleviate manual administrative constraints associated with existing

services. Determining how IaC will connect with current services in a

regular way is another important consideration. For example, general

cloud providers should make any new purchases of devices or platforms

that have a high market value and can be quickly integrated into the

general cloud network, such as Google Cloud Platform, Microsoft Azure, or

Amazon Web Services.

Teams should refrain from implementing IaC for mission-critical

production applications at the outset. To scale success, the development

teams should pilot and develop IaC test clusters and then replicate their

performance. Piloting is recommended for all new cloud-based systems,

including those under development. To build up a test IaC process cluster,

it is necessary to first reduce the scope of the goals and the application

scenario to be tested. Tests of IaC in an IT environment are carried out by

the DevOps teams in the first instance.

�The Principles of Infrastructure as Code
Because it is impossible to operate servers in the cloud effectively without

it, infrastructure as code has found its niche in the cloud environment.

However, the concepts and practices of infrastructure as code may be

applied to any infrastructure, regardless of whether it operates in the

cloud, on virtualized systems, or even on physical hardware directly.

Chapter 2 Patterns and Principles of Infrastructure as Code

28

�Idempotency
No matter how many times you run your IaC or what state you start

with, the end outcome will always be the same no matter how many

times you run it. In this way, infrastructure provisioning may be

simplified, and the chance of inconsistent results is reduced. You may

accomplish immutability by utilizing a stateful tool that uses a declarative

programming language like Hashicorp Configuration Language used by

Terraform. In this case, it is specified what kind of infrastructure is wanted

at the conclusion of the process, and it is the responsibility of the tool to

bring you to that end state. If it is unable to achieve the target condition, it

will fail.

Business executives who are meticulous in their approach are

understandably suspicious about automated technologies and their

capacity to handle difficult jobs. As a result, no matter how many times

IaC is conducted, it must maintain consistency. It is required, for example,

that new servers be equal, or nearly equivalent, in terms of capacity,

performance, and dependability to the existing servers when they are

introduced. When new infrastructure parts are installed, all choices, from

configuration to hosting name selection, are automated and decided in

advance. It is inevitable that some amount of configuration drift may seep

into the system over time; however, that drift must be documented and

controlled.

�Immutability
Immutable infrastructure refers to infrastructure that cannot be

changed and must be replaced with new infrastructure. By creating fresh

infrastructure every time, one can ensure that it is replicable and that it

does not allow for configuration drift throughout the course of a project.

When it comes to infrastructure, configuration drift is a major issue.

Over a period of time, modifications are made to infrastructure that are

Chapter 2 Patterns and Principles of Infrastructure as Code

29

not documented, and your multiple environments begin to drift apart

from one another in ways that are difficult to reproduce. This is more

likely to occur if you have a changeable infrastructure that has a lengthy

life expectancy. Generally speaking, the system is more fragile for long-

lived infrastructure owing to the possibility of difficulties such as gradual

memory leaks, disk space exhaustion due to log piling, and so on,

occurring over time. As a consequence, you won’t be able to provide the

infrastructure as regularly as you would your apps or configuration, and

you will be less confident in your ability to do so. It is possible to alleviate

these difficulties by using immutable infrastructure. When providing

infrastructure in cloud settings, immutable infrastructure allows for greater

scalability as well as greater reliability.

�Easily Reproducible Systems
The implementation of an IaC strategy should make it simple and quick

to create and rebuild any aspect of your IT infrastructure. They should not

need a considerable amount of human work or sophisticated decision-

making on your part.

Any part of an infrastructure should be able to be rebuilt quickly and

reliably with little effort. Simply said, it indicates that there is no need to

make any substantial judgments regarding how to reassemble the item.

Software and version selection, hostname selection, and other decisions

about how to provide a server should be reflected in the scripts and tools

that are used to supply it.

The capacity to quickly and easily construct and demolish any portion

of the infrastructure is quite useful. It takes away a lot of the uncertainty

and worry that comes with making changes. Failures may be dealt with in a

timely and confident manner. Provisioning new services and environments

is a simple process that requires minimal effort.

Defining the activities that must be completed—from selecting the

software to be installed to configuring it—is essential to the success of the

Chapter 2 Patterns and Principles of Infrastructure as Code

30

project. The scripts and tools that handle resource provisioning should be

equipped with the necessary information to carry out their job without the

need for human interaction.

�Easily Disposable Systems
When it comes to system operations, IaC is completely reliant on

dependable and resilient software, which makes hardware reliability

irrelevant to the system. When it comes to cloud computing, where the

underlying hardware may or may not be trustworthy, companies cannot

afford to have hardware problems impair their operations. So software-

level resource allocation guarantees that hardware breakdown scenarios

are instantly reacted to with alternative hardware allocations, allowing IT

processes to continue uninterrupted.

One of the advantages of dynamic infrastructure is that resources may

be readily generated, destroyed, replaced, scaled, and relocated, which

makes it more flexible. As a result, to take advantage of this, systems must

be built with the assumption that the infrastructure will constantly change.

When servers vanish, reappear, or are resized, software should be able to

continue to function.

Infrastructure as a service is built on dynamic infrastructure that may

be produced, destroyed, scaled, transferred, and rebuilt. It should be

able to seamlessly manage infrastructure changes such as resizing and

expansions. The ability to gracefully manage changes makes it simpler to

make upgrades and corrections to operating infrastructure as the system

matures. It also increases the resilience of services against failure. This is

particularly crucial when sharing large-scale cloud infrastructure, since

the dependability of the underlying hardware cannot be guaranteed.

Chapter 2 Patterns and Principles of Infrastructure as Code

31

�Easily Repeatable Processes
The reproducibility principle states that each action you take on your

infrastructure should be able to be repeated in the future. There are several

advantages to utilizing scripts and configuration management tools rather

than doing manual modifications, but it may be difficult to maintain a

consistent approach, particularly for experienced system administrators,

to doing things this way.

For example, if an administrator is faced with a seemingly one-time

activity such as partitioning a hard disk, they may find it more convenient

to just log in and do the work rather than writing and testing a script. To

select how large to create each partition, what filesystem to use, and other

such considerations, the administrator may take a look at the system disk,

evaluate what the server on which they’re working requires, and use their

expertise and knowledge to make these decisions.

The difficulty is that someone else on my team may partition a drive

on a separate workstation and make somewhat different judgments later.

It seems that we are failing to follow the consistency principle, which will

ultimately compromise our capacity to automate processes.

System administrators have a natural inclination for jobs that are

simple and straightforward. As soon as a need for resource allocation

arises, they like to approach it in the most natural manner possible:

by assessing the resource needs, determining the best methods, and

allocating resources.

Despite its effectiveness, this procedure is counterproductive to the

automation process. IaC necessitates the use of scripts in the minds of system

administrators. Their duties must be decomposed or grouped together into

repeatable procedures that may be defined in scripts to be effective.

Infrastructure teams that are successful have a strong scripting culture.

If a task can be written, you should do so. Drill down and see whether there

is a method or tool that may assist, or whether the issue the job is addressing

can be dealt with in a different manner, if a task is difficult to script.

Chapter 2 Patterns and Principles of Infrastructure as Code

32

�Consistent Systems
By allowing inconsistent elements to creep into an infrastructure, you

undermine your ability to put your confidence in automated processes.

When two infrastructure parts provide a comparable service, for example,

two application servers in a cluster, the servers should be substantially

equal in terms of performance and functionality. Their system software

and configuration should be identical, with the exception of those

configuration elements that distinguish them from one another, such as

their IP addresses.

If one file server has a 100GB partition, another has a 150GB partition,

and a third has a 200GB partition, you can’t depend on a single operation

to operate the same way on all three. When servers don’t exactly match,

it is more likely that specific activities will be done for them, resulting in

unstable automation.

Teams that adhere to the reproducibility principle may quickly and

easily construct many identical infrastructure components. It is possible

to maintain consistency by changing one or more of these pieces. For

example, if one of the file servers requires a bigger disk partition, there

are two options. One option is to update the specification such that all file

servers are constructed with a partition that is big enough to accommodate

the demand. Other options include creating a new class or role so that

there is now a file server with a bigger disk than the ordinary file server

and modifying the existing class or role. Either sort of server may be

constructed in a repeatable and consistent manner.

The ability to establish and restore consistent infrastructure is

beneficial in preventing configuration drift from occurring. However, it is

evident that any modifications that occur after the servers have been set up

must be addressed.

Chapter 2 Patterns and Principles of Infrastructure as Code

33

�Ever-Evolving Designs
Making changes to an established system is complex and costly in the age

of information technology. Consequently, it makes sense to restrict the

number of times the system must be modified once it is developed. As a

result, detailed initial designs that take into consideration a wide range of

conceivable needs and conditions are required.

The fact that it is hard to correctly forecast how a system will be utilized

in reality and how its needs will vary over time leads to the development

of too complicated systems. Ironically, the complexity of the system makes

it more difficult to update and enhance it, making it less likely to function

well in the long term.

Making changes to an existing system may be simple and inexpensive

thanks to the cloud-based dynamic architecture. This, however, is

predicated on the assumption that everything is structured to allow

change. To satisfy current needs, software and infrastructure must be

created in the most straightforward manner feasible. Change management

must be capable of delivering changes in a safe and timely manner.

The most crucial precaution to take to guarantee that a system can

be modified in a safe and timely manner is to make modifications on

a consistent basis. All parties involved are compelled to develop good

habits for managing changes as well as to develop efficient, streamlined

processes and to put in place tooling to assist them in accomplishing

these goals.

The architecture of the information technology infrastructure is

always altering to meet the changing demands of the company. Because

infrastructure modifications are costly, businesses attempt to keep them to

a minimum by methodically forecasting future needs and then designing

the systems to meet those requirements precisely. Future modifications to

these too complicated systems will be even more difficult and costly as a

result of this overcomplication.

Chapter 2 Patterns and Principles of Infrastructure as Code

34

The IaC-driven cloud architecture addresses this issue by streamlining

the process of change management. However, although the existing

systems are intended to fulfill the needs of the present, future adjustments

must be simple to incorporate. The only way to guarantee that change

management is simple and fast is to make regular adjustments so that all

stakeholders are aware of the usual concerns and can design scripts that

efficiently overcome the relevant challenges. Change management should

be simple and rapid.

�Self-Reliant Documentation
Teams struggle to keep their documentation relevant, useful, and correct.

Even if someone creates a thorough document for a new method, it is

rare for such documentation to be keep up-to-date when modifications

and adjustments are made. In addition, records have holes in them

on a frequent basis. Folks tend to come up with their own shortcuts

and modifications. Some people build their scripts to make certain

components of the process go more smoothly.

Despite that documentation is often utilized as a way of preserving

continuity, conventions, and even legal enforcement, it is a dramatized

depiction of what really occurs in reality. It is the scripts, definition files,

and resources that execute the strategy with the infrastructure as code,

which include the stages for carrying out a process. Individuals are simply

asked to provide the bare minimum of additional documents to get them

started. To guarantee that when individuals make changes, the current

documentation is handy and in their minds, it is recommended that the

current documentation be maintained close to the concept that it records.

These principles, patterns, and practices need a specific degree of

organizational maturity before they can be implemented. It is expected that

these concepts will be used throughout the infrastructure development

process, from provisioning to backup and DNS, as well as the process of

building code that encapsulates and implements the services that you need.

Chapter 2 Patterns and Principles of Infrastructure as Code

35

�The Patterns of Infrastructure as Code
As the popularity of public cloud platforms has grown, so has access to

and consumption of the infrastructure they offer. It gets more difficult to

accomplish the advantages of infrastructure as code as the infrastructure

develops in size, complexity, and the number of people who utilize it.

Because of the wider range of things that might be impacted by a

single modification, it is more difficult to make changes on a regular basis,

swiftly, and securely. People spend much more time on fighting problems

than they do on the more significant task of improving services. Also,

allowing users to provide and manage their own resources may result

in service interruptions for other users and services, if done incorrectly.

When this happens, the standard response is to centralize authority

over infrastructure. Because of this, more time is spent on meetings and

paperwork, as well as the change management process, and less time is

spent on activities that offer value to the business.

However, designing infrastructure in such a way that the extent of

the effect of a particular change is minimized provides an alternative to

centralizing control. When infrastructure is defined, provisioned, and

managed effectively, it will be possible to make changes on a regular

basis and with confidence, even as the infrastructure expands in size. The

application’s infrastructure orchestrates the processes required to satisfy

the users’ requests. Despite that these services shouldn’t contain business

logic, they may end up doing a substantial portion of the tasks required by

an application. To complete a job, the application infrastructure layer will

often interact with the service infrastructure. It is then possible to securely

assign ownership of application and service infrastructure as a result.

To achieve this, you need to understand the patterns that help develop,

maintain, and scale your infrastructure in a proper manner.

Chapter 2 Patterns and Principles of Infrastructure as Code

36

�Updates in Documentation
Documentation is time-consuming. Maintaining the appropriate amount

of documentation to communicate the desired message is critical, just as

it is with code. The presence of more documentation does not imply that

it is better. Documentation that is out-of-date is much worse. Because

everything is codified, you should not need significant documentation

while using IaC; yet, some documentation is still required in rare cases.

Better-quality documentation is beneficial not just to the team responsible

for maintaining IaC, but also to the people that use the infrastructure.

Making sure that documentation is readily accessible when it is

required is essential. For example, while showing an error message,

it’s a good idea to add a link to the documentation so that users can fix

the problem themselves. Additionally, having a runbook for common

situations might aid in debugging when there is a production problem.

The documentation should be kept as near to the code as possible,

which ensures a better probability that you will keep it up-to-date. This

way you will remember to update the documentation in conjunction with

the code changes, and it may also serve as a reminder throughout the pull

request process. Ideally, you should be able to produce documentation

from your code or utilize tests to document your software.

�Using GitOps
Another pattern of executing IaC is made possible by GitOps. GitOps is

an extension of IaC that includes a mechanism for applying changes to

the production environment, or any environment for that matter. The

infrastructure might alternatively be controlled by a control loop that checks

on a frequent basis to ensure that the actual state of infrastructure is the same

as the planned state. For example, it will ensure that if any modifications

are made directly to infrastructure, the infrastructure will be restored to the

intended condition as defined by the source control system if necessary.

Chapter 2 Patterns and Principles of Infrastructure as Code

37

�Securing Your Infrastructure
A critical, but frequently ignored, part of IT security and compliance is

ensuring that your infrastructure and the apps that operate on it are safe

and compliant. Traditionally, many organizations have manual checks

and gates for this that are time-consuming and usually occur at a later

stage in the deployment cycle; however, with IaC, you can automate

them to provide better security as well as compliance and run them more

frequently and earlier in the cycle, reducing overall costs.

Make certain that your IaC and the infrastructure it provides are

protected by a comprehensive identity and access management system.

The use of role-based access control (RBAC) for infrastructure provisioning

in IaC helps to reduce the total attack surface of the infrastructure. With

RBAC, you only provide your IaC with the permissions necessary for it to

complete the action for which it was created.

When it comes to provisioning any infrastructure, IaC often requires

secrets. When deploying resources in AWS, for example, you will want

AWS credentials to access the service. Always utilize a trusted secrets

management platform, such as Hashicorp Vault or AWS Secrets Manager,

to keep your secrets safe. If you must output or keep any secrets in the

state file (though you should strive to avoid doing so), make sure they are

encrypted so that if someone has access to the state file, they are unable to

extract the secret from it. Figure 2-1 illustrates this concept.

Chapter 2 Patterns and Principles of Infrastructure as Code

38

Figure 2-1.  Infrastructure secrets flow

Many firms have compliance obligations, but if you work in the

healthcare or financial industry, the regulations are much more stringent.

I’m sure you’re familiar with some, if not all, of the following: HIPAA, PCI,

GDPR, and SOX are just a few of the regulations. As previously stated,

historically, compliance teams were responsible for doing all inspections

and documentation by hand. Using different tools, such as Chef Inspec

or Hashicorp Sentinel, to automate these compliance requirements

allows you to run them more regularly and detect the errors much more

quickly, resulting in lower costs. For example, you may perform these

compliance tests every time you alter your IaC by providing an ephemeral

environment, which will allow you to determine whether there are any

problems with the new code before it is sent to production.

�Securing Secrets

To keep up with the evolving trends via IaC, however, there are several

inclusions. IaC tool vulnerabilities might provide a point of entry into the core

infrastructure, for example. It is possible for hackers to circumvent security

measures by exploiting flaws in the system. Misconfigured IaC templates may

potentially reveal critical information or open the door to assaults.

Chapter 2 Patterns and Principles of Infrastructure as Code

39

With infrastructure as code, a single program may manage many

environments indicated in configuration files and execute code within

target environments. The common element is the configuration itself,

its storage, and notably the secrets, which are required for connecting to

controlled infrastructure. The secrets storage holds sensitive data such as

application tokens, Secure Shell (SSH) keys, and passwords. Storing such

data in source code management systems, like Git, or plain-text files is

risky and irresponsible from a security standpoint. It is highly advisable to

keep secrets in vaults and reference them in configuration files.

�Adapting Security Standards

There are several issues with using IaC to keep CI/CD cycles going swiftly.

An unpatched hole in an IaC tool, for example, might be exploited by a

malicious individual to get access to a network’s critical infrastructure.

Attackers may be able to exploit weaknesses to circumvent restrictions,

install malware on susceptible computers, or even start up cryptocurrency

mining on compromised devices or infrastructure. Incorrectly built IaC

templates have the capability of exposing sensitive data or establishing

attack pathways. To fulfill consumer expectations, regulatory and

compliance standards, and technical security needs, the code must

undergo significant modifications. This implies that security will be able

to keep up with growth since it will be able to employ some of the same

technologies as expansion.

�Restricting User Privileges

Another component of security to consider is user privileges. If an IaC

application is used to manage application deployment, it is unlikely that

root credentials on the destination machine would be needed. While

adhering to the notion of least privilege may be challenging, it should

minimize the potential of compromise. The same concept applies to

deploying apps in public clouds such as Amazon AWS. It is preferable to

Chapter 2 Patterns and Principles of Infrastructure as Code

40

use a dedicated account or role for a dedicated task such as producing

prepared virtual machines with a limited set of abilities. It is risky to

exchange cloud provider credentials with administrator access in order to

do less privileged tasks.

�Relying on Trusted Sources

The delivery and maintenance of cloud infrastructure is made possible

via IaC templates, which are machine-readable specification files that

construct environments for the deployment and execution of code

from external sources. However, they are not without risk. An untrusted

operating system or container image might be used as part of an IaC

process using these templates. These channels might be used to insert

back doors and cryptocurrency miners.

Data may be exposed due to vulnerabilities and unsafe defaults in

IaC templates. IaC-deployed cloud infrastructures and stored data may

be at risk because of the weaknesses, especially if they are accessible to

the public Internet. Handlers should check IaC templates early in the

development process for unsafe setups and other potential problems. In

addition to detecting and correcting misconfigurations, a cloud security

posture monitoring service may also aid with regular scanning.

�Security Measures

Infrastructure as code delivers and maintains infrastructures such as

databases, network servers, services, and virtual machines. It is an

important DevOps approach that supports Agile software development.

IaC aids in the acceleration of growth and the effective management of

infrastructures. Developers and IT teams manage the settings of individual

deployment environments in the absence of IaC. This manual procedure

may result in deployment discrepancies and security risks. The following

procedures should be implemented to safeguard hybrid and public cloud

infrastructures.

Chapter 2 Patterns and Principles of Infrastructure as Code

41

Least Privileged Position

In cloud services, account privileges should be regulated, especially

when the services are linked to public cloud providers, taking advantage

of the idea of the least privileged position (LPR). Permissions and tool

access should be restricted to prevent attackers from gaining a foothold

in nodes and gaining access to sensitive information. Consequently, IaC

configurations are securely stored, and data leakage is prevented.

Using Security Tools

Take advantage of the security plug-ins provided by infrastructure as code.

A security plugin in the integrated development environment (IDE) may aid

in mitigating potential vulnerabilities in IaC templates prior to deployment.

Infrastructure Updates

Upgrading infrastructure software to the most current version is a common

practice. It is important to apply security patches as soon as they

become available as visible in Figure 2-2 below. It is best not to expose a

fundamental system. If possible, a central server should not be accessible

from the Internet in order to prevent compromise from spreading to other

components further downstream.

Figure 2-2.  Updates performed with IaC

Chapter 2 Patterns and Principles of Infrastructure as Code

42

Threat Detection

Improve your organization’s security and compliance posture. Cloud

service providers should use real-time security that can detect and correct

misconfiguration to provide pipeline protection. Solutions that have an

auto-remediation function may also be useful in the rectification of faults.

�Testing the Infrastructure
Testing your IaC at different stages is similar to software development in

that it must be planned ahead of time. Essentially, the concept is that as

you go up the test pyramid, the tests get more expensive, more fragile, and

more time-consuming to perform, and need more upkeep. As a result of

these considerations and to get quicker feedback, you should run tests at

the bottom of the pyramid as often as feasible and run tests at the top of

the pyramid less frequently.

It is recommended to perform static analysis as often as possible,

even on your own system, to get the most immediate feedback. There are

connectors that allow you to do this automatically when you save a file in

your text editor or integrated development environment.

As a result of the declarative nature of most of the tools such as

Terraform, unit testing is often not required for IaC. Unit tests, on the

other hand, may be beneficial in some situations, such as when you have

conditionals or loops. If you are writing bash scripts, you can use bats to

do unit testing; if you are using Pulumi, which supports languages such as

TypeScript, Python, Go, or C#, you can use the language test framework to

perform unit testing in those languages.

The process of provisioning resources in an environment and

determining whether they meet particular criteria is referred to as

integration testing. You should refrain from creating tests for things that

your tool is in charge of, particularly if you are writing declarative code.

Instead of focusing on whether the rules defined in IaC were followed, you

Chapter 2 Patterns and Principles of Infrastructure as Code

43

should be building automated tests to ensure that none of your private

partitions of the server are accessible to the public. Similarly, you may

want to check that only certain ports are open across all of your server

instances.

The last, but not the least, method of testing is to create an

environment, deploy a fake application, and then run brief smoke tests

to ensure that the application was successfully installed. Test those

situations that your actual application might encounter, but that are not

yet set up for use in production, using a fake application. In the case of

an externally hosted database, for example, you should test connecting

to it in your fake application to ensure that the connection is successful.

Having this assurance offers you peace of mind that the infrastructure you

are deploying will be capable of supporting the applications you want to

run on it. Because these are slow tests, you should run them when a fresh

environment has been provisioned and thereafter on a regular basis.

�Concerns with Infrastructure as Code
With the growing popularity of the public cloud platforms, IaC also

has access to consumption and the infrastructure these public clouds

offer. IaC is used by DevOps practitioners to create and maintain an

automated deployment pipeline that enables IT organizations to rapidly

release software changes at scale. Low-quality IaC implementations can

have substantial ramifications, such as significant system failures and

service disparities. Practitioners can increase the quality of IaC scripts

by recognizing anti-patterns and developing the infrastructure. New

technologies can be controlled more easily with the help of infrastructure

as code.

Technophiles admit that innovations such as software-defined data

centers, virtualized infrastructure, cloud computing, and other software-

defined technologies have simplified infrastructure provisioning. All of

Chapter 2 Patterns and Principles of Infrastructure as Code

44

this has made it more difficult to manage. First, IaC is not an ephemeral

phenomenon. On the other hand, it is now possible to build better,

easier, and faster cloud-native applications. IaC, which represents whole

application infrastructures, has enabled developers to achieve previously

unheard of speeds, allowing them to bring products to market faster than

ever before due to scalable, automated deployments. Even with a holistic

approach and perspective in mind, the meaning of IaC can differ at every

level in the organization. The following are the anti-patterns and pitfalls

that can turn out to be decisive for any IaC implementation.

The size, complexity, and changeability of infrastructure settings

are all key variables to consider when it comes to the effectiveness of

IaC deployments. Constructing and configuring IaC environments is a

time-consuming and costly endeavor. When the infrastructure is large

enough, it will begin to pay off sooner rather than later. The money and

necessary work put in if the organization wants to gain the advantages are

considerably high.

If the primary motivation for participating in an IaC project is to

save money or improve operations, the organization most likely will be

disappointed with the results. In the long run, the advantages of adopting

IaC exceed the short-term profits. When determining the worth of an IaC

project, it is important to include both the total cost of ownership and the

operational savings.

There are currently no industry standards or numbers on quantifiable

benefits available to help management understand the value of IaC while

creating a business case for it. When it comes to putting the IaC concept

into action, there are no best practices that have been created. Suppose

you want to know what the best practices are for performing testing.

Software development tools and processes are easily accessible, but this

is not the case when it comes to infrastructure development tools and

methods. There are only a selected few tools accessible in the industry.

Because an organization may lack the requisite in-house skills, knowledge,

and expertise to choose the proper tool stack for their particular

Chapter 2 Patterns and Principles of Infrastructure as Code

45

environment, and integrate the tools as part of the IaC implementation,

this might result in the failure of an IaC endeavor. Regardless of the

concerns, IaC should be given significant attention. IaC is way ahead

in terms of provisioning and managing infrastructure, as long as the

infrastructure is built while considering these problems.

�Infrastructure as Code at Scale
In addition to the ever-increasing demands on IT infrastructures,

IaC comes into play, providing structure and managing capabilities.

Administrators and architects may use IaC to automate the process of

setting up both on-premises and cloud infrastructures. Corporations have

used IaC as a way of quickly creating and implementing scalable cloud

systems as an addition to infrastructure as a service (IaaS).

IaC uses descriptive language to allow more flexible provisioning and

deployments. DevOps relies heavily on IaC, which also helps with cloud

security automation. The IaC toolset is divided into two categories. To

deliver, organize, and manage infrastructure components, orchestration

software such as Terraform is utilized. On the other hand, configuration

management tools are used to manage software that is installed, updated,

and maintained on infrastructure components. There are a number of new

technologies that make it easier for cloud developers to build up complex

systems and maintain them in a more efficient manner.

�Evolving Business Requirements
During the initial stages of adoption and implementation, an infrastructure

may just demonstrate the use cases and may not interact with any sensitive

organizational data. When the infrastructure becomes a customer pilot

and handles sensitive data, the priorities must be altered. At this point,

additional security needs may be developed, and organizations need

Chapter 2 Patterns and Principles of Infrastructure as Code

46

to adhere to a variety of regulatory or internal best practices. Customer

and business needs and capabilities will continue to evolve, as will the

applications that support them. The infrastructure of organizations may

take a variety of forms, specific to products, services, research purposes,

and internal use cases. Developers may easily develop an analytics service

in response to a client’s requests. However, such an update would need a

major rewrite of the application’s architecture and capabilities. Changes

in strategy, the demand for extra capabilities, or customer input may all

entail modifications to the service or product, necessitating an upgrade

to the application architecture resulting in changes of previous security

assessment.

Infrastructure as code allows you to compare architectural

modifications to your security reference architectures and design patterns

automatically, enabling you to identify security and compliance concerns

more quickly. Any discrepancies are then re-introduced into the process.

�Evolving Security Requirements
With the rise in cloud-based security issues, new guidelines are being

updated on a regular basis, requiring the need for flexibility. However, it

is more than a matter of adapting infrastructure best practices. Security

issues, new compliance and regulatory requirements, and changing

consumer expectations all have a direct effect on how infrastructure is

designed and implemented. Depending on the customer and the nature of

their business, they may need more stringent security measures than those

included in the product initially. Even if a security update is intended to

address a particular vulnerability, it has the potential to introduce new

security threats as application designs evolve. Along with automatically

informing security teams of all changes, IaC enables them to monitor

the repercussions of each update throughout the whole application

architecture.

Chapter 2 Patterns and Principles of Infrastructure as Code

47

�Evolving Provider Requirements
Cloud service providers such as Amazon AWS and Microsoft Azure are

constantly increasing their capabilities. Developers and security experts

are struggling to keep up with the constant stream of new features being

released. Nonetheless, their importance continues. Even if a new feature or

capability poses security problems at the time of delivery, developers may

be willing to take the risk since AWS and Azure will handle it in the future.

When new, more secure versions of cloud services become available,

IaC’s automation enables quick upgrades. To keep up with IaC, security

mechanisms, similar to IaC or software development itself, need a more

dynamic strategy. As a result, security is never slowed down or forced to

be evaded. Developers and experts can move quickly and efficiently as

a group.

IaC’s promise lies in its capacity to unify all cloud setup operations,

increasing efficiency and lowering costs. Infrastructure automation is

increasingly a critical necessity for all enterprises. As more contemporary

apps migrate to the cloud, IaC will become increasingly more critical.

Always keep security in mind while picking an IaC tool. Consider

solutions that assist firms in securing IaC templates and conducting

security audits to identify security flaws, compliance violations, and

other misconfigurations. The best systems enable developers to discover,

monitor, and correct misconfigurations as part of their usual process,

without having to leave their code repositories to check findings or create

a separate scanning procedure. A system that prioritizes security provides

security administrators with the trust they need in DevOps-built and

operated IaC.

Chapter 2 Patterns and Principles of Infrastructure as Code

48

�The Way Ahead
The capacity of a team working on infrastructure to adapt effectively to

changing needs is one way that efficiency may be measured. The highest-

performing groups are able to quickly observe trends and adjust to new

needs, while also promptly linking requests to a consistent supply of

low-impact alternatives. The restoration of the whole system may be

done quickly and easily. You take measures to guarantee that all of your

systems are always up-to-date, have all of their vulnerabilities fixed, and

are completely interoperable with one another. You don’t need assistance

from members of the IT department to set up servers and environments;

you can do it in a couple of minutes.

There is often no need for predetermined maintenance windows to

be arranged. Throughout the course of normal business hours, potential

dangers such as software upgrades and other installations are carried out.

The accomplishment of a group’s goals is not dependent on the absence

of mistakes in their work; instead, the average amount of time that passes

without a problem can be tracked. Members of the group think that their

contributions to the firm are beneficial in a measurable way.

In the next chapter, you will learn about how IaC is managed and

how businesses need to equip themselves with strategies they can use to

harness the true power of infrastructure as code.

Chapter 2 Patterns and Principles of Infrastructure as Code

49

CHAPTER 3

Management
of Infrastructure
as Code
When it comes to information technology for businesses, it is not

unusual to see a mix of on-site data centers and infrastructures hosted

on the public cloud. It is essential to the IT environment’s capacity to

function correctly that the settings and interface needs of these assets

be appropriately identified and managed. Even a little adjustment to

the configuration parameters might have a significant influence on the

functionality, safety, and effectiveness of the code. It’s likely that the

infrastructure required to run tests is quite different from what’s required

in a production environment. This is something to keep in mind. Hence, it

becomes essential for the businesses to manage their infrastructures in an

appropriate manner.

Oftentimes infrastructure as code (IaC) is considered to be derived

from infrastructure as a service (IaaS) and development teams attempt

to apply the same management principles of IaaS to IaC. This results in

an unhealthy infrastructure, since both of them are completely different

concepts, and each of them requires different approaches and strategies to

be able to manage them.

© Sneh Pandya and Riya Guha Thakurta 2022
S. Pandya and R. Guha Thakurta, Introduction to Infrastructure as Code,
https://doi.org/10.1007/978-1-4842-8689-0_3

https://doi.org/10.1007/978-1-4842-8689-0_3

50

IaaS is a cloud service that provides virtualized computer resources

such as servers, networking infrastructure, storage, and so on. IaC, on the

other hand, is a tool for provisioning and managing infrastructure. It is not

confined to cloud-based resources exclusively.

�The Emergence of Infrastructure Teams
The number of complex workloads and business applications continues

to expand, and IT departments are turning to multicloud systems to

manage and support the enterprise’s fast expansion. It is anticipated that

reliance on these solutions will increase, although the complexity and lack

of compatibility of legacy infrastructure with public cloud environments

continue to pose obstacles to cloud adoption. In a setting that is cloud-

native, operators of conventional infrastructure must also be creators of

software for that infrastructure.

In contrast to the operational responsibilities that were performed in

the past, this new manner of doing things is one that is still developing.

As soon as humanly possible, businesses need to get started analyzing

the existing patterns and developing the recommendations, since the

necessities are bespoke and may impact a large part of the infrastructure

operations, as well as management.

�Preparing Infrastructure as Code
Merging several clouds may be an effective technique for increasing

productivity, managing complicated applications and workloads,

and providing support for hybrid workforces, despite that there is no

deployment architecture that is appropriate for all circumstances. If your

team is in the process of building a multicloud architecture, the guidelines

shown in Figure 3-1 can help you overcome common challenges effectively

such as interoperability, security, and data integration.

Chapter 3 Management of Infrastructure as Code

51

Figure 3-1.  IaC elements

�Evaluation of Infrastructure
The infrastructure that is hosted in the cloud has the potential to increase

productivity, but it is not suitable for all types of workloads. On-premises

and private infrastructures are often necessary for legacy programs

because of the specific requirements that go along with them. If your

business already manages older workloads, you should consider a few

things including on-premises solutions, as the latency and delivery time

originated from your deployed infrastructure to your end customers

depends on multiple factors including server workloads, coverage of

services provided by the public cloud in different geographic locations,

Internet speeds, etc. For example, some countries do not yet have blazing-

fast Internet speed; similarly, some specific geographical regions are not

yet served by public cloud providers.

These solutions offer the benefits of a cloud operating model while

allowing you to keep complete control over the underlying infrastructure.

If your business already manages older workloads, you should look into

Chapter 3 Management of Infrastructure as Code

52

on-premises solutions. When building IaC for your company’s specific

cloud workloads, it is important to consider factors such as security,

compliance, performance, and cost. The public cloud infrastructure is

best suited for customer resource management, remote workstation

management, and collaborative application architecture, whereas the

private cloud architecture is best suited for database, human resources,

and disaster recovery architecture.

�Choosing the Right Security Mechanisms
When it comes to matching workloads to the right infrastructure, security

is the most important consideration. The use of VPNs and firewalls to

protect against current cybersecurity threats is becoming less successful

for many enterprises. Identify and assess cloud-based security solutions

that place a high priority on identity management, reduce attack surfaces,

and are specifically designed to safeguard cloud data, apps, and service.

�Structuring the Data
The fragmented nature of separate data centers and data lakes is another

problem that has been overlooked in legacy data access. A lack of visibility

and portability is frequently overlooked by IT executives in their efforts

to secure and manage data regardless of where it’s kept. Consistent

governance and protection rules should be implemented to guarantee

that all data repositories are accessible to authorized users, regardless of

location. Data portability and enterprise-grade security are both ensured

when data is unified in multicloud settings, allowing remote teams to

remain productive and collaborative no matter where they are located.

Chapter 3 Management of Infrastructure as Code

53

�Automating Workloads
Simplifying administration of IaC, boosting backup and resilience,

and improving data cost and governance are all accomplished via the

collaborative efforts of scaling multicloud setups, automation, and

orchestration. You should make use of rules and parameters that have

been established exclusively for use in such systems if you want to get the

most out of automation. Suppose your organization wants to launch and

orchestrate a new cloud stack that consists of a series of virtual machines,

networking gateways and CDNs, storage, monitoring, and billing. Here’s

one approach to achieve this: you can combine these services into

groups and then make use of IaC to launch them. Now every layer of

the infrastructure can be orchestrated independent of the other using

IaC. Moreover, once the infrastructure is deployed, you can make use of

the tools, modules, plugins, and more to restrict role-based operations,

deployments, monitoring, and automated checks and orchestration of new

layers based on previously performed steps in the deployment process

depending upon the IaC solution that you’re using to maintain your

infrastructure.

If manually managing workloads is slowing progress on high-

value projects, the solution may lie in automating and coordinating

infrastructure and IT tasks utilizing hybrid operations and solutions. This

might be the case if hybrid operations solutions are being used.

�Uniform Governance
The availability of data at any time and in any location is essential to the

operation of a cloud-based architecture. However, the reality of settings

that make use of several clouds is that each cloud has its own set of rules,

governance, and tools. This leaves data rights and access vulnerable to

being violated.

Chapter 3 Management of Infrastructure as Code

54

Before beginning to install cloud infrastructure, you should make

certain that your team is aware of the significance of standardized rules

and tools for the purpose of protecting multicloud systems, as well as the

methods by which to acquire best practices. As the company grows, the use

of consistent rules may provide new layers of insight into workloads and

improve general collaboration. Take into consideration the establishment

of centers of excellence to promote the dissemination of cloud-based best

practices.

�Hybrid Strategies
The use of IT infrastructure by enterprises is becoming an increasingly

important factor. Infrastructure that makes use of many clouds has grown

to encompass both private and public clouds. This hybrid method may

assist companies in achieving the flexibility and agility necessary to

compete in today’s digital world, while also assisting organizations in the

process of streamlining their operations.

These modifications are being driven by the market’s understanding

that there is no cloud solution that is universally applicable to all

situations. The current state of affairs makes it necessary to upgrade the IT

infrastructure to give greater application stack management capabilities.

If you keep these tips in mind, you will be able to get the most out of

your cloud investment and overcome the challenges that are most often

associated with multicloud architecture.

�Blue-Green Deployment Strategy
When it comes to deploying as well as managing infrastructure in a

production environment in a safe and secure manner, there are a number

of options from which you can choose. These patterns reduce the negative

effects of a poorly executed deployment, make it possible to get inputs, and

Chapter 3 Management of Infrastructure as Code

55

ensure that there is no downtime throughout an implementation. The vast

majority of them adhere to certain patterns designed to limit the number

of newly published updates.

Continuous integration/continuous deployment (CI/CD) is a

methodology that can be used to automate various stages of software

development. This methodology can be used with the phase of integration

and testing and continue on through the phases of delivery and

deployment. Your choice of a specific deployment strategy for a CI/CD

pipeline may have a direct bearing on the success or failure of your project.

Every potential solution requires a balance between a number of different

considerations, such as cost, timeline, risk, and user impact.

The blue-green deployment method is used so that a risk-managed

release can be sent out to production servers in a controlled manner. In

this section, you will learn the merits and drawbacks of this approach, as

well as examine how it compares to the many other possibilities. Figure 3-2

shows the strategy.

Figure 3-2.  Blue-green deployment strategy

Chapter 3 Management of Infrastructure as Code

56

�Process and Architecture
Blue-green deployment can ensure the quality of the infrastructure by

sending it to a test environment that is analogous to the production

environment but is inaccessible to the general public or the rest of the

organizational teams.

The process of maintaining two almost identical versions of your

infrastructure is referred to as blue-green maintenance. The first setting

is known as the blue environment, while the second setting is known

as the green environment. When you are ready to release a new update

of the infrastructure, configuration, or updates, you deploy it to a new

blue environment and transfer the operational capabilities on the blue

environment. At the same time, you keep the previous green environment

around as a backup in case you ever need to roll back to the previous state.

Your blue-green load balancers or deployers will redirect the

operational traffic to the blue site, which contains the new functional

update or service that has been completely coded and tested, if the

deployment has been tested and if it has been validated that the

deployment is operating as intended. If all goes according to plan, the

green site will be kept running in case it is necessary to do a rollback. At

this point, you will be ready to repeat the process and launch the next

update, at which time you will develop a fresh replica of the green site

using blue.

If, on the other hand, the product does not function as planned and

requires some modifications to the code or debugging before it can be

released, all you have to do is keep your live site in the green environment.

As a result, you will have more time to enhance the product before

reintroducing it to the market.

Chapter 3 Management of Infrastructure as Code

57

�Working Mechanism
Consider an infrastructure that offers various features in a large-scale

environment. A number of tasks are performed by many container-based

microservices on the back end.

The initial release offers basic functionalities, which are advantageous

to thousands of customers. The technology is capable of recording

thousands of new transactions every single minute. Your DevOps team

has strongly suggested that you release new versions of your infrastructure

more often; thus, you will implement a minor modification to the

mechanics that significantly improves the size and speed of processing

the data.

You employ a blue-green deployment method to update the

application in the middle of peak demand, as opposed to waiting until

midnight to deliver the update to production, when there are fewer

prospective customers online. By cloning the mechanics from the

production environment to a different environment, you will finish the

work faster than any previous attempt.

After the new business logic has been deployed, it must pass the

quality checks, test cases, and staging processes before it can be moved to

the production environment alongside the active blue environment.

�Preparing Deployments
Before you can begin a new project or transfer an existing one, you

need access to the infrastructure from which you can perform a blue-

green deployment. You’ll need to keep track of which environments

are in production and which are in staging once you’ve set up your

infrastructure. If you have many environments, you need to know which

version of your code is operating in which environment. Preparation is

essential when making large-scale code modifications. Without a plan, it is

hard to test and monitor changes.

Chapter 3 Management of Infrastructure as Code

58

Infrastructure components that can be reused are kept in module

repositories, which are similar to the common libraries used in application

development. This might be an actual infrastructure component or

module, or it could be a series of infrastructure launch templates that

define a specific piece of architecture. These modules include configurable

settings that allow for a wide variety of applications. They are designed to

be automatically instantiated with the help of a configuration repository

rather than having environment-specific prerequisites. Infrastructure

components like ECS service definitions for a given application workload,

shared RDS database definitions, and VPCs may all be stored in a single

module repository. Module repositories should update like application

libraries. A Git approach that allows releases and versions is appropriate.

GitFlow, semantic versioning, and CHANGELOG.md are often-used

technologies. Professional programmers know this works well.

Configuration repositories record deployed resource configurations.

These repositories are generally organized in the same way as deployed

workloads. Configuration repositories should follow a “truck-based”

approach. The configuration repository prohibits configuration changes

and records system state. This implies configuration repositories should

save only intended changes. Automatic updates will follow. It’s hard to

tell whether a configuration repository’s feature branches or “develop”

branches represent the genuine infrastructure state. Git history removes

the necessity for publishing and labeling configuration repositories.

Maintaining order may be simple if you just use one code base that

isn’t very complicated. This isn’t always the case in the professional

development industry or organizations. Many manual and automated

actions may be necessary when configuring a new version of your IaC.

Chapter 3 Management of Infrastructure as Code

59

�Adapting Simplicity
A long history of ever-increasing complexity, rather than steadily improved

simplicity, has long been associated with IT enterprises. Human error is

increased, time is wasted, and users are unable to concentrate on their

other objectives when a system is too complicated. Instead of keeping

employees busy just for the sake of it, technology should help businesses

run more efficiently, continue to develop features, and expand into new

markets.

It is possible to minimize needless complication when expanding

capacity to an existing system by using current seamless techniques

instead of a hardware update. If you have less to manage, you’ll have

more time to focus on the things that are really essential to you. Simplicity

reduces or eliminates the risk of human mistakes in manual management

processes, which may be a concern.

To get a deployment right, here’s what you need to ensure:

•	 It is essential that you carry out all of the required

checks to ensure that the update is functioning

correctly.

•	 When operating the code in its most recent version, a

blue server is the one that should be utilized.

•	 It is necessary to configure the router or load balancer

so that traffic from valid customers will begin to be sent

to the blue server.

•	 It is necessary to configure either the router or the

load balancer in such a way that no valid user traffic is

allowed to access the green servers.

•	 Continue to send traffic to the blue server until you are

convinced that there are no problems and that there is

no need to roll back any changes.

Chapter 3 Management of Infrastructure as Code

60

•	 Keep the traffic flowing to the blue server and then

pass it to the green server. It is necessary to set either

the router or the load balancer in such a way that users

are sent to the green server while the issue is being

resolved.

•	 The green server has to be prepared for the subsequent

blue-green deployment as soon as the final checks have

been carried out.

�Environment Replicability
Environment replicability refers to the capability of moving code binaries

and configuration files from an active and well-tested server to a new

server to set up a new environment with only minimum configuration

changes required. This is accomplished by using the new server.

Along with maintaining stability, this is one of the most important

aspects of blue-green deployments. The procedure consists of a number

of different components, such as servers and settings. Depending on

the needs of your organization, environments may range from a single

instance to several instances. Some examples of environments are

production, staging, mirror, and development.

The more habitats there are, the higher the level of complexity that

must be dealt with. To deal with this situation, you need to devise and

implement automated inspections, in addition to monitoring and sending

out alerts.

Chapter 3 Management of Infrastructure as Code

61

�Configuration Management
It’s possible that increasing an organization’s agility may be accomplished

by automating processes that would normally take a lot of time thanks to

configuration management in DevOps. On the other hand, configuration

management is an essential part of DevOps, and it is widely acknowledged

that this component is more than just another piece of the jigsaw puzzle.

Configuration management is the practice of using a configuration

platform to automate, monitor, create, and manage otherwise manual

configuration activities. Every controllable component of the system is

re-engineered throughout the process. Configuration management relies

heavily on defining the current state of each system. Using a platform,

organizations can ensure that all linked systems operate in the same way

and increase productivity. Thus, companies may expand more quickly

without having to hire more IT management staff. A DevOps approach

may help companies that might otherwise be unable to grow.

The terms configuration management and change management are

often used interchangeably because of their close connection. There are

two types of configuration management: one is change management,

which involves redefining and updating settings to meet changing needs,

and the other is configuration management.

�Process and Architecture
The process of managing configurations is a key aspect of the management

framework, and data architecture is a vital part of that process. A database

that is known as the configuration management database is one of the

features of configuration management that is considered to be among

the most significant (CMDB). This database stores information about an

organization’s whole configuration management infrastructure, including

all of the systems and applications that comprise it.

Chapter 3 Management of Infrastructure as Code

62

CMDB is helpful because it enables development teams to investigate

the links between connected systems before making any modifications to

the configuration of the system. In addition, it is an excellent provisioning

tool for gaining knowledge about infrastructure elements like servers.

Because it allows teams to escalate issues until they are resolved, incident

management may also benefit from the use of a CMDB.

�The Way Ahead
Configuration management is not something that should be considered

apart from DevOps. Successful operation of an organization requires

comprehensive configuration management, including DevOps strategies,

as they go hand in hand. This is because configuration management

builds the framework for far more automation than it directly touches.

Businesses may be able to strengthen their communication and operate as

more Agile development unit by using IaC in the environment in which the

infrastructure is being developed. This unit will be focused on continuous

integration and continuous delivery. Without the appropriate tools,

configuration management is a challenging task.

In the next chapter, you will learn about the production complexity

with IaC at scale and how to manage the complexity through various

techniques.

Chapter 3 Management of Infrastructure as Code

63

CHAPTER 4

Production
Complexity
Management
Before the advent of the cloud, it was infamously difficult for IT teams

to manage downtime during installations. Because local consumers

have limited access to programs located in conventional data centers,

businesses often plan application rollouts in the middle of the night. With

the increasing number of businesses transferring their operations to the

cloud, the traditionally required deployment durations are becoming

obsolete. Every company’s CEO dreams that its product will one day be

accessible to each and every prospective user.

Users have traditionally suffered interruptions in service whenever

programmers have had to shut down applications to install updates and

fixes. Automating the application development, automated testing, and

automated deployment process is helping to maintain environments.

This is made possible by the use of continuous integration/continuous

deployment (CI/CD) pipelines. When deploying an application or making

changes to the environment, however, there is a possibility that there

may be downtime as well as other problems. To choose the most suitable

deployment method for your use case, it is essential to have a solid

understanding of the benefits, drawbacks, and requirements associated

with different deployment strategies.

© Sneh Pandya and Riya Guha Thakurta 2022
S. Pandya and R. Guha Thakurta, Introduction to Infrastructure as Code,
https://doi.org/10.1007/978-1-4842-8689-0_4

https://doi.org/10.1007/978-1-4842-8689-0_4

64

�Modern Application Infrastructures
The cloud is becoming an increasingly common location for the storage

and distribution of contemporary software. Cloud services are more

tolerant of failure as a consequence of their easily accessible design, and

they can evolve more swiftly to accommodate demand as a result of their

accessibility. Fully managed services, such as Amazon Web Services,

Google Cloud, Microsoft Azure, etc., relieve developers of some of the

pressures associated with running their businesses by handling some

operational tasks.

For instance, a mobile application for a smartphone or a website

geared at end users may undergo several revisions during the span of only

one month. Some of them go through the manufacturing process many

times every single day.

They often use designs that are based on the concept of microservices,

in which a number of distinct components collaborate on the completion

of a single mission. It’s possible that various components of a product will

be launched at different periods, but they all have to be compatible with

one another.

When there are more moving components, there is an increased

possibility that something may go wrong. When many development teams

are engaged in a project, there is a greater chance that the underlying issue

may be difficult to identify and fix. A further problem is the abstraction

of the infrastructure layer, which is now considered to be code. When a

new application is deployed, there is a possibility that more code for the

infrastructure will be necessary.

�Managing Deployments Without Downtime
The majority of companies, especially those with a modern application

architecture and a well-established CI/CD pipeline, want to be able to

deploy new applications and features at any time with no adverse effects

Chapter 4 Production Complexity Management

65

on the customers who are now using the software. Because of this, it is

necessary to implement changes in production settings in a quick and

secure manner so as not to interrupt users who are doing essential tasks or

who rely on your systems for mission-critical processes.

Your application’s architecture, and the way it is deployed, plays

a significant part in determining how much, if any, downtime your

deployment will experience. In general, the following conditions should be

met by your environment for either the canary or blue-green deployment

techniques to be successful:

•	 Build, test, and deploy to certain environments using a

deployment pipeline.

•	 There are a large number of application nodes or

containers spread out behind the load balancer.

•	 An application that does not save any state and that

may serve requests at any time and from any node in

a cluster to be considered as a successful blue-green

deployment.

In addition, any changes you make to your infrastructure should not

affect the data layer (e.g., database) in any way and should be considered

nondestructive. Instead of renaming or reusing columns for a variety of

reasons from your existing database, the newer approach would make data

columns nullable or optional. This would allow restoration of previous

states without loss of any data.

The blue-green deployment is a strategy designed to solve some of the

challenges of the in-place strategy. Even if you manage your dependencies and

libraries in-place or via the blue-green deployment strategy, there is still one

issue that has not been handled, and that is the fact that it is a tough process.

How can you be certain that a new environment, one that you have

created locally or one that you have created on the cloud, is precisely the

same as the one that came before it? If you forget to change one of the

environments, the deployment might not go as planned.

Chapter 4 Production Complexity Management

66

Suppose there is a flaw in the system but it cannot be reproduced

in a local environment since it is difficult to know for sure that the two

environments are exactly the same. It is possible that configuration

management may be of assistance, but the simplest solution would be to

avoid ever updating your environment so that you can continually produce

the same arrangement.

�Canary Deployment Strategy
Among various strategies in infrastructure as code (IaC), canary

deployment is used by organizations to determine whether a new CI/

CD release will result in any challenges for the production and the users.

Canary deployment is a practice that includes gradually exposing a change

to a select set of users before making it accessible to everyone. This is done

to lessen the risk of an update getting into production.

Canary deployments demonstrate how actual people in the real world

interact with programmed improvements and how improvements are

utilized in the real world. Canary deployments, which are comparable

to blue-green deployments, provide very minimal downtime and rapid

rollbacks in the event that an issue arises. In comparison to blue-green

deployments, canary deployments operate more efficiently and have a

lower rate of failures overall.

Canary release refers to an early test version of an application. The

version control system branches are versioned and tagged based on the

state of the deployment. The stable branch holds the code base that is

currently live on the servers. The branch that consists of the code base to

be deployed is generally a development branch. When the development is

complete, the CI/CD checks and security checks are run before merging it

to the stable branch. Once the automation is run, the canary deployment

execution starts. Keeping the stable and development branches of a

project distinct is an approach that is often used. Canary versions of

updates and releases are often made available for use by the organizations

Chapter 4 Production Complexity Management

67

in the expectation that a small number of consumers consisting of

advanced technical skills or early adopters would try them out. A plethora

of organizations that use this approach with their application releases

include Mozilla, Google, Microsoft, and many more that offer canary

releases for their various products, services and applications.

�Process and Architecture
Similar to blue-green deployment, canary deployment employs a slightly

different approach. Canary deployments swap over a selection of servers

or nodes before completing the remainder of the environment, as shown

in Figure 4-1.

Figure 4-1.  Canary deployment

Chapter 4 Production Complexity Management

68

There are several methods to design your environment for canary

deployments, but the easiest is to set up your environment normally

behind your load balancer but maintain an extra node or two (depending

on the size of your application) as unneeded spares. This spare node or

server group is your deployment target for your CI/CD process. After

building, deploying, and testing this node, you add it to your load balancer

for a limited duration and a restricted user population. This enables you to

verify the success of modifications before applying them to the other nodes

in your cluster.

Optionally, a canary deployment can be configured using a

development method known as feature toggles or feature flags. Feature

toggles function by developing and delivering your modifications to an

application governed by a configuration that is inoperable until those

changes are enabled. You remove a node from your cluster, deploy it,

and then put it back without testing or controlling anything via the

load balancer. Then, after all nodes have been updated, you enable the

functionality for a subset of users prior to rolling it out to everyone.

�Working Mechanism
The canary deployment method requires simultaneously running two

different application versions. The update may be delivered in one of two

ways: side-by-side or successive deployments. Let’s understand how they

help deployments and manage infrastructure at scale.

The first step is putting in place a new canary infrastructure, which will

be used to distribute the most current update. A relatively little portion of

the traffic is shifted to the canary instance, even though the vast majority of

users will continue to make use of the baseline instance.

Once some traffic has been redirected to the canary instance, the team

will begin gathering data, which may include metrics, logs, information

from network traffic monitors, and findings from synthetic transaction

monitors—anything that can assist in establishing whether the new canary

Chapter 4 Production Complexity Management

69

instance is functioning as expected. After that, the data is analyzed, and

the results are contrasted with the baseline version.

After the team has finished the canary analysis, they decide whether

to go through with the release and make it available to the rest of the users

or if they should revert to the baseline situation that existed before the

release.

�Adapting Simplicity
A long history of ever-increasing complexity, rather than steadily improved

simplicity, has long been associated with IT enterprises. Human error is

increased, time is wasted, and users are unable to concentrate on their

other objectives when a system is too complicated. Instead of keeping

employees busy just for the sake of it, technology should help businesses

run more efficiently, continue to develop, and expand into new markets.

It is possible to minimize needless complication when expanding

capacity to an existing system by using current seamless techniques

instead of a hardware update. If you have less to manage, you’ll have

more time to focus on the things that are really essential to you. Simplicity

reduces or eliminates the risk of human mistake in manual management

processes, which may be a concern.

To get the deployment right, here’s what you need to ensure:

•	 It is essential that you carry out all of the required

checks to ensure that the update is functioning

correctly.

•	 When operating the code in its most recent version, a

blue server is the one that should be utilized.

•	 It is necessary to configure the router or load balancer

so that traffic from valid customers will begin to be sent

to the blue server.

Chapter 4 Production Complexity Management

70

•	 It is necessary to configure either the router or the

load balancer in such a way that no valid user traffic is

allowed to access the green servers.

•	 Continue to send traffic to the blue server until you are

convinced that there are no problems and that there is

no need to roll back any changes.

•	 Keep the traffic flowing to the blue server and then

pass it to the green server. It is necessary to set either

the router or the load balancer in such a way that users

are sent to the green server while the issue is being

resolved.

•	 The green server has to be prepared for the subsequent

blue-green deployment as soon as the final checks have

been carried out.

�Environment Replicability
Environment replicability refers to the capability of moving code binaries

and configuration files from an active and well-tested server to a new

server to set up a new environment with only minimum configuration

changes required. This is accomplished by using the new server.

Along with maintaining stability, this is one of the most important

aspects of blue-green deployments. The procedure consists of a number

of different components, such as servers and settings. Depending on

the needs of your organization, environments may range from a single

instance to several instances. Some examples of environments are

production, staging, mirror, and development.

The more environments there are, the higher the level of complexity

that must be dealt with. To deal with this situation, you need to devise and

implement automated inspections, in addition to monitoring and sending

out alerts.

Chapter 4 Production Complexity Management

71

�Rolling Release Deployment Strategy
Rolling deployment is a great way to decrease downtime in situations with

a lot of static resources. It is also more cost-effective than other strategies

because no new resources are required. Backward compatibility across

application components is generally considered when employing a rolling

deployment. Rolling deployment can be used with phases and batches. In

terms of phases, rolling deployments can be used based on the scenario or

case structure.

Let’s look at how an e-commerce business utilizes the rolling

deployment method to launch its shopping cart application to a

production environment. The shopping cart application has three levels:

web, app, and database. The business intends to deploy this application to

the production environment in the following four stages:

	 1.	 First, deploy only to the database tier and test the

database update.

	 2.	 Deploy to some of the resources in the app and web

tiers to ensure that the application was successfully

deployed.

	 3.	 Apply some restrictions to a few additional

resources in the app layer.

	 4.	 Deploy the remaining resources in the production.

This rolling deployment technique is appropriate when predictable

mapping between resources and batches is not required. Let us

understand the batch process.

When resources and phases have a deterministic mapping, this rolling

deployment strategy is appropriate. You can assign resources to phases

manually or dynamically using expressions. Because nodes are updated

in batches, rolling deployments necessitate services that handle both new

and old versions of an asset.

Chapter 4 Production Complexity Management

72

The following actions are possible with rolling updates:

•	 Transfer a program from one environment to another

via container image updates.

•	 Revert to prior versions when required.

•	 Apply continuous integration and continuous delivery

with minimal downtime.

The advantages of a rolling deployment are that it is relatively

easy to roll back, it is less dangerous than a basic deployment, and it is

straightforward to implement.

We need to consider the disadvantages too since rolling deployments

necessitate services that accept both new and old artifact versions.

Verifying an application deployment on each incremental update also

slows down the deployment.

When deciding on a deployment plan, there are several factors to

consider.

•	 Long-running connections must be treated with care.

•	 Database conversions can be difficult and must

be completed and rolled back in tandem with the

application.

•	 Downtime may be required to complete the transition

if the application is a combination of microservices and

conventional components.

•	 You need the required infrastructure to

accomplish this.

Chapter 4 Production Complexity Management

73

�Process and Architecture
Rolling deployments need a production environment that has several

servers that are running an application. Typically, but not always, rolling

deployments also require a load balancer to be placed in front of the

servers so that traffic may be distributed. When the DevOps team is ready

to deploy an updated version of their program, they perform a staggered

release by delivering the update to each individual server in turn.

While the upgrade is being sent out, some of the live servers will run

the new application, while others will continue to run the older version. In

contrast, a blue-green deployment implies that the upgraded software is

either live or is not live for all users.

When starting a new session, users have the option of accessing either the

old or new version of the application depending on the instructions given to

them by the load balancer. As soon as the deployment is finished, each new

user session will automatically have access to the most recent version of the

software. In the event that an issue arises during the rollout, the DevOps team

may choose to suspend the upgrades and route all traffic to the servers that is

still known to be good until the problem has been resolved.

Rolling deployments are an option that should be considered by

companies that are in a position to successfully manage such a vast

production environment. For companies that operate in this manner, they

are an excellent tool for delivering small, incremental improvements, quite

similar to the approaches used in agile software development.

�Steps for Managing Production Complexity
Delivering software and infrastructure is a difficult process. The

implementation of certain deployment procedures and practices that will

aid in the operationalization of your production environment, resulting

in a better management of production complexity. The procedures and

practices discussed in this chapter will assist in the operationalization of

your services in a better, more efficient and manageable way.

Chapter 4 Production Complexity Management

74

There are a number of benefits of automating and scripting as much

of the process as possible. The changes will take place more quickly, and

there will be fewer opportunities for mistakes to be made by humans. If the

checklist is managed by a script or a management platform, it is impossible

for a developer to forget an item on the list. If everything is included in

a script, the deployment may be carried out by any developer or even

someone who is not a developer. Don’t waste time waiting for your system

professional to get back from vacation before you act. Consider putting the

following procedures or standards into place.

�Harnessing the Power
Teams working inside CI/CD frameworks and deployment strategies

may release and manage applications in production at any time if they

employ the appropriate deployment strategy with the supporting fail-

safe mechanisms. In most cases, the only thing that is necessary to go

live is a change in the routing. These deployments will have no negative

consequences for users since there will be no downtime.

They also create less disturbance for the DevOps team. They are

not required to install updates within a defined window of downtime,

which increases the likelihood of deployment difficulties and adds stress.

Furthermore, the success is extended to the executive teams. They won’t

have to keep track of the time to figure out how much money was lost

during downtime.

�Fail-Safe Environment Management
This further reduces the risks associated with experimenting with

production processes. Your team may instantly resolve any issues by

making a simple routing modification back to the stable production

environment. There is a chance that cutting down resources may result in a

Chapter 4 Production Complexity Management

75

loss of customer transactions, which will be explored more in this section,

but there are numerous alternative measures that can be done to address

this issue.

During cutovers, you may make your app read-only for a limited

amount of time. You may also use a load balancer to do rolling cutovers

while waiting for transactions to complete in the live environment.

�Monitoring Your Infrastructure
Always keep an eye out for infrastructure in your immediate surroundings.

If you want your deployments to succeed, you need to be aware of

everything that’s going on in both your live and nonactive systems.

These systems generally need the monitoring alerts, but the order

in which they are checked should be different. Let’s say you want to be

notified the instant a problem arises in the live system you’re using. If the

error is still there in the operating system at a later point in the day, it will

need to be addressed.

Make sure that your code is compatible with both older and newer

versions of the deployment environment. There can be occasions when a

cutover will be unable to run either the new or old version of your software.

In the case of changes to the database schema, for instance, it would be to

your advantage to organize your updates in such a way that both the blue

and green systems would continue to function normally throughout the

cutover.

�Compartmentalizing Releases
One strategy for dealing with these difficulties is to partition your releases

into progressively more manageable bundles of code.

Already significantly dependent on rapid, incremental updates, Agile

development and CI/CD are becoming even more dependent on updates.

Blue-green deployments need an even stricter adherence to this criteria

Chapter 4 Production Complexity Management

76

than other deployment types. Reducing the number of feedback loops and

integrating the knowledge gained from doing so into subsequent releases

may cut deployment durations in half.

�Adapting Serverless Architecture
Your applications have to be separated into separate microservices. This

method works particularly well when used for more modest installations.

Microservices make it possible for you to manage updates and

adjustments to the code of your application in an easier manner. Because

the application has been divided into more manageable portions, it’s

much easier to update a single feature at a time.

�Feature Flagging
Utilizing feature flags is one method that may be used to accomplish

further risk reduction. When blue-green deployments are used alone,

they provide a single, very short window of prone to failure. You are now

updating everything, but if there is a problem, you may limit the amount of

work you have to do.

When it comes to deployments in scenarios such as enterprise-grade

production environments, each cutover is accompanied by a consistent

quantity of administrative overhead. This overhead must be paid for.

Whether you are changing a single line of code or redesigning your

whole e-commerce platform, you will be required to go through the same

process. This is the case regardless of how significant or how little the

change may be.

It is possible for feature flags to give a degree of fine-grained control

over the timing and introduction of new software to consumers. Feature

flags operate in a manner similar to that of powerful “if” statements,

which may point to the execution of code in any one of a number of ways

depending on the circumstances of the system.

Chapter 4 Production Complexity Management

77

As a condition, you may use anything as simple as a “yes/no” question

or as complex as a decision tree. Using feature flags, which allow you to

pick whether features are enabled or disabled at the feature level, makes

managing software releases simpler. Feature flags allow you to choose

whether features are enabled or disabled.

Because our e-commerce company uses the customizer microservice,

we are able to do a blue-green deployment while concealing the newly

written code behind a feature flag. After that feature has been activated,

the DevOps team will have the ability to turn it on and off at their

discretion.

It’s possible that the manufacturing process needs another round of

A/B testing. It’s likely that they could ask you to undergo some further

physical examinations. Alternatively, the customizer might be made

available to a limited number of early adopters in the form of a canary

release.

You may use feature flags in conjunction with a load balancer during

a blue-green deployment to control which users see certain application

and feature subsets. This is done by controlling which users see which

flags. You don’t have to swap over the full programs at once; instead, you

may gradually activate and deactivate certain features on both the active

and inactive systems until you’ve completely updated everything. With

each new feature that is introduced, the level of risk is lowered, and it

becomes simpler to identify and resolve any problems that may crop up in

the future.

Compared to manual administration, the control that feature flag

services give over your code base’s feature flags is far more powerful. In

addition to reporting and monitoring key performance indicators (KPIs),

these solutions contain a variety of DevOps management functions.

If a major application release is going to be delivered in a blue-green

manner, feature flags are going to need to be utilized. Because of their

adaptability, they may be beneficial even in deployments with fewer

parameters to manage because of the frequency with which they can be

Chapter 4 Production Complexity Management

78

changed. In the event that a significant problem arises, you have the option

of gradually activating functionality on blue while maintaining green in

standby as a hot backup. Using feature flags and blue-green deployments,

continuous delivery may be achieved at any scale. This is true regardless of

the size of the organization.

�The Impact of Deployment Strategies
Because the blue-green deployment strategy employs two production

environments, it automatically enables disaster recovery for your

company’s systems. A dual production environment may operate as its

own warm backup.

Load balancing may also be made easy in parallel production settings.

When both environments have the same set of capabilities, you may use

a load balancer or feature toggle embedded into your software to divert

traffic to either environment based on the conditions.

A/B testing is another application that may benefit from parallel

production configurations. You may add new features to your idle

environment and then use a feature toggle to split traffic between your

blue and green systems.

Collect data from those segmented user sessions, watch your key

performance indicators (KPIs), and then, if the results of your study of the

new feature in your management system seem promising, switch traffic to

the redesigned environment.

It is possible that some of these tactics will be of assistance in the event

of a server or infrastructure interruption, issues with deployment, frequent

feedback, or the introduction of new applications. In addition to laying

the groundwork for the expedited delivery of your IaC, the concept of

continuous verification makes it possible for us to automate some aspects

of our metrics and monitoring tools. Continuous verification is a method

that takes action depending on the performance and quality of application

deployments by making use of data and operationalizing tool stacks.

Chapter 4 Production Complexity Management

79

The stage in the deployment process known as deployment verification

produces the failure solutions of auto-rollback and manual rollback,

respectively. In addition, there is the 24/7 Service Guard, which is an

ongoing assessment of change effect that assesses the overall health of the

service and links it to deployments.

When it comes to operationalizing deployments across a wide variety

of tools, dependencies, and settings, there is the potential for a number

of obstacles to arise. The next step in accelerating and streamlining the

delivery of software will be to automate some of the issues that are now

being faced.

�Caveats While Managing Complex
Production Environments
Many companies nowadays conduct the analysis phase of canary

installations in a nonintegrated and compartmentalized manner. An

engineer on the DevOps team is responsible for manually analyzing

the canary version’s monitoring data and logs. Time-consuming CI/CD

techniques are not scalable for rapid deployments. When a new release

is rolled back or pushed forward without proper analysis, erroneous

decisions might be made.

Maintaining on-premises client applications might be difficult. In

a world where apps are being used on personal devices, it’s tough for

a business to undertake a canary deployment strategy. Workarounds

include creating an environment where end users are automatically

updated. Canary is a great deployment strategy for managing many

versions of an application, but handling databases requires a different set

of skills. Deployment becomes much more complex when we modify the

application to interface with or adjust the database structure.

Chapter 4 Production Complexity Management

80

It’s necessary to make changes before running a canary to handle

many instances of the program. As a result, both programs will be allowed

to run at once. The new version may be deployed and switched over after

the new database architecture has been installed.

On the other hand, blue-green deployments are quite costly. Creating

an environment that is identical to one used in production may be difficult

and costly, particularly when microservices are involved. There is a

potential for danger in concurrently rerouting all user traffic due to the fact

that quality assurance and user acceptability testing may not discover all

bugs or regressions. An outage or malfunction may also have a substantial

effect on business before a rollback is initiated, and depending on the

implementation, user transactions that are in flight may be lost while the

traffic moves.

The team adapting the blue-green deployment strategy needs to

make sure that any changes made in the future are consistent with the

environment that existed before. Because traffic is exchanged between the

blue and green instances, using this method might be challenging if the

database has to be modified to accommodate an update in the program.

The usage of a database that is compatible with all of the different software

updates should be required before any of them can be implemented.

�The Way Ahead
Each deployment strategy is useful and has an architecture that

is comparable to the others, but each has its own unique set of

characteristics.

If you have the capability to run two fully functional infrastructure

environments and your infrastructure does not change in a manner that

is backward incompatible very often, a blue-green deployment strategy

can provide you with the greatest number of secondary benefits while

Chapter 4 Production Complexity Management

81

requiring the fewest number of changes to your applications. In the event

that performance concerns arise or a catastrophe has to be recovered, it

offers an environment with minimal downtime.

Canary deployment is an option worth considering if your application

is both configuration-driven and modular, as well as if you have a limited

amount of additional resources at your disposal. Because you do not

have an additional environment that may be used for other matters, your

operating and maintenance expenditures are reduced. Functionalities

may be engaged or deactivated at whim and according to any number of

criteria when utilizing a canary deployment, which is an extra advantage of

employing this kind of deployment.

However, prior to using any approach, you will need to do a significant

amount of planning and research into the architecture of your applications

and environments.

It’s possible that even if you follow all of the best practices, something

will slip through the strategy. Therefore, it is just as important to monitor

for problems that develop after a deployment as it is to design and execute

a faultless deployment.

Your team may benefit from using an application performance

monitoring (APM) solution to monitor critical performance indicators

such as server response times after the deployment of new software. The

performance of an application may be significantly impacted by changes

to the system architecture or the program itself. It’s also necessary to have

an error monitoring system. It will quickly notify your team of any new or

reactivated defects from a deployment that may disclose serious issues that

need immediate correction.

It’s possible that the issues wouldn’t have been discovered without the

use of an error tracking application. Only a small percentage of those who

are aware of problems will go out of their way to report them. Long-term

dissatisfaction or even a halt in present economic activities might result

from poor customer service.

Chapter 4 Production Complexity Management

82

Developers and operations/DevOps teams may collaborate on post-

deployment issues thanks to an error monitoring system. It’s possible

that performance will suffer if the application and the architecture’s

other services interact with one another. Inefficiency may be caused by a

variety of factors, including problems with database queries, failed service

connections, and a lack of resources. Checking in with the metrics and logs

provided by the platform is something you need to do if the teams want

to monitor the performance of the services provided by your architecture.

The teams can be more collaborative and responsive because of this

shared understanding.

In the next chapter, you will learn about the different aspects of

businesses with respect to IaC as well as approaches, perspectives, and

ways to develop, manage, and deploy IaC for various business solutions.

Chapter 4 Production Complexity Management

83

CHAPTER 5

Business Solutions
with Infrastructure
as Code
Utilizing infrastructure as code (IaC) is now among the most often used

approaches to automate a company’s infrastructure. In terms of the

distribution of innovative technologies, it is possible to compare it to a

factory floor. In the field of technology, having reliable manufacturing

procedures is essential to the operations of a corporation.

Not only does IaC enable you to have a greater understanding of

and control over your surroundings, but it also provides you with extra

benefits. For example, you can easily deploy your code on a remote server,

launch various database instances, define network and security rules, and

customize your cloud-specific configuration, as well as manage states,

executional logs, and failure strategies all from the script maintained

as IaC. One definition of a flexible infrastructure automation chain is

one that is able to adjust to various new circumstances. IaC allows you

to set abstraction boundaries, which makes it easier for you to choose

which technologies to use and which providers to work with. You are

able to make speedy updates, repairs, or changes to your technological

automation chains when you have the backing of IaC. For example, you

can orchestrate your IaC to set up an EC2 virtual remote server on AWS

© Sneh Pandya and Riya Guha Thakurta 2022
S. Pandya and R. Guha Thakurta, Introduction to Infrastructure as Code,
https://doi.org/10.1007/978-1-4842-8689-0_5

https://doi.org/10.1007/978-1-4842-8689-0_5

84

for server-specific operations, you can provide a content delivery solution

using Microsoft Azure’s CDN, and the network logging can happen on a

platform like Sentry, Datadog, or somewhere else. All of this is possible

through abstraction provided by IaC, which keeps things clean and easy

to manage.

When a business embraces IaC, it opens up new doors for the rest

of the organization to see technology as a commodity and capitalize on

those possibilities. In the realm of commercial technology, IaC is seen as a

potentially transformative innovation.

�Managing Modern Infrastructures
Even in the highly automated era of cloud computing and the Internet,

information technology infrastructure does not evolve on its own. It is

still the responsibility of an organization’s IT department to architect,

establish, provision, create, deploy, and manage the chosen infrastructure,

at least initially, before DevOps teams may fully take the ownership. This

is true even if the majority of the ongoing maintenance is handled by a

third-party technology provider that is taking care of the infrastructure as a

service (IaaS) or IaC for an organization.

IaC has a descriptive model for defining and supplying an IT network’s

data storage capacities and capabilities, server topologies, and other

fundamental pieces like load balancers that are comparable to software

application code. IaC files, written in languages like Terraform (the

language) as well as Terraform (the technology), CloudFormation, etc.,

are used to build IT infrastructure rather than office server hardware. IaC

lacks connections and cables. Instead, model source code files define

connection topologies.

Because of the ever-evolving nature of these infrastructures, the growth

of the information technology infrastructure may be carried out accurately

and provided in a manner that is more streamlined and efficient. It is

Chapter 5 Business Solutions with Infrastructure as Code

85

also possible for it to be performed by what computer purists refer to as a

misconfiguration of resources, which is simply a technical euphemism for

a mistake.

�Enabling Business Possibilities
The software development life cycle is often referred to as IaC, and some of

the most successful organizations in the world have already used cutting-

edge strategies for the process. Even though these skills build on top of one

another, the ability to automate tasks is essential to all of them.

The capability of IaC to automate the process of installing and

deploying systems and software is the most notable aspect of this

component of its functionality. The use of automation might result in a

technique that is both more effective and more easily replicated.

The source code that makes up the IaC has to be stored in a repository

and put under version control at all times. As a consequence, it is possible

to securely version the process of installing infrastructure: utilizing the IaC

code for the version that is given makes it easy to create any infrastructure

version. It’s possible that the automation and versioning of the installation

process will make things simpler and more trustworthy.

It is helpful for troubleshooting and debugging to be able to undo

changes made at any stage in the development process, including

integration and production. This functionality enables you to reverse

changes made at any point in the development process.

It is feasible to apply code written in IaC to all phases of a project,

including the stages of production, integration, and development as visible

in Figure 5-1. This increases environment parity and may help to prevent

instances in which one developer’s environment works but another’s

does not or in which the environment works in development but does not

function in production.

Chapter 5 Business Solutions with Infrastructure as Code

86

Figure 5-1.  IaC applicability

IaC may also make it possible for information technology to be run

in an immutable manner, which is a notion referred to as immutable

infrastructure. It is common practice to deploy application management

software and infrastructure management software on the systems that

make up an operating system (OS). Patches are installed on each node

individually, software is kept up-to-date, and network settings and other

configuration elements are modified as necessary throughout the course

of time. A configuration drift may take place, for instance, if there is a

disparity in the patch level between different nodes. There are certain

instances in which the configuration of a node cannot be re-created from

scratch, and the only option for restoring the node is to use its backup. In

an immutable architecture, it is not possible to apply patches, updates, or

make configuration changes to nodes that have already been deployed.

This is because it is not practicable. Instead, a new version of the code that

Chapter 5 Business Solutions with Infrastructure as Code

87

makes up IaC is constructed. This new version includes all of the required

modifications to the application as well as the infrastructure. It is possible

for a new version to undergo testing in the development and integration

environments prior to being sent to the production environment. While

this is going on, environment versioning may be utilized to undo any

modifications that were made to the environment after it was deployed.

Numerous cloud service providers are used by businesses to increase

their operations’ adaptability, productivity, and error-proofing. The

efficiency with which several cloud environments collaborate is crucial

to the success of multicloud architecture. Switching between several

cloud service providers is simplified by code that supports multicloud

operations, setup, and execution. For instance, in a completely remote

cloud architecture, you may switch between data centers based on their

proximity to peak use periods. This would provide you with more options

and access to better prices than a single supplier could offer.

An active business ecosystem has developed cloud-independent

managed services built on open source technologies. These public cloud

providers are prepared to capitalize on the growing demand for their

services as more and more businesses transition to the cloud.

It is possible that in the future investigations, evidence for assurance

methodologies such as the Risk Management Framework, and the IaC

artifacts, will be used. IaC artifacts open up a new attack surface, which

might be beneficial to some forms of cybersecurity, such as moving target

protection.

�Enabling Domain Sustainability
IaC is a novel methodology for the creation of infrastructure. It is more

directly connected to DevOps than it is to Agile software development,

although the link is still indirect.

Chapter 5 Business Solutions with Infrastructure as Code

88

The Manifesto for Agile Software Development provides the basis for

a broad variety of Agile software development practices. Creating software

that functions as intended and being receptive to change are two of the

best examples of Agile principles. The use of IaC and automation tools,

such as CI/CD platforms or workflow engines, in addition to versioning

systems like Git, may help automate infrastructure in accordance with the

ideas of the Manifesto for Agile Software Development.

By merging the efforts of development and operations, it is possible to

shorten the amount of time required to make a change to a system while

simultaneously improving the system’s ability to function normally once

the change is implemented.

IaC is an essential component to the success of DevOps processes

like continuous integration and continuous delivery. IaC may also be

of assistance to DevOps. When deployments are automated, both the

delivery mechanism for deployment and the cycle time are improved. To

improve the quality of the software as a whole that is sent out, the testing

that occurs in the environments used for development and integration

must be equivalent to the testing that occurs in the settings used for

production.

Maintainers may find IaC useful since it functions as a safety net that

allows them to carry out controlled tests and, as a result, get additional

information about the system. Because of the automation and versioning

capabilities of the IaC technology, maintainers are able to roll back

unsuccessful tests in a progressive and Agile manner. Additionally,

maintainers are able to document and apply successful upgrades.

With the help of IaC, site reliability engineers (SREs) may design and

efficiently deploy infrastructure configurations that boost reliability. With

IaC, there is less of a chance that dependability recommendations would

be misunderstood or overlooked. It simplifies interactions between SREs

and other teams.

Chapter 5 Business Solutions with Infrastructure as Code

89

If an SRE is investigating an outage or other reliability issue, they may

use this tool to determine whether a modification to the infrastructure

configuration was to blame. Problems may be solved, and events can be

understood with the use of this data. If an engineer makes a mistake while

manually configuring infrastructure, such as opening the incorrect port or

installing the wrong container image, it might have serious consequences

for availability. IaC eliminates these dangers by facilitating the automated

application of configurations by teams. This eliminates the possibility of

typing errors or other blunders on the part of engineers. As long as your

IaC files are accessible, your infrastructure can be properly configured.

SREs may quickly become proficient with IaC tools since they are

widely available and simple to implement. These methods are efficient

in terms of output, and it doesn’t take long to master them. Many SREs

already have coding skills, making it simple for them to pick up IaC.

SREs must also evaluate the configuration languages available in the

tools to see whether they are a good fit for their needs. Since the scanning

of IaC files varies depending on the IaC tool being used, SREs should

investigate its scanning and validation procedures before settling on an

IaC platform.

IaC artifacts also give the actual deployment structure of the system,

which may be compared to the architectural documentation of the system

in order to validate that the system adheres to the design in the manner

that was intended.

There may be a future edition of the software in which the

configuration changes are either permanently remedied or, at the

very least, detected automatically. This would be the next era of self-

sustainable IaC.

Chapter 5 Business Solutions with Infrastructure as Code

90

�Supporting Evolving Strategies
Consider a situational criticality such as the excessive latency caused by

the corporation’s internal servers; software development and training

activities located in the region being targeted are unable to take advantage

of global assets. Users may connect only to a virtual private network (VPN)

as a result. The objective is to provide them with an infrastructure that

meets all of the necessary requirements, including being highly compliant,

dependable, and highly secure, while also taking into consideration cost,

licensing, and performance. Figure 5-2 illustrates this.

Figure 5-2.  Infrastructure supporting different use cases

Another example is an e-commerce business that utilizes the

rolling deployment method to launch its shopping cart application to a

production environment. Architecture teams develop and deploy to the

cloud, using the Cloud Platform Automation Framework that supercharges

infrastructure management. IaC satisfies the criteria pertaining to network

and security while also being transportable, scalable, and trustworthy.

Chapter 5 Business Solutions with Infrastructure as Code

91

The use of cloud resources allows for the development and testing

of infrastructure to take place at a more rapid pace. Because of this,

businesses are able to continue their evolution as well as their other

development operations with very few disruptions. The automated

solution not only helps businesses and customers save resources but

also frees up the time of the IT administration and support employees by

automatically complying with all regulations and best practices.

The deployed IaC, despite its magnitude, results in reliability,

consistency, and automation across the organization. Teams can

use a number of innovative approaches, including IaC. However, the

infrastructure is created over time by a large number of people. Businesses

can adhere to a number of industry standards, including an infrastructure

code tree with deviations described by environment-specific variables.

Suppose the organization’s project goes into complete anarchy

because it did not make use of the techniques and tools that are associated

with DevOps. It is not unusual for the infrastructure to be unorganized,

unclear, and unrecorded in any way whatsoever. It is difficult to make

adjustments or add new components without causing damage to the

components that were already present in the system. There is no way to

guarantee that a feature that had been tested and found to work properly

in one environment will also work correctly in the other environment.

Maintaining such projects is both expensive and risky. Hence,

implementing appropriate IaC strategies is essential as well as beneficial

for organizations.

The time it takes to release the software gets cut drastically thanks

to certain best practices that DevOps teams adapt with infrastructure

automation and deployment. The infrastructure gets upgraded

continuously to be more intelligent and simpler to utilize. It is less difficult

to make adjustments and add new elements. Code developers working on

infrastructure no longer have to monitor all of the dependencies that exist

across different components. The structure of the code has been clarified,

Chapter 5 Business Solutions with Infrastructure as Code

92

and there are now more individual components. Unified coding is used

to assist in the establishment of a wide variety of situations. As a result of

all of these enhancements, the product will have increased uptime, fewer

release risks, and reduced operational expenses.

�Decision-Making for Businesses
A growing number of companies and industry leaders in technology are

starting to adopt infrastructure as code. Because modern companies

take part in the near-constant development, testing, and deployment

of software applications, they demand a flexible infrastructure that

can quickly and securely adapt to the ever-changing requirements of

their customers. IaC is analogous to a technological solution for the

management of the resources necessary to develop technological

solutions; it does this by using high-level code to automatically offer IT

infrastructure.

Before implementing IaC, businesses and executives in charge of IT

must have a thorough understanding of both the possible advantages,

some of which may be very significant, and the feasible challenges.

Cloud computing makes it possible to implement IaC. Setting up,

modifying, or removing services associated with virtual infrastructure

is made noticeably faster and less difficult as a result. IaC gives teams

the ability to use infrastructure in a manner that can be controlled by a

computer, which automates the administration of life-cycle processes.

Command-line interfaces, which do not need any programming, are used

by certain automation systems to handle the devices they control.

Using IaC will probably be highly useful to corporations. Coding

documentation and setup instructions removes the potential for errors,

which is very helpful for newcomers. If you are able to provide IaC,

then the risk of errors caused by humans and of breaches in security is

significantly minimized.

Chapter 5 Business Solutions with Infrastructure as Code

93

Prior to the introduction of IaC, cloud service deployment and

configuration were treated as separate tasks. After the cloud infrastructure

was established, each option could be independently implemented and

maintained. Setting up and securing virtualized infrastructure at the code

level is managed by IaC security.

For IaC to work, every virtualized infrastructure must be installed and

configured in the same manner. Serious security issues may arise if the

IaC is not accurate and secure. When IaC is broken or not secure, all newly

deployed server instances may have security holes.

When a business begins looking at IaC, its security paradigm

might shift from one of detection to one of prevention. Before starting

construction, an IaC scan is performed. By doing so, security shifts toward

reducing the cost and impact of a misconfiguration.

IaC must have its settings adjusted correctly for it to be of considerable

use to a corporation. Securing, reusing, and administering governance

over an IaC pipeline are all key components. It is possible that a thorough

continuous integration and continuous deployment pipeline that includes

IaC might significantly cut down on the amount of time needed to bring an

application to market and save money in the process.

When transitioning from an established IT organization to an IaC

model, the present IT workforce of a firm is something that has to be taken

into account. IaC systems need a degree of skill in system development

that your present technical people may not have. You run the risk of

lowering employee morale and alienating existing staff if they do not have

experience in coding.

The necessary infrastructure needs to be defined using computer

code. When it comes to automation, the infrastructure of a firm that was

built just once is not an ideal solution; however, infrastructure that is often

utilized for the development of new applications or services is acceptable.

It’s not always the greatest approach to get the most out of your IaC

endeavors to automate everything there is to automate.

Chapter 5 Business Solutions with Infrastructure as Code

94

The most essential step is to ensure that the design receives the

appropriate amount of time and focus. Everything must be designed to be

modular, and the configuration must be the primary focus of all efforts.

When developing the infrastructure, you should do it with an awareness of

the apps that will be operating on it. Concerns related to IaC architecture

might vary depending on a number of factors, such as whether you want to

construct a transactional application or a reporting application using the

database you want to install.

As a general rule of thumb, jobs that involve repeated tasks should

be mechanized, whereas exceptions should be dealt with manually. As

a consequence, internal stakeholders and departments could benefit

more from using this strategy. It is essential to examine the return on

investment that automation may provide for a company since if that

company automates every infrastructure process, the expenses may be

inflated (ROI).

The infrastructure of any organization is, by definition, a mission-

critical component, and the code should be managed exceptionally well.

This includes having the appropriate processes and backup methods

in place in the event that the infrastructure fails. As a consequence of

unforeseen transformations, a significant number of well-known firms

have declared bankruptcy lately. Virtual networks, data centers, and

servers are much like their physical counterparts in that they need to be

fine-tuned and put through intensive testing.

In addition, it is essential that engineers and software developers

collaborate in order to advance the infrastructure. Many infrastructure

specialists are not up-to-date on the most recent developments in software

development, despite the high levels of skill they possess in this field.

Utilize your most talented software engineers so that you can push your

infrastructure staff out of their comfort zone and get optimum results. It is

important that the process of creating a team be transparent and equitable.

Chapter 5 Business Solutions with Infrastructure as Code

95

Concentrating on the adoption of IaC may result in a lack of flexibility

for startups while they are still in the early stages of their growth, despite

that this strategy offers enormous advantages for larger organizations. In

the field of information technology, a significant emphasis is placed on

originality and creativity. Therefore, you need to find a middle ground

between finishing a significant milestone and encouraging your teams to

think creatively outside the box. Consider an example of an organization

that is developing business solutions using the latest technology where

their competitors are already big giants in the industry. This organization

wants to create their own space. In this case, many times developing

a solution would not be sufficient because the organization would be

required to showcase unique features and offerings that are original and

creative from the previous offerings provided in the industry. Hence, this

organization would have to balance both innovation and creativity in their

core work.

When considering whether to use IaC, businesses need to consider

both the benefits and the potential downsides. The acceptance, security,

and scalability of IaC provide some of the most significant challenges

when it comes to the process of integrating new frameworks with existing

infrastructures. Implementing an IaC solution requires not just time but

also collaboration with other departments, such as those responsible for

security and compliance.

Your preparation for the transformation to IaC should include

establishing your goals in detail. The organization’s technology and

people may be placed under unnecessary strain as a consequence of

inexperienced engineers and outdated network automation, which may

lead to instability. Incorporate IaC into modernization initiatives and

connect it to retraining in order to free up engineers to focus on more

difficult tasks.

When deploying IaC, it is necessary to take into account a number

of aspects, including the frequency of maintenance, potential security

issues, and the total amount of time spent developing. Get ready for the

Chapter 5 Business Solutions with Infrastructure as Code

96

worst-case scenario, and keep in mind that there are many paths to get

there: what steps will you take in the event that option A or B is no longer

applicable? If you have a plan laid out, you should be able to recoup your

initial investment and turn a profit.

When it comes to the discovery of pitfalls and solutions, it is simply too

easy to identify severe vulnerabilities that were not anticipated. Standard

processes for deploying infrastructure take security precautions into account,

which makes it simple to introduce new vulnerabilities. The implementation

of an IaC approach comes with a number of distinct benefits. This indicates

that you need to have a comprehensive strategy in place, which should include

procedures for quality control and safety precautions.

�The Way Ahead
Markets for IaC are in continual motion; hence, fresh techniques to tackle

these difficulties are regularly tried. For example, Pulumi makes use of

Open Policy Agents (OPAs) by default; these agents are a helpful answer

for the problem that Terraform does not have a uniform model.

The most important question that has to be answered is whether each

and every member of the engineering organization needs to be proficient

in IaC language, ideas, etc., for the method to be effective. If organizations

don’t put effort into understanding how it works and how it is going to help

them, IaC is going to be the biggest black box. Going forward, the tension

between the development team and the operations team is reduced

because both teams want to optimize their infrastructure and are adapting

the scripts that control it using IaC.

In the next chapter, you will learn about another IaC automation and

delivery tool named Terraform, including how it works, why organizations

should consider it, details of the Terraform architecture, and how you can

implement Terraform in your projects. You’ll also see use cases of Terraform.

Chapter 5 Business Solutions with Infrastructure as Code

Hands-on Experience

PART 2

99

CHAPTER 6

Hands-on
Infrastructure as Code
with Hashicorp
Terraform
Cloud-native systems are characterized by increased speed and

agility because of the utilization of microservices, containers, and a

contemporary system design. They automate the build and release

stages so that they can guarantee the quality and integrity of the code.

Cloud technologies allow for quick and scalable deployment by layering

abstractions on top of complex infrastructure services like Amazon

Elastic Compute Cloud (EC2), Amazon Simple Storage Service (S3),

and Kubernetes. With Terraform’s user-friendly interface, automating

the rollout of these services is a breeze. But there is more to the story

than meets the eye. You will now understand how the virtual cloud

environments with these technologies are deployed and provisioned.

Infrastructure as code (IaC) is extensively used in contemporary

cloud-native project development. IaC is used to automate the process

of platform provisioning. The software engineering practices of testing

and versioning are included in the DevOps toolkit of approaches.

© Sneh Pandya and Riya Guha Thakurta 2022
S. Pandya and R. Guha Thakurta, Introduction to Infrastructure as Code,
https://doi.org/10.1007/978-1-4842-8689-0_6

https://doi.org/10.1007/978-1-4842-8689-0_6

100

Your deployments and infrastructure are fully automated, reliable,

and consistent with one another. IaC is completely changing the way

that application environments are handled in the same manner that

continuous delivery has automated the manual deployment method.

Tools like Hashicorp Terraform provide you with the ability to write

the cloud infrastructure you need using declarative language. In this

chapter, you will learn about Hashicorp Terraform in detail. This chapter

talks about why you should consider Terraform for your organization and

includes a step-by-step guide to implementing Terraform from scratch

in detail. Then it talks about the different use cases and nitty-gritty

details from complex scenarios to security and policy compliance in the

real world.

�Introduction to Terraform
Terraform is an IaC solution developed by HashiCorp. It enables users to

specify cloud and on-premises resources in configuration files that are

simple to understand and can be used, shared, and modified. After that,

you are free to continue providing and maintaining your infrastructure

using the same strategy for as long as it is in existence. With Terraform’s

assistance, activities such as constructing, upgrading, and maintaining

infrastructure are simplified. Compared to YAML or JSON, HashiCorp

Configuration Language (HCL) is a user-friendly option for writing

Terraform configuration files.

You can manage your whole infrastructure with Terraform, from end

to end. However, it does not replace the tools that you use to manage the

configuration of your virtual machines (VMs). If you have a configuration

management system, you may use it to apply your configuration, recipes,

or playbooks once your infrastructure is ready. For Terraform to be such a

useful tool, it has a number of key qualities, some of which are as follows:

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

101

•	 It is not only configuration management; it also

provides orchestration.

•	 It offers infrastructure that is immutable and enables

simple configuration adjustments at the same time.

•	 HCL is easy to understand and not complicated.

•	 It is easy to switch to a different provider, and there is

the option of client-only design, which removes the

need to retain settings on a server.

•	 Support is offered for a wide variety of cloud service

providers, including Amazon Web Services (AWS),

Microsoft Azure, Google Cloud Platform (GCP),

DigitalOcean, and others.

�Why Choose Terraform?
Utilizing application programming interfaces (APIs), Terraform is able

to build and manage resources on cloud platforms and other services. In

its current state, Terraform is compatible with the vast majority of API-

supported platforms and services.

Terraform allows environments that are disposable and may be

repeated, as well as infrastructure that can be reused and perhaps shared.

If, for example, the production environment is codified and shared with the

staging environment, quality assurance environment, and development

environment, etc., utilizing these parameters allows for the rapid creation of

new testing conditions, after which those environments may be retired.

Terraform Cloud,1 like other forms of code, is designed to interact

directly with the provider of your version control system (VCS), making it

simpler for several people to work together. Using a version control system

1 https://www.terraform.io/cloud-docs

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

https://www.terraform.io/cloud-docs

102

such as Git, it is feasible for teams to collaborate on the development

of infrastructure and for members of the team to have their own,

individualized copies of the code and to establish their own testing and

other environments for themselves.

Because infrastructure management solutions are often cloud-specific,

deploying them across several clouds may be challenging. Terraform

is a tool that may assist you if you are required to utilize several cloud

providers and have cross-cloud dependencies. As a result of a decrease in

the complexity of administration and orchestration, operators now have

the ability to design large-scale multicloud systems.

Before starting the web servers, Terraform will ensure that the database

layer is ready to go, and it will also make sure that the load balancers are

aware of the web nodes. Through the use of Terraform, each tier’s scale

may be readily adjusted by modifying a one configuration option. It is not

difficult to keep up with demand as long as the supply and demand for

resources can be clearly defined and accounted for via automation.

�Understanding Terraform
The number of providers that can handle tens of thousands of different

resources and services has already reached more than 1,700 thanks to

the combined efforts of HashiCorp and the Terraform community as

of mid-2022, and this number is still growing. The Terraform Registry

compiles a list of all publicly accessible providers, including but not

limited to Amazon Web Services (AWS), Microsoft Azure, Google Cloud

Platform (GCP), Kubernetes, Helm, GitHub, Splunk, and DataDog. The

Terraform workflow is broken up into three stages.

Write: It is possible to establish resources that are

shared across several cloud providers and services.

For instance, you may construct a configuration to

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

103

deploy an application on virtual machines that are

part of a VPC network that also has security groups

and a load balancer.

Plan: Terraform gives an execution plan that

outlines the infrastructure that it will construct,

update, or delete depending on the current

infrastructure and your configuration settings.

This plan is generated based on the existing

infrastructure.

Apply: After receiving permission, Terraform will

next carry out the predetermined operations in

the appropriate sequence, taking into account

the interdependence between the resources. For

example, if you change the number of virtual

machines that are allowed in the settings of a VPC,

Terraform will rebuild the VPC before scaling the

number of allowed virtual machines.

�Core Concepts
The most important ideas and terminology associated with Terraform are

as follows:

Variables: These are the keys and values that are

used by Terraform modules to allow customization

of the environment. Inputs are often referred to as

the variables that are entered.

Providers: Plug-ins enable access to service APIs and

the resources associated with them.

Module: Each Terraform template has its own folder,

which is known as the module. This folder is stored

in the Terraform root directory.

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

104

State: The state is where Terraform stores

information and settings pertinent to the

infrastructure that it administers. This information

includes the infrastructure itself.

Resources: A resource is a collection of infrastructure

items, and in the context of infrastructure

configuration and management, it refers to

that collection (compute instances, virtual

networks, etc.).

Data source: Through the data sources that are

offered by service providers, Terraform is able to

have access to the information that is contained

inside external objects.

Output values: These are the values that are

returned by the Terraform module in all other

circumstances.

�Directory Structure
To make it easier to grasp the code, the Terraform configuration files (.tf,

.tf.json, and .tfvars) are organized in a tree-like fashion. Modules of

Terraform will load these configuration files when they are loaded.

The Terraform modules reside at the absolute pinnacle of the structure

of the configuration files. A child module may be invoked from a Terraform

module’s local directory, from anywhere on the disc, or from the Terraform

Registry.

There are five files that comprise Terraform: main.tf, vars.tf,

providers.tf, output.tf, and terraform.tfvars.

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

105

The Terraform main.tf file contains the basic code that specifies

the resources that need to be generated, updated, or maintained.

This code can be found at each module’s root directory.

vars.tf is a file that is part of the Terraform configuration system

that stores the user-customizable input variables that are specified in the

main.tf file.

output.tf is the file in which you explain the output parameters that

you want to receive from Terraform, specifically after the terraform apply

command.

The main.tf file and the vars.tf file both include references to variables,

and the terraform.tfvars files contain the values for those variables.

providers.tf is the file in which you declare your Terraform providers

to authenticate with the cloud provider. Examples of Terraform providers

include the terraform aws provider and the terraform azure provider.

The .terraform directory is created at the root level of the project

which stores cached versions of the provider, modules, and plugins, in

addition to the most recent version of the backend configuration. This is

handled by Terraform, which also creates it whenever the terraform init

command is executed at the root level of the project directory.

�How Terraform Works
Terraform’s architecture focuses on the two main components, namely,

Terraform core and providers. The following sections give you a deeper

understanding of them.

�Terraform Core
The core of Terraform receives information from two distinct sources,

both of which are external. Terraform core asks the plugin of the Terraform

provider for configuration to perform any operation. The second input

is provided by Terraform, which is responsible for maintaining the

infrastructure configuration in the most up-to-date manner feasible.

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

106

This indicates that the information has been acknowledged and a

strategy is being devised to finish the current assignment. In the end, a

comparison is made between the present state, the configuration that

was wanted, and the state that existed before. This rule will identify what

actions need to be taken in order to reach the configuration file state that

has been specified. The system is able to keep track of anything that is

added to, modified within, and removed from the infrastructure.

�Providers
The provision of technology-specific services is the second component

of the architecture. Any infrastructure as a service platform, such as AWS,

Microsoft Azure, Google Cloud Platform, or any comparable option, may

be included. These include the Kubernetes orchestration system as well as

other high-level components like platforms and some software services.

It makes the expansion of the infrastructure easier to achieve across a

variety of fronts, such as setting Kubernetes atop an Amazon Web Services

(AWS) architecture and then constructing the Kubernetes services and

components.

Customers of Terraform have access to all of the resources provided

by the various Terraform providers. Terraform comprises more than 100

different technology suppliers. When you use an AWS provider, you have

access to many of the AWS resources that are accessible, such as EC2

instances, other users of AWS, and so on. This is just one of the numerous

advantages of utilizing an AWS provider.

In its most basic form, this is how Terraform operates. It is made

to assist you in building up the whole application stack, from the

infrastructure to the application itself, and it is meant to do it in a

streamlined manner.

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

107

�Implementing Terraform in Real Projects
You learned about Terraform files as well as the directory structure of

Terraform in the previous section. As we go on, it is essential to have a solid

understanding of how to specify Terraform variables inside the Terraform

configuration file (var.tf).

Declaring variables enables you to switch modules across various

settings of Terraform, which ultimately results in your module being

reusable. Variables in Terraform may be of many different kinds, including

Boolean, list, string, and map, to name a few of the available options.

You need to understand the definitions of the various sorts of

Terraform variables first. Each input variable for the module has to be

stated using a variable block. A unique variable name is represented by

the label that comes after the variable keyword inside the same module.

Inside the variable block, you are allowed to use the following

arguments:

•	 default: If you provide a default value for a variable,

you may offer its value in this block on its own, thereby

making the variable optional.

•	 type: This parameter is used to identify the kinds of

the value.

•	 description: This parameter includes a description of

the value that was entered for the variable.

•	 validation: This parameter establishes any necessary

validation rules.

•	 sensitive: If you provide this value, Terraform will not

publish the supplied values while it is being executed if

you choose the Sensitive option.

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

108

•	 nullable: If you do not need a value for the variable,

provide the value null.

The following code snippet offers an example Terraform configuration

for your reference. The type is used to specify a data type for the variable.

default specifies the default value of the variable when initializing

the variable. description specifies the description or provides short

documentation for the variable.

variable "config1" {

 type = bool

 default = false

 description = "boolean type variable"

}

variable "config2" {

 type = map

 default = {

 us-east-1 = "image-1"

 us-east-2 = "imagev2"

 }

 description = "map type variable with default values"

}

variable "config3" {

 type = list(string)

 default = []

 description = "list type variable"

}

variable "config4" {

 type = string

 default = "hello"

 description = "String type variable"

}

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

109

variable "config5" {

 type = list(object({

 instancetype = string

 minsize = number

 maxsize = number

 private_subnets = list(string)

 elb_private_subnets = list(string)

 }))

 description = "List(Object) type variable"

}

variable "config6" {

 type = map(object({

 instancetype = string

 minsize = number

 maxsize = number

 private_subnets = list(string)

 elb_private_subnets = list(string)

 }))

 description = "Map(object) type variable"

}

�Priority Order for Terraform Variables
Terraform variables follow a higher-to-lower priority order as

mentioned here:

	 1.	 Variables defined as the environment variables

	 2.	 Variables defined in the file terraform.tfvars

	 3.	 Variables defined in the file terraform.tfvars.json

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

110

	 4.	 Variables defined in the *.auto.tfvars or *.auto.

tfvars.json file

	 5.	 Variables defined using the -var and -var-file

arguments on the command line

�Declaring Output Variables
Terraform modules include the outputs.tf file, which is responsible for

supplying Terraform output variables.

Once the terraform apply command has been executed, the output.

tf file that is described next contains not one but two unique Terraform

output variables named output1 that will store and display the instance’s

ARN, respectively. The public IP address of the instance is saved and

shown in the output2 variable. Following the execution of terraform

apply with the sensitive argument, output3 is generated, which stores

the instance’s private IP address but does not display it. The following code

illustrates this:

output "output1" {

 value = cloud_azure_instance.machine.arn

}

output "output2" {

 value = cloud_azure_instance.machine.public_ip

 description = "Public IP address of the instance"

}

output "output3" {

 value = cloud_azure_instance.server.private_ip

 sensitive = true

}

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

111

�Declaring Terraform Resources
HCL, developed by HashiCorp, was created with simplicity in mind. Its

goal was to make setup easier to understand compared with other popular

languages like YAML. The various Terraform settings are accessible

through stanzas or blocks in the HCL syntax. Identical key-value pairs are

what make up lines or blocks.

resource r1 creates an AWS EC2 instance using HCL,2 while

resource r2 installs Apache on the AWS EC2 instance with the Terraform

provisioner, as illustrated in the following code. Timeouts can be used to

restrict the amount of time spent on certain activities.

resource "aws_instance" "r1" {

 instance_type = "t2.micro"

 ami = "ami-1234"

 timeouts {

 create = "30m"

 delete = "1h"

 }

}

resource "aws_instance" "r2" {

 provisioner "local-exec" {

 �command = "echo 'Terraform Deployment' >

terraform.txt"

 }

 provisioner "file" {

 source = "terraform.txt"

 destination = "/tmp/terraform.txt"

 }

2 https://www.terraform.io/language

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

https://www.terraform.io/language

112

 provisioner "remote-exec" {

 inline = [

 "apt install apache2 -f /tmp/terraform.txt",

]

 }

}

Another way to present a Terraform block is via the Terraform JSON

format, as shown in the following code snippet using the same example

mentioned earlier. Both ways can be used while developing or deploying

your Terraform implementation as per your convenience. The JSON syntax

is a bit harder for humans to read and edit but easier to generate and parse

programmatically.

{

 "resource": {

 "aws_instance": {

 "r1": {

 "instance_type": "t2.micro",

 "ami": "ami-1234"

 }

 }

 }

}

{

 "resource": {

 "aws_instance": {

 "r2": {

 "provisioner": [

 {

 "local-exec": {

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

113

 �"command": "echo 'Terraform Deployment' >

terraform.txt"

 }

 },

 {

 "file": {

 "source": "terraform.txt",

 "destination": "/tmp/terraform.txt"

 }

 },

 {

 "remote-exec": {

 �"inline": ["apt install apache2 -f tmp/

terraform.txt"]

 }

 }

]

 }

 }

 }

}

�Terraform Provider
For Terraform to interface with cloud providers or API services through

plugins, it is necessary to have a Terraform provider. The registry

may include entries for more than one kind of Terraform provider;

examples of these entries are the AWS Terraform provider and the Azure

Terraformation provider.

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

114

Configurations of Terraform need to define which providers must

be downloaded and installed in order for Terraform to make use of

them. Before they can be utilized, some service providers need an initial

configuration, such as endpoint URLs or cloud regions. In addition, the

supplier of the service makes use of its very own local utilities, such as

those designed specifically for the generation of passwords and random

strings. You are free to establish as many or as few agreements as you need

for a single provider without facing any kind of restriction. It’s possible that

your code includes more than one provider.

The Terraform registry includes several service providers. Some of

these were developed by the organizations. It is also possible to write your

own providers. The following code offers an example of Terraform provider

declaration.

terraform {} is the root block, as defined next, which enlists the

required providers to be used in the infrastructure configuration and

deployment:

terraform {

 required_providers {

 azure = {

 source = "hashicorp/azure"

 }

 mysql = {

 source = "microsoft/mysql"

 }

 }

 required_version = ">= 0.29"

}

Each of the provider blocks consists of the properties that are needed

for that specific provider’s configuration parameters, such as secret keys,

endpoints, regions, and so on.

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

115

provider "azure" {

 assume_role {

 role_arn = var.role_arn

 }

 region = var.region

}

provider "random" {}

provider "mysql" {

 host = azure_mysql_cluster.main.endpoint

 username = username

 password = password

}

To include additional options that are not the default, use the alias

meta-argument, as shown in the following example for several provider

blocks with the same name:

provider "azure" {

 region = us-east-1

}

provider "azure" {

 alias = "west"

 region = us-west-1

}

Resources are the default provider configurations inherited from the

declared providers. The standard resource will generate, launch, and/or

deploy the resources as per the providers specified in the double quotes.

To make use of alternative provider configuration, you need to use an alias,

which is declared by the keyword provider inside the resource block. In

the following example, provider = azure.west is an alias for the provided

configuration for the Azure instance:

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

116

Defining default provider is not required here

resource "azure_instance" "resource-us-east-1" {}

Defining alias provider here is required to use us-

west-1 region

resource "azure_instance" "resource-us-west-1" {

 provider = azure.west

}

�Terraform Modules
Terraform modules each come with their own set of configuration

files, which may be used to manage a single resource or a collection of

resources collectively. Keeping tabs on a single resource inside a single

Terraform configuration file is an illustration of the functionality that may

be provided by a Terraform module. A Terraform module or a root module

may also be used if you want to manage a large number of resources that

are detailed in a number of separate files but are combined into a single

file at the end of the process.

It is possible for a Terraform root module to contain several child

modules, data blocks, resource blocks, and so on. When invoking the child

module, use the source parameter to provide the path of the module’s

executable file, as illustrated here:

module "efs" {

 source = "./modules/EFS"

 subnets = var.subnet_ids

 efs_file_system_name = var.efs_file_system_name

 security_groups = [module.SG.efs_sg_id]

 role_arn = var.role_arn

}

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

117

�Terraform Provisioner
Terraform gives you the ability to run commands on your local or remote

system, transfer files, transport data to virtual machines, and do a variety

of other tasks. This allows you to perform a variety of operations via the

Terraform provisioner to handle such operations.

With the use of a Terraform provisioner, it is possible to provide any

material that cannot be moved from one location to another via buildings.

Terraform allows for the definition of several provisioners inside a single

resource block, and these provisioners will be executed in the order that

they are mentioned in the configuration file.

When it comes to connecting to remote servers, Terraform

provisioners have the choice of using either SSH or WinRM. When a new

instance of a cloud computing system is created, it is immediately able to

access data using the various delivery mechanisms given by the majority of

cloud platforms. You are free to continue using Terraform provisioners to

send data once the resource has been generated successfully.

�Terraform State File
The primary responsibility of the Terraform state file is to serve as a

repository for the Terraform state, which consists of links between

objects located on various systems. These connections are outlined in the

configuration files for your Terraform installation. Typically, Terraform

state files are stored locally on the machine that is being used to execute

Terraform instructions. These files have been given the name terraform.

tfstate.

JSON is the format that Terraform uses to store its state information.

The state file is utilized whenever the terraform show or terraform

output command is executed. The output is also generated in JSON

format. A Terraform state file gives you the option to include infrastructure

that was created using other methods, such as by hand or using scripts.

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

118

When you are working on your own, it is perfectly fine to maintain the

Terraform state file on your local workstation. On the other hand, if you

are part of a group effort, you may want to consider storing the file in a

repository, such as AWS S3 or something similar. The Terraform state file

is considered to be in a locked state if anything is written to the resource of

the Terraform configuration file. Because of this, it will not be feasible for

several users to view the file or make changes to it at the same time.

There are primarily two categories of back ends, the first of which

are those that are housed locally, and the second of which are hosted

remotely. A local back end is required for Terraform to function properly.

This back end might be a computer operating under Linux, a computer

operating under Windows, or any other form of computer. For a remote

back end, you can use a URL that is based on a SaaS platform or a storage

location such as a bucket from Amazon Simple Storage Service.

�Example Terraform Configuration
You’ve learned the basics of Terraform, and now it’s time to take a look

at a complete example that will give you a better idea of how Terraform’s

configuration is performed and how it actually works.

Let’s consider an example where you want to launch your own

automated infrastructure deployment using Terraform and AWS. In this

example, you will perform the following steps to achieve desired results:

	 1.	 Set up a Terraform configuration.

	 2.	 Set up an AWS configuration.

	 3.	 Set up an EC2 instance on AWS.

	 4.	 Set up an S3 bucket on AWS.

Let’s get started. The first step is to set up a Terraform provider, which

will facilitate the creation and deployment of new resources on AWS.

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

119

// Declaring Terraform Provider for AWS

provider "aws" {

 region = "us-east-1"

 profile = "default"

}

Now, you need to tell Terraform to create a new SSH key-value pair for

your AWS instance. This will be done through a Terraform resource. Here,

the key name is defined, and the value of the key is read from the id_rsa.

pub file.

// Declaring Terraform Resource for AWS Key-value pair

ressource "aws_ssh_key_value_pair" "sshkey" {

 key = "awsTerraformDemoProjectKey"

 public_key = ("~/.ssh/id_rsa.pub")

}

Next, you now need to create a network security group in AWS to

allow network traffic and communicate with the resources within the

AWS network. For this, you need to define another Terraform resource

that will do the work for you. The ingress keyword is used to create an

inbound network rule that specifies the port, protocol, and other network

configuration details. Similarly, the egress keyword is used to create

outbound network rules.

// Declaring Terraform Resource for AWS Network Security Group

resource "aws_network_security_group" "awssecurity" {

 description = "Allow HTTP Incoming Traffic"

 ingress {

 description = "HTTP Traffic for AWS EC2 web server"

 from_port = 80

 to_port = 80

 protocol = "tcp"

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

120

 cidr_blocks = ["0.0.0.0/0"]

 }

 ingress {

 description = "HTTPs Traffic for AWS EC2 web server"

 from_port = 443

 to_port = 443

 protocol = "tcp/tls"

 cidr_blocks = ["0.0.0.0/0"]

 }

 ingress {

 description = "SSH Traffic for AWS EC2 web server"

 from_port = 22

 to_port = 22

 protocol = "tcp"

 cidr_blocks = ["0.0.0.0/0"]

 }

 egress {

 �description = "HTTP Traffic for outgoing from AWS EC2

web server"

 from_port = 0

 to_port = 0

 protocol = "-1"

 cidr_blocks = ["0.0.0.0/0"]

 }

}

Once the network security group is created, it’s time to create and

launch an AWS EC2 instance. The connection block will hold the

necessary configuration of your EC2 instance. provisioner is used to

model specific action, in this case installing Git on the EC2 instance you

just created.

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

121

resource "aws_instance" "awsec2" {

 ami = "<ID of the AWS AMI that you want to use>"

 instance_type = "t2.micro"

 key_name = aws_ssh_key_value_pair.sshkey.key

 security_groups = [aws_network_security_group.awssecurity]

 connection {

 type = "ssh"

 user = "<Name of the user accessing the AWS instance>"

 private_key = file("~/aws_key.pem")

 host = aws_instance.awsec2.public_ip

 }

 provisioner "remote-exec" {

 inline = "sudo apt-get install git -y"

 }

}

Now that the EC2 instance is created, you need to attach the AWS EBS

volume for storage to the newly created EC2 instance. The first resource

creates an independent external AWS EBS volume in the specified zone

with 25GB of space. Then, the next resource attaches the AWS EBS volume

to the EC2 instance.

resource "aws_instance" "awsebs" {

 availability_zone = aws_instance.awsebs.availability_zone

 size = 25

}

resource "aws_ebs_volume" "awsebs_storage" {

 volume_id = aws_ebs_volume.awbsebs_storage.id

 instance_id = aws_instance.awsec2.id

 device_name = "/dev/xvdf"

 force_detach = true

}

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

122

Finally, mount the drive to the AWS EC2 instance. And voilà, your AWS

instance is ready for use, which was launched completely using IaC and

Terraform.

resource "aws_ebs_volume" "awsebs_mount" {

 depeneds_on = [

 aws_instance.awsec2,

 aws_ebs_volume.awsebs_storage

]

 connection {

 type = "ssh"

 user = "<Username>"

 private_key = file("~/aws_key.pem")

 host = aws_instance.awsec2.public_ip

 }

 provisioner "remote-exec" {

 inline = [

 "sudo mount /dev/xvdf /var/www/html",

 "sudo rm -rf /var/www/html/",

 "sudo touch index.html"

]

 }

}

�Terraform Command-Line Interface
Subcommands such as terraform init and terraform plan provide

access to the Terraform command-line interface (CLI). You may retrieve

the Terraform command, which consists of numerous subcommands, by

typing terraform at the command line.

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

123

•	 terraform init: This initializes the provider, module

version requirements, and back-end configurations.

•	 terraform init -input=true: You need to provide the

inputs on the command line or Terraform will fail.

•	 terraform init -lock=false: This disables locking

the Terraform state file; this is not recommended.

•	 terraform init -upgrade: This upgrades the

Terraform modules and Terraform plugins.

•	 terraform get: This command downloads and

updates the modules mentioned in the root module.

•	 terraform plan: This command determines the state

of all resources and compares them with real or existing

infrastructure. It uses the Terraform state file data to

compare and the provider API to check.

•	 terraform plan -compact-warnings: This provides a

summary of warnings.

•	 terraform plan -out=path: This saves the execution

plan on the specific directory.

•	 terraform plan -var-file= abc.tfvars: This uses a

terraform.tfvars file specified in the directory.

•	 terraform apply: This applies the changes in a specific

cloud such as AWS or Azure.

•	 terraform apply -backup=path: This backs up the

Terraform state file.

•	 terraform apply -lock=true: This locks the state file.

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

124

•	 terraform apply -state=path: This prompts you

to provide the path to save the state file or use it for

later runs.

•	 terraform apply -var-file= abc.tfvars: This

enters the specific terraform.tfvars file that contains

environment-wise variables.

•	 terraform apply -auto-approve: This command will

not prompt to approve the apply command.

•	 terraform destroy: This will destroy Terraform-

managed infrastructure or the existing environment

created by Terraform.

•	 terraform destroy -auto-approve: This command

will not prompt to approve the destroy command.

•	 terraform console: This provides an interactive

console to evaluate the expressions such as the join

command or split command.

•	 terraform console -state=path: This is the path to

the local state file.

•	 terraform fmt: The terraform fmt command formats

the configuration files in the proper format.

•	 terraform fmt -check: This checks the input format.

•	 terraform fmt – recursive: This formats the

Terraform configuration files stored in subdirectories.

•	 terraform fmt – diff: This displays the difference

between the current and previous formats.

•	 terraform validates: This validates the Terraform

configuration files.

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

125

•	 terraform validate -json: The output is in

JSON format.

•	 terraform graph: This command generates a visual

representation of the execution plan in graph form.

•	 terraform output: This command extracts the values

of an output variable from the state file.

•	 terraform state list: This lists all the resources

present in the state file created or imported by

Terraform.

•	 terraform state list – id=id: This command will

search for a particular resource using the resource ID in

the Terraform state file.

•	 terraform state list -state=path: This command

will prompt you to provide the path of the state file and

then provide the list of all resources in the Terraform

state file.

•	 terraform state show: This shows attributes of

specific resources.

•	 terraform state show -state=path: This command

will prompt you to provide the path and then provide

the attributes of specific resources.

•	 terraform import: This command will import existing

resources from infrastructure that was not created

using Terraform but will be imported in the terraform

state file and will be included in Terraform the next

time we run it.

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

126

•	 terraform refresh: This will reconcile the Terraform

state file. Whatever resource you created using

Terraform, if they are manually or by any means

modified, the refresh will sync them in the state file.

•	 terraform state rm: This command will remove the

resources from the Terraform state file without actually

removing the existing resources.

•	 terraform state mv: This command moves the

resources within the Terraform state file from one

location to another.

•	 terraform state pull: This command will manually

download the Terraform state file from a remote state

in your local machine.

•	 terraform state push: This command will manually

upload the local state file to the remote state.

�Terraform Use Cases
Your organization’s IaC implementation will present more and more

difficult technical and collaborative obstacles with growth. Resources and

service providers may be abstracted using Terraform’s flexible abstractions.

Terraform’s features overlap with a variety of current technologies. There

are lots of tools that we compare Terraform to, but it’s important to keep

in mind that Terraform doesn’t exclude the use of other systems. An

individual application or the whole datacenter may be managed with this

tool. When compared to other technologies, such as Ansible, Terraform

competes in day-zero installations unlike those other technologies.

When it comes to the construction of infrastructure, however, Terraform

has fewer competitors. The following are some of the use cases where

Terraform showcases its full potential.

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

127

�Supporting Platform as a Service
Platform as a service (PaaS) solutions, such as Heroku, simplify the

process of developing web applications and integrating them with many

other services, such as email and database management. Heroku makes

it easy to add more nodes or workers; however, the majority of complex

applications need a variety of add-ons and other services. A CNAME

can be configured by using a domain provider such as DNSimple,

GoDaddy, BlueHost, etc. Similarly, application deployment log capturing,

monitoring, and deploying an application’s content delivery network

(CDN) through services like Cloudflare all can be done without the need

for a user-friendly online interface and by using configurable template

scripts with Terraform.

�Managing Self-Service Clusters
When you are part of a large organization with centralized operations, you

are likely to get a large number of requests about the infrastructure that are

all the same. It may be possible to empower product teams to self-manage

their infrastructure by using a paradigm for infrastructure management

that is based on Terraform. Teams will be able to swiftly deploy services

that are in compliance with your organization’s standards for delivering

and managing services if you utilize Terraform modules to define and

apply those standards. To facilitate the creation of new infrastructure

requests, Terraform Cloud may be able to integrate with ticketing systems

like ServiceNow.

�Performing Multicloud Deployments
When infrastructure is split over many clouds, the ability to recover from

disruptions caused by cloud providers is increased. This allows for a

gentler recovery. The fact that every cloud provider has its own system

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

128

of tools and processes makes it more difficult to manage environments

that make use of many clouds. You may use a single process to handle

numerous cloud providers and cross-cloud dependencies when you use

Terraform. This method makes it easier to administer and orchestrate

large-scale cloud infrastructures by using many cloud providers.

�Managing Parallel Environments
Testing new applications in staging or quality assurance environments

is common practice in many companies before putting them into

production. As the production environment expands and grows more

complex, it becomes more difficult to keep a current environment at each

step of the development process. Provisioning and decommissioning of

infrastructure can be performed rapidly using Terraform, making it ideal

for use in development, testing, quality assurance, and production. When

compared to continuously maintaining each environment, Terraform is a

more cost-effective solution in the long term.

�Application Infrastructure Automation
When it comes to multitier applications, Terraform can be used to

automate the deployment, release, scaling, and monitoring of the

underlying infrastructure. With the help of an n-tier application

architecture, you will be able to segment your concerns and develop the

distinct parts of your application independently. In addition to a pool of

web servers that make use of a database tier, an application may also make

use of other tiers such as API servers, cache servers, and routing meshes.

These are some examples of extra tiers that may be included in the

application. Each layer of resources that may be managed using Terraform

can be maintained as a unit, and Terraform will automatically manage the

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

129

dependencies that exist between the different layers. The deployment of

a database layer comes first, followed by the possible provisioning of web

servers using Terraform, as shown in Figure 6-1.

Figure 6-1.  N-tier application architecture

�Managing Software-Defined Networks
Terraform is able to connect with software-defined networks, which are

APIs or software-based controllers used to handle traffic management

and establish a connection to the underlying infrastructure, enabling it

to autonomously create a network such that it satisfies the needs of the

applications that are running on it (SDNs). This enables you to go from

a deployment approach that is manual to one that is automated. When a

service registers with multilayer networking tools for microservices and

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

130

cloud infrastructure to solve networking and security challenges, tools

such as HashiCorp Consul and Consul-Terraform-Sync may automatically

produce Terraform configurations to expose relevant ports and adjust

network settings for any SDN with a linked Terraform provider. Network

functions virtualization (NFV) can be used by network infrastructure

automation (NIA) to partition a virtual network. This paves the way for

telecoms to shift client services to less expensive server locations, even the

customer’s own on-premises servers.

�Policy Compliance
Terraform can help enforce restrictions around resource consumption

by various teams. Whenever you use a system that is dependent on

tickets, there is always the chance of experiencing delays. You can make

use of Sentinel policies, a paid feature provided by Terraform to enforce

compliance and governance policies and processes before allowing

Terraform to make any modifications to the infrastructure. Access

to Sentinel may be granted to members of Terraform Cloud and the

governance layer if they meet certain requirements.

After building your configuration files, you may analyze and apply

infrastructure modifications using an execution plan. Once improvements

are validated, the infrastructure is deployed per plan.

Continuous integration includes compliance testing to meet user-

defined requirements. Delegating responsibility for remote resources using

geographical naming standards is one way. Second, images are used to

create virtual machines. In these and other situations, compliance testing

would enforce regulations.

With IaC, you can adapt better development practices, such as

submitting pull requests for other teams to review. Validating IaC has

been helped by testing frameworks and IaC tools that leverage common

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

131

language programming. However, they are better suited for technical

teams, and converting this to nontechnical languages may be difficult,

restricting the options.

Some companies prioritize security and regulatory compliance. An

application deployment pipeline verifies a workload’s criteria before

deployment. Here, the shift-left testing approach finds issues early in

the release cycle to avoid vulnerabilities and compliance violations.

Standard permissions are provided to user roles or accounts during

application deployment. These administrative and reporting accounts

include no customer or personal information. The following are some

typical practices employed by organizations to maintain compliant

infrastructures:

•	 If you’re unsure about IT management compliances,

consult an attorney or legal counsel. Understanding the

legal ramifications of internal systems, down to the OS

version, is difficult. Because of greater responsibility,

legal departments actively advise CTOs and CIOs.

•	 Legal counsel will tell IT managers to write rules and

procedures. Infrastructure deployment and operations

management must be included in rule and process

formulation for secure application development. Tasks

such as providing administrative powers should be

done according to policy, not habit.

•	 Sarbanes-Oxley compliance requires mapping

processes to COBIT. Control Objectives for Information

and Related Technology (COBIT) is an open

standard for IT security and control operations. The

Treadway Commission’s Enterprise Risk Management

Framework inspired COBIT. COBIT helps organizations

manage compliant IT systems.

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

132

•	 Automate compliance monitoring. In addition to

the publicly accessible COBIT frameworks and

standards, third-party tools for auditing and analyzing

Coso compliance levels may save time. Check for IT

automation possibilities.

•	 Prepare to protect your data. Proactive IT organizations

will be less prone to compliance-threatening security

threats that need large resources to remedy. Updated

virus definitions and patch management are examples.

�The Way Ahead
IaC requires more careful consideration of isolation, locking, and state

than conventional coding because of the various trade-offs involved.

When developing a standard app, most bugs are quite minor and impact

only a limited subset of the code. When issues arise in a code-managed

infrastructure, they may have far-reaching effects on the availability of your

apps, data, and network.

The utilization of IaC is necessary to ensure its security and

dependability. Just like the value of any other kind of code, the worth

of the code that represents the infrastructure relies on how effectively

it is constructed and maintained. For your engineers to do as many

infrastructure modifications as feasible using Terraform, you should

include the aforementioned approaches. This will encourage continuous

code development while decreasing the temptation to employ out-of-band

approaches and the drift they introduce.

Examining the benefits and drawbacks of using Terraform at your

organization can help you anticipate potential outcomes. HashiCorp

provides excellent tools for managing infrastructure. Each of these options

aids in the administration and protection of your infrastructure, whether

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

133

it is in a physical data center or in the cloud. Terraform allows you to

construct it either interactively or programmatically via an API on several

public and private cloud platforms.

Structure your infrastructure as code into modules, and you may

apply many different good coding practices to it. You may securely test

many versions of a module in various contexts, reverting to prior versions

if a problem develops, and validate each update to a module using code

reviews and automated tests. Instead of spending time manually deploying

code, you may be working on modules instead.

With these characteristics, you may have an easier time putting up

a solid framework rapidly. Complex infrastructure components may

be obscured by using simple APIs that are applicable throughout your

technological stack.

In the next chapter, you will learn about another IaC automation and

delivery tool named Puppet, why businesses should consider it, details of

the architecture, how Puppet works, and how you can implement Puppet

in your projects.

Chapter 6 Hands-on Infrastructure as Code with Hashicorp Terraform

135

CHAPTER 7

Hands-on
Infrastructure as Code
with Puppet
Scalability has become an essential necessity for modern businesses. In

the field of information technology, conventional on-premises systems are

losing ground to more modern alternatives that make use of virtual and

distributed resources. Both the development and operations teams have

had to adjust their operational practices as a result of the introduction

of DevOps.

The process of ensuring that computers, servers, and software

continue to be in their intended states during the course of development is

referred to as configuration management. Even if modifications are made

to a system in the future, it may be protected in this manner so that it will

continue to operate as expected.

When building and maintaining information technology systems, one

must have a clear idea of what the systems are meant to look like after they

are completed. Configuration evaluations and drift analysis are used to

determine whether systems need upgrading, patching, or reconfiguring.

Utilizing configuration management allows for the prevention of

unauthorized modifications of any kind and of any size. Incorrect settings

may be harmful to both the operations and security of a company

© Sneh Pandya and Riya Guha Thakurta 2022
S. Pandya and R. Guha Thakurta, Introduction to Infrastructure as Code,
https://doi.org/10.1007/978-1-4842-8689-0_7

https://doi.org/10.1007/978-1-4842-8689-0_7

136

since they can cause poor performance, inconsistent behavior, or

noncompliance. When unauthorized changes are made to a large number

of systems and applications, there is an increase in both instability and

downtime.

In big environments, it is impossible to identify manually the

systems that need care, choose repair solutions, prioritize tasks, and

evaluate whether they have been completed. Unless there is sufficient

documentation, regular maintenance, and a change control mechanism

in place, system administrators and software developers will not be able

to determine what is stored on a server or which programs have been

updated.

Solutions for configuration management make it possible to establish

system settings in a consistent manner and also facilitate the creation

and maintenance of systems that are based on these baseline settings.

Users and administrators alike are granted the ability to ascertain the

locations of certain services and the current state of applications thanks to

configuration management.

Tools like Puppet by Perforce provide you with the ability to implement

configuration management for your infrastructure. In this chapter, you will

learn about Puppet in detail and how to use it in different ways.

�Introduction to Puppet
Puppet is a simple modeling language that is used in the process of

developing programs for automating the administration of infrastructure.

You are able to specify the final state of your systems, also known as nodes,

with relative simplicity thanks to Puppet. On the other hand, procedural

scripts need extensive description of the actions that must be taken in

order to get a computer system to a certain state. If you use Puppet, you

won’t have to worry about scripting mistakes or misaligned phases that

might lead to an unwanted outcome. This is because Puppet automates

the process. Puppet will handle all of the stuff for you automatically.

Chapter 7 Hands-on Infrastructure as Code with Puppet

137

The Puppet programming language may be used on any platform, in

contrast to procedural scripts. You are able to focus on the key parts of the

system thanks to Puppet’s ability to handle implementation challenges

such as command names, arguments, and file formats. This gives you the

ability to focus on the system. Puppet allows you to manage all of your

users in the same way, regardless of the location of those users, so long as

you have it installed.

Without the abstraction concept, Puppet would not be able to work.

Because of this, everyone who is literate and has the ability to write may

take control of the systems at the level that is required for their profession.

It is possible that teams will be able to operate more effectively and that

people will be able to manage resources that would otherwise be beyond

their control if a culture of shared responsibility is fostered within teams.

The capability of the modeling language to be simply copied is yet

another advantage offered by it. In contrast to scripts, which can be

performed only once, a Puppet run may be repeated several times without

affecting its results. If the system is already in the state that Puppet deems

proper, it will be left alone by Puppet. Idempotency, in a nutshell, is the

characteristic that guarantees that an operation’s outcomes are the same,

even if the same function is applied more than once after the original

application. When performed once, twice, or a thousand times, an

idempotent operation yields the identical outcomes each time.

The resource declaration serves as the foundation upon which the

Puppet programming language is constructed. The name of a resource

may be used to determine whether something is an operational service or

an installation-required package.

Think of the resources you manage as building parts that may be

assembled to represent the intended state. This can help you comprehend

the systems you are responsible for managing much better. Puppet’s

capacity to mix components in a way that is both rational and effective is

one of the most significant benefits of using this tool.

Chapter 7 Hands-on Infrastructure as Code with Puppet

138

�Why Choose Puppet?
A Puppet module is a self-contained collection of key components. This

can include classes, manifests, data, and other elements. We can define

specific resources with Puppet modules. Each Puppet module ultimately

helps us recycle Puppet code and keep groups of code organized over time.

A manifest is made up of a Puppet code class or declared type (written

in the Puppet DSL). Knowing the purpose is priority number one when

writing a module.

A Puppet environment can also accommodate a large number of

modules, perhaps hundreds if necessary. A set of particular named classes

dedicated to specific tasks serve as programs that must be constructed.

These programs then generate manifests.

Puppet describes everything as data: the node’s current state, the

intended end state, and the activities required to transition from one to the

other. Each Puppet-managed server instance gets a catalog of resources

and relationships, compares it to the intended system state, and makes

modifications as needed to bring the system into compliance with the

ideal state.

Puppet encourages its users to keep complexity under control by

developing reusable, easy-to-configure, and refactorable code. The basic

way to do this is to use Puppet roles and profiles, which divide your code

into three levels.

Component modules: These are standard

modules that govern a single technology, such as

puppetlabs/apache.

Profiles: These are wrapper classes that configure

a tiered technology stack by utilizing various

component modules. Create a profile, for

example, to configure Jenkins, the continuous

integration program, with its online front end and

automated tasks.

Chapter 7 Hands-on Infrastructure as Code with Puppet

139

Roles: These are wrapper classes that combine

various profiles to provide a comprehensive system

setup. In addition to the Jenkins job, the server must

have conventional roles.

Above all, it allows you to create useful, business-specific interfaces for

system setups. This facilitates the usage of hierarchical data, the reading of

system settings, and the restructuring of code.

�Understanding Puppet
To guarantee that Puppet code is deployed throughout the infrastructure,

that it is updated on a regular basis with configuration changes, that

unwanted modifications are fixed, and that system audits are carried

out, there are a number of procedures that need to be followed. To fulfill

these requirements, the vast majority of teams and Puppet users adopt a

master-agent architecture that consists of multiple different components.

Customers may make use of one or more Puppet masters, depending

on the requirements that they have. Each node has an agent that, while

communicating with the master, uses a connection that is both signed and

encrypted, as shown in Figure 7-1.

Chapter 7 Hands-on Infrastructure as Code with Puppet

140

Figure 7-1.  Puppet master-node communication

Puppet programs may be delivered to servers by using the master-

agent structure, and the configuration of the servers can be managed over

an extended period of time. Puppet first generates a catalog of manifests

before proceeding to configure a node. Records that do not change, such as

catalogs, provide insight into the connections between different resources.

Depending on the task at hand and the context that is present, every

catalog has the potential to be applicable to a single node. Puppet’s role

is to use the catalog to check if a node’s configuration has been correctly

applied, and it is also Puppet’s responsibility to make any necessary

changes to the node’s configuration.

As part of the standard Puppet workflow, a node-based agent will often

connect with a master server. This is considered to be best practice. After

that, Puppet might do any of the following actions:

•	 If there has been any change, it is required to make the

appropriate modifications.

Chapter 7 Hands-on Infrastructure as Code with Puppet

141

•	 It is recommended that none of the nodes has any

changes made to them.

•	 If there are any necessary changes to be made to your

setup, you can use the orchestration tools that are

provided by Puppet.

•	 The information collected from the events and nodes in

the network can be saved and accessed at a later time.

•	 Since Puppet is a pull-based configuration

management tool, the node-based agents will pull the

configuration from the master server.

•	 Node-based agents will pull the configuration at

regular intervals and not in real time.

•	 The information and configuration fetched would be

compared with the current configuration at each node.

•	 If any mismatches arise, agents would take steps and

perform modifications to match the configuration of

the node with the configuration of the master server.

•	 It is easier to spawn new nodes with this approach. The

new node is configured automatically by retrieving

information from the main server.

•	 Since the nodes are independent of each other,

configuration management and scalability are

performed with ease.

�Architecture
Puppet was designed with two modes in mind: client-server with a central

server and agents operating on various hosts, or serverless with a single

process doing all of the work. Puppet has always maintained network

Chapter 7 Hands-on Infrastructure as Code with Puppet

142

transparency internally to provide consistency between both modes; thus,

the two modes used the same code paths whether they flowed over the

network or not. Each executable can set up local or remote service access

as needed, but they otherwise act the same. It’s also worth noting that

you may utilize the serverless mode in a client-server setup by sending all

configuration files to each client and having it interpret them directly.

�Puppet Master

A Puppet master is the fundamental mechanism in charge of all

configuration-related tasks. The Puppet master stores all configuration

information, which is accessed by all Puppet agents when they request

their configuration catalogs.

�Puppet Agents

Puppet agents are the real operating computers that the Puppet master

manages. The Puppet agent daemon service is operating within them.

�Configuration Repository

This is the repository where all node and server configurations are kept

and retrieved as needed. This is how master-agent communication works:

	 1.	 The Puppet agent process gathers information

about the host on which it is executing and sends it

to the server.

	 2.	 The parser compiles a configuration for that

specific host using the system information and

Puppet modules on local storage and provides it to

the agent.

Chapter 7 Hands-on Infrastructure as Code with Puppet

143

	 3.	 The agent then implements that setting locally,

altering the host’s local state, and files the resulting

report with the server.

Puppet employs a variety of data formats for internal communication,

in addition to the components that comprise this process, which we’ll

discuss next. These data types are crucial since they are the foundation of

all communication and are public kinds that any other tool may consume

or make.

�Facts

Puppet uses the Facter tool to acquire system information before building

a node and requesting a catalog for a controlled node. The information

is stored as variables, and those variables may be referenced later in

manifests. Furthermore, Puppet creates a set of supplemental variables

known as built-in variables that operate similar to facts. Once the facts are

available, Puppet makes changes to any target node based on the facts in

the manifest. Puppet holds both predefined and custom facts.

�Catalog

All Puppet manifest files or configurations are first translated to a

compiled format called catalog, and then those catalogs are deployed to

the target computer. One of the defining decisions of Puppet’s application

architecture is that clients should not have access to raw Puppet modules;

instead, they should have access to a configuration that has been created

specifically for them. This has several advantages: to begin, you adhere to

the concept of least privilege, which states that each host knows only what

it needs to know (how it should be configured), but it has no knowledge of

how any other servers are configured.

Chapter 7 Hands-on Infrastructure as Code with Puppet

144

�Configuration
Puppet is used to create a representation of your infrastructure in code.

Puppet and your infrastructure can be managed in the same way that

you would manage any other piece of code. Code written with Puppet

may be easily saved and recycled for use in other projects. It’s possible

that members of other teams will also be allowed to use the workplace

machines. It is possible for development and operations to manage

systems by utilizing manifests that are the same from the workplace

machine development environment to the production environment.

This will help prevent unpleasant shocks when code is transferred to

production. This can potentially have a significant effect on the quality of

deployments, particularly in the case of organizations that specialize in a

certain field.

When system administrators treat settings as code, developers are

allowed to construct their own testing environments, which helps remove

the barrier that system administrators seem to represent to programmers.

As a result of the widespread acceptance of Puppet manifests by auditors,

Puppet code will be seen as sufficient evidence of compliance. People are

able to work more effectively as a result of all of this, which also helps to

lower their levels of worry.

The ability to verify Puppet code by using a conventional version

control system is almost certainly the feature that is considered to be the

most significant. The history of the infrastructure may then be recorded in

a manner that adheres to the regulations. You may be able to enhance your

configuration authoring, updating, and testing with the assistance of the

colleagues of a software engineer until you feel comfortable putting them

into production.

You may also try changes by using the “no-op” or “simulation” modes

that are available in Puppet before actually implementing them in the real

world. Because of the capability to turn back, deployments are far less

stressful.

Chapter 7 Hands-on Infrastructure as Code with Puppet

145

�Module Structure
The majority of the code that you write for Puppet will be stored in its

modules. There are several modules that are responsible for managing

different components of the infrastructure, such as installing and

configuring software.

It is possible to develop modules with custom data as well as

customized data formats. Plug-ins are what are responsible for achieving

this result. The modules need to be included on the module path in order

for Puppet to work properly. Before Puppet can use this code, all of the

modules that are listed on the module path must first be loaded. This is the

reason why the code is valid.

Puppet Forge provides users with the ability to download and

install modules. Puppet Forge is home to the hundreds of modules that

have been developed for a wide range of applications by open source

contributors and Puppet developers. You need to make sure that your

budget allows for the creation of at least a few custom modules so that your

infrastructure can meet your individual needs.

Modules are under the management of a Puppetfile whenever Code

Manager1 or r10k2 is used, both of which are code management tools that

manage environment configurations and the deployment of the code base

from the code repository for you. Installing and managing modules in proof-

of-concept projects or in very small infrastructures that are managed manually

may be accomplished with the use of the puppet module command.

Puppet is able to identify and load classes, declared types, facts,

custom types and providers, functions, and tasks because modules have

a certain directory structure. This structure enables Puppet to manage

custom data. Every module subdirectory serves a unique function and may

be skipped if desired.

1 https://puppet.com/docs/pe/2021.1/code_mgr.html
2 https://puppet.com/docs/pe/2021.1/r10k.html

Chapter 7 Hands-on Infrastructure as Code with Puppet

https://puppet.com/docs/pe/2021.1/code_mgr.html
https://puppet.com/docs/pe/2021.1/r10k.html

146

�Security Mechanisms
The fundamental functionality of Puppet is based on a number of different

encryption and communication protocols. Puppet and OpenSSL (a

toolkit that is based on SSL and TLS) have a close connection with one

another. The SSL/TLS technology as well as SSL certificates are used in

the verification and authentication of masters and agents. Encrypting the

communications that take place between agents and servers using SSL/

TLS is another useful feature. You now have a better understanding of the

many applications of encryption technology thanks to this introduction

to Puppet.

•	 The identity of any agent in connection to the master

has to be verified before it can be used.

•	 Confirmation of the identity of the master agent.

•	 The confidentiality of conversation between the master

and the agents needs to be maintained.

For the purpose of providing mutual host authentication, Puppet

makes use of a TLS client-side X-509 certificate. This information is

supposed to be kept in the puppet.conf configuration file, which is located

in the /etc/Puppet/ssl directory. It is possible to change the default

location by using SMF commands, and any changes made will be reflected

in the site configuration file.

In addition to requests that need to be signed, there are also directories

for certificates, requests that have already been signed, and keys. These

directors are present on both the master server and the agent servers.

As part of this introduction, you should be familiar with the Puppet

certification authority that is owned and operated by Puppet.

Chapter 7 Hands-on Infrastructure as Code with Puppet

147

After the establishment of a certificate revocation list (CRL) and the

creation of the server certificate, a custom CA certificate and private key

are generated for the master. This is followed by the production of the

server certificate. The agent will get a server certificate to facilitate SSL and

TLS communications.

�How Puppet Works
In addition to its functional components, the development of Puppet has

been guided by two guiding principles.

•	 It should be as simple as is practically possible, with

usability always taking precedence over capability.

•	 It should be built as a framework before it is built as an

application so that development teams can utilize the

framework to launch their own applications.

These principles are intended to allow developers to build their own

applications based on Puppet’s internals in different manners as required.

Let’s further understand how the internals of Puppet work and how Puppet

configuration is performed for various scenarios, including the nuances of

infrastructure, core elements such as plugins, and a control framework.

�Puppet Infrastructure
Puppet is based on the notion of infrastructure as code, or treating

infrastructure as if it were code. This idea underpins DevOps, the

methodologies and set of practices that merge software development and

operations. Treating infrastructure like code enables system administrators

to adopt software developer–specific procedures such as version control,

peer review, automated testing, and continuous delivery.

Chapter 7 Hands-on Infrastructure as Code with Puppet

148

Puppet architecture is a master-server type of architecture, which

consists of a primary node to manage information related to configuration

for all the other agent nodes, which can be just one or more than one

node. Secure protocol HTTPS is used by servers and agents to interact via

SSL certificates. For managing certificates, Puppet also has a certificate

authority provided in the framework itself. The Puppet server serves as the

principal node and runs an agent to configure itself.

�Plugins
One of the best aspects about Puppet is its extensibility. Puppet has at least

different types of extensibility, the majority of which are intended to be

used by everyone. You can, for example, develop custom plugins for the

following areas:

•	 Custom providers and resource types

•	 Report handlers, such as those used to save reports to a

custom database

•	 Plugins for interfacing with existing data storage in

Indirector

•	 Information for learning more about your hosts

However, because Puppet is distributed, agents require a method to

retrieve and load new plugins. As a result, the first thing we do at the start

of every Puppet run is download all plugins that the server has accessible.

New resource kinds or providers, new facts, or even new report processors

might be among them.

This allows for significant upgrades to Puppet agents without ever

modifying the core Puppet packages. This is particularly helpful for heavily

customized Puppet systems.

Chapter 7 Hands-on Infrastructure as Code with Puppet

149

�Indirector
The Indirector is an inversion of control structure that is quite adaptable.

Through inverting control systems, it is possible to decouple the

development of features from the technique by which they are deployed.

In the case of Puppet, this means we may swap between plugins with

wildly different capabilities, such as communicating with the compiler via

HTTP or loading it in-process, simply modifying the configuration rather

than the code itself. That is to say, Puppet’s Indirector is only a service

locator that may be used in production.

Puppet’s Indirector is essentially an implementation of a service

locator. All hand-offs between classes are handled by the Indirector via

a standard REST-like interface (e.g., we support find, search, save, and

destroy as methods), and switching Puppet from serverless to client-server

is largely a matter of configuring the agent to use an HTTP endpoint for

catalog retrieval rather than a compiler endpoint.

This class can be difficult to grasp since it is an inversion of control

framework in which configuration is strictly isolated from code paths. This

is especially true when debugging why a specific code route was selected.

�Implementing Puppet in Real Projects
You gained knowledge about Puppet files as well as the directory structure

of Puppet in the previous section. Moving forward, it is essential to have a

solid understanding of how Puppet configuration is applied with the help

of real examples. The examples will showcase how to set up your Puppet

configuration from scratch.

The central repository of an all-inclusive configuration management

solution may make the deployment of any system simple and dependable.

This repository explains and keeps a record of the operations that are

Chapter 7 Hands-on Infrastructure as Code with Puppet

150

carried out. System upgrades may be performed easily and fast whenever

they are necessary. As a consequence of this, a single administrator might

be responsible for managing a large number of servers.

You can generate files known as manifests that have a .pp extension

by using the language that Puppet provides. To describe what a machine,

whether actual or virtual, needs to perform, either you can utilize the

modules that come pre-installed with Puppet or you can create your own

unique modules and put them in manifest files. In the same manner that

code is executed, Puppet is driven by a collection of manifests, much like

a computer. Using the puppet apply command, Puppet will first construct

your program check to see how much it deviates from the condition you

expected it to be in and then make the necessary adjustments to bring your

computer up-to-date. If there are no modifications that need to be done,

executing puppet apply on a system that has the most recent manifest

should maintain its idempotency and result in no changes being applied.

�Getting Started with Puppet
In this particular scenario, you will be responsible for organizing the

workspaces of software engineers. puppet-master is the hostname of

a desktop PC running Ubuntu 18.04, although the software should be

compatible with any distribution of Linux. If you utilize GitHub for this

reason, be sure that passwords and keys are kept separate from the

platform.

Figure 7-2 shows the several ways that Puppet may be installed on the

target system. During the course of the installation process, just the Puppet

Labs repository, Git, and Puppet will be set up.

Chapter 7 Hands-on Infrastructure as Code with Puppet

151

Figure 7-2.  Puppet interaction

The precise versions of puppet-common and the puppetlabs/apt

modules utilized are as follows:

wget https://apt.puppet.com/puppet-release-bionic.deb

dpkg -i puppet-release-bionic.deb

apt-get update

apt-get install -y man git puppet-common

apt-get install puppetserver

puppet module install puppetlabs/apt

Next, start the service on your machine with the following commands:

systemctl start puppetserver

systemctl enable puppetserver

Chapter 7 Hands-on Infrastructure as Code with Puppet

152

By default, port 8140 is used by the Puppet master server for

communication with the nodes. Once Puppet is installed on your machine,

let’s perform some tasks using Puppet.

�Preparing the Repository
The next step is to configure a Git repository to store your edited Puppet

manifest files. In your Git repository, create a file named puppet-master.

pp inside manifests with the contents shown in the following code:

include apt

node 'puppet-master' {

 package { 'aws':

 ensure => 'present'

 }

 package { 'oracle':

 ensure => 'absent'

 }

}

The contents described in the file denote the following things:

•	 Machine’s hostname matches the file name in this case,

which is not mandatory; however, it helps you organize

your manifest files within the directory.

•	 The apt package is imported, which allows you to

manipulate installed software on your machine.

•	 node is a root-level block, which allows you to define

the state of servers.

•	 puppet-master is the server node here.

Chapter 7 Hands-on Infrastructure as Code with Puppet

153

•	 The manifest states that there should be an aws package

installed and no the oracle package on the specified

machine.

This Puppet configuration is now ready to be used on the system itself.

The instructions listed next may be executed with your own gitserver if

you ssh into the system.

�Running the Repository
The following code performs two distinct actions: first, it retrieves a

customized manifest file from the Git repository, and second, it applies

that file on the machine. You might want to try changing the state of the

machine by using the puppet apply command to see if you can get it to

match the values that are shown in a node that has the same name. The

only choices available to us here are to delete oracle and set up aws, if it

isn’t already set up.

git clone git@gitserver:yourpuppet-gitrepo.git

 ↪/etc/puppet/puppetdemoproject

puppet apply /etc/puppet/puppetdemoproject/manifests

 ↪--modulepath=/etc/puppet/puppetdemoproject/

↪modules/:/etc/puppet/modules/

�Setting Up Users
Moving ahead, you will need to establish a user. An updated version of

the puppet-master.pp code is included here, which makes use of the user

variable to create the user:

include apt

node 'puppet-master' {

 $user = 'puppetuser'

Chapter 7 Hands-on Infrastructure as Code with Puppet

154

 package { 'aws':

 ensure => 'present'

 }

 package { 'oracle':

 ensure => 'absent'

 }

 user { "$user":

 ensure => present,

 comment => "Developer $user",

 shell => '/bin/bash',

 managehome => true,

 }

}

Now, in the host machine, apply new changes by pulling the changes

from the Git repository and rerunning puppet apply, as shown here:

cd /etc/puppet/puppetdemoproject

git pull

puppet apply /etc/puppet/puppetdemoproject/manifests

 ↪--modulepath=/etc/puppet/puppetdemoproject/

↪modules/:/etc/puppet/modules/

�Creating Modules
Now, you will create a new module that is triggered by the node that you

have defined earlier, which accepts a parameter to define the user. The

module file init.pp is stored in the Git repository under the directory

modules/master_host/manifests/.

class user_accounts {

 user { "${username}":

Chapter 7 Hands-on Infrastructure as Code with Puppet

155

 ensure => present,

 home => '/home/${username}',

 shell => '/bin/bash',

 managehome => true,

 password => 'password_hash'

 }

}

Once prepared, you can use the module in your node. The updated

manifest puppet-master.pp looks like this:

node 'puppet-master' {

 package { 'aws':

 ensure => 'present'

 }

 package { 'oracle':

 ensure => 'absent'

 }

 class { 'master_host': user => 'masteruser' }

}

�Dynamic File Generation
Files containing dynamic data must be generated often. .erb templates,

which are comparable to .jsp and .php files, may include bits of Ruby

code. Using a slightly different syntax, every variable in Puppet may be

accessed by code.

The name of the build root is stored in the $HOME/PuppetProjects/

props.env file. Typically, only the user’s own files and folders are included

in this part. Setting this up with Puppet is as simple as using an .erb

Chapter 7 Hands-on Infrastructure as Code with Puppet

156

template, as demonstrated next. All that differs from an ordinary erb

template file is the need for a template folder and @ prefixes in the

names of variables.

Managed by Puppet

dir.home=/home/<%= @user %>/

Before you can use the props.env file, you need to first ensure that

there is a PuppetProjects directory in the location where it will be

stored. Utilize the => operator to guarantee that the directory and file are

produced in the specified sequence. The .erb template can be used as

described here:

file { "/home/$user/PuppetProjects":

 ensure => 'directory',

 owner => "$user",

 group => "$user",

 require => [User["$user"]]

}

->

file { "/home/$user/PuppetProjects/props.env":

 content => template('master_host/props.env.erb'),

 owner => "$user",

 group => "$user",

}

Every time you want to make a change to more than a few systems,

you need to run Puppet. This is time-consuming. Run puppet apply

on each machine to check for changes in the source code. Installing the

required functionality is as simple as naming the file puppetautomation.

sh and scheduling a recurring run on a cron schedule, as shown in the

following code:

Chapter 7 Hands-on Infrastructure as Code with Puppet

157

class apply_puppet_automation () {

 file { "/usr/local/bin/puppetautomation.sh":

 �source => "puppet:///modules/apply_puppet_automation/

puppetautomation.sh",

 mode => 'u=wrx,g=r,o=r'

 }

 ->

 cron { "run-puppetApply":

 ensure => 'present',

 command => "/usr/local/bin/puppetautomation.sh >

 ↪/tmp/puppetautomation.log 2>&1",

 minute => '*/60',

 }

}

•	 Create a new puppetautomation.sh template

in modules/apply_puppet_automation/files/

puppetautomation.sh.

•	 Create the puppetautomation.sh file and set up the

crontab entry.

•	 Use your apply_puppet_automation module from your

node in puppet-master.pp.

class { 'apply_puppet_automation': ; }

�Modifying Configurations
When working with Puppet, it is essential to keep in mind that removing

a rule does not result in the resource being removed entirely. Create a

rule that, when applied to developer1, will result in a valid SSH key being

generated. It is a regulation that will be adhered to, and it states that the

key must be destroyed after developer1 has left the organization.

Chapter 7 Hands-on Infrastructure as Code with Puppet

158

This does not remove the item that represents unauthorized keys

from the system. The state that is represented by the Puppet resources

may not be the ultimate state, since alterations may be brought in from

the outside. It is difficult to determine if the rule for developer1’s key was

manually made or whether Puppet should delete it after the rule because

developer1’s key has been withdrawn. Either way, it must be determined

whether Puppet should delete the rule.

You have the ability to get rid of packages, files, directories, users, and

other stuff by making use of the ensure => 'absence' rule. This approach

was used to uninstall the oracle package shown earlier. You need to make

certain that oracle is not running in the background to assure that it does

not exist.

There are occasions when we need to change the SSH key associated

with a developer or administrator who is leaving the company. This has an

effect on each and every one of the developer’s products.

�Managing Repositories
Leaving all of your code only on the main branch is not a recommended

practice while managing your Puppet infrastructure. You will need to

make use of a specialized Git Flow model to administer our repository.

The majority of the branches on each server may be followed back to

the master. Only a few of the developers are now at the forefront of the

development department’s work. To prepare each computer for the launch

of a new version, we first migrate its branch from the previous version to

the most recent one. By maintaining separate branches for each server,

you may stop changes from being sent in a haphazard manner to multiple

servers as visible in Figure 7-3.

Chapter 7 Hands-on Infrastructure as Code with Puppet

159

Figure 7-3.  Managing deployments

Keeping tags on all of your branches and pushing them to new releases

requires the use of scripts, which are also necessary. Roughly 100 personal

computers may fit inside of it at one time. On a larger scale, it is often

impossible to maintain separate branches for each individual server.

It is possible that using a single Git repository will become challenging

when the number of computers in your company increases. In our

opinion, the most significant problem is the commit noise that occurs

between reusable modules and machine-specific parameters. Consider

for a moment the possibility that you do not want every machine manifest

to be sent to every machine administrator in your organization. This is

just one possibility. To do this, you should make use of three different

repositories: one for general modules, one for settings that are machine or

client particular, and one for global data sets. Because of this, we are able

to rapidly release any required global adjustments while still exercising the

right amount of release control over our core modules.

The Puppet code and data should be tracked, updated, and deployed

via version control. Ideally you should keep your repository in a Git-based

version control model. When you make changes to the code and data in

your repository, code management ensures that all of your environments

are brought up-to-date immediately.

Chapter 7 Hands-on Infrastructure as Code with Puppet

160

Environments are constructed and maintained by code management

based on the branches in your source code repository. Ideally, your

code management will generate three distinct environments, each with

its own copy of your Puppet code and data, if your control repository

has three distinct branches: production, development, and testing.

Making environments requires access to the /etc/puppetlabs/code/

environments folder on the primary server.

�Puppet Command-Line Interface
Here are some important commands:

•	 puppet-agent: The client configuration is obtained

from the Puppet master and applied to the local host.

This service may be started as a daemon, on a regular

basis with cron or interactively for testing.

•	 puppet-apply: Use this stand-alone Puppet execution

tool to apply specific manifests. This can be used to

generate a serverless Puppet site with scheduling an

automated mechanism for providing manifests.

•	 puppet-lookup: This command requires access to your

hierarchical data and runs it on a server node that has

a replication of the same data. This generally entails

logging onto a Puppet Server node and executing sudo

puppet lookup.

•	 puppet-module: This subcommand is capable of

locating, installing, and managing modules from the

Puppet Forge, a repository of user-contributed Puppet

code. It can also generate empty modules and prepare

locally generated modules for Forge deployment.

Chapter 7 Hands-on Infrastructure as Code with Puppet

161

•	 puppet-resource: This command offers basic

capabilities for translating current system state into

Puppet code, as well as some ability to edit the current

state using Puppet’s RAL.

•	 puppet-config: This subcommand can view and alter

parameters in Puppet’s configuration file, puppet.conf.

•	 puppet-describe: This printout contains

information on Puppet resource types, providers, and

metaparameters.

•	 puppet-device: Catalogs are retrieved from the Puppet

master and applied to remote devices.

•	 puppet-doc: This is primarily intended for internal

usage and is used to produce the reference document

that can be seen on the Puppet website.

•	 puppet-epp: Interact with the EPP template parser/

renderer directly.

•	 puppet-generate: Using Puppet code, this generates

definitions for custom resource types. Puppet code

types can be used to separate custom type definitions

between environments.

•	 puppet-node: This subcommand interacts with node

objects, which Puppet uses to create a catalog. A node

object is made up of the facts, environment, node

parameters, and classes of the node.

•	 puppet-parser: This operation checks the syntax of the

Puppet DSL without creating a catalog or synchronizing

any resources. If no manifest files are given, the default

site manifest will be validated.

Chapter 7 Hands-on Infrastructure as Code with Puppet

162

•	 puppet-plugin: The puppet master delivers Ruby

code from its modules’ lib folders. These plugins

may be used to expand Facter and add custom types

and providers on agent nodes. Plugins are typically

downloaded by the Puppet agent during a run.

•	 puppet-script: This is a stand-alone Puppet script

runner tool that can be used to run Puppet code

without the need to compile a catalog. The Puppet

script can load functions, types, tasks, and plans from

modules when given a module path through the

command line or config file.

•	 puppet-ssl: Manage SSL keys and certificates for SSL

clients that require communication with the Puppet

infrastructure.

Here are some niche subcommands:

•	 puppet-catalog: Catalogs are compiled per-node

artifacts created from a collection of Puppet manifests,

and this subcommand interacts with them.

•	 puppet-facts: This subcommand controls facts, which

are sets of normalized system data that Puppet uses. It

can read data from the local system directly.

•	 puppet-filebucket: This is a filebucket client that may

be used to transfer files to a local or central filebucket.

•	 puppet-key: This subcommand is in charge of

managing certificate private keys. Keys are produced

automatically by the Puppet agent, and when certificate

requests are made using puppet ssl submit request,

this subcommand should not be used directly.

Chapter 7 Hands-on Infrastructure as Code with Puppet

163

�The Way Ahead
When it comes to advanced levels of continuous collaboration and

delivery, many of the businesses still have a long way to go. The fact that

Puppet can adapt to your expanding team and evolving infrastructure is a

major advantage. Banking and government are two areas where Puppet is

widely utilized because of their strict adherence to established norms and

procedures. Businesses that don’t need a high rate of continuous delivery

may nevertheless benefit greatly from treating their infrastructure like code

by storing and versioning it.

Puppet is useful for DevOps because it automates processes and

facilitates the deployment of software more quickly without compromising

on security or dependability. Create security policies and verify their

legality using this handy tool. Because of this, erroneous settings and audit

failures are less likely to occur. Since it considers infrastructure as code

and continually adds code, Puppet makes deployments quicker and more

reliable. Combining and simplifying many technologies into a unified

interface for configuration saves time and effort. Puppet utilizes containers

and promotes inspecting their contents closely. To have a deeper

understanding of a product’s use, it is possible to monitor any functional

variations using the given tools.

Among Puppet’s numerous applications are configuration

management, test-driven software development, and the automation of

repetitive chores. It is simple to adopt and incorporate the product into

the software development cycle because of the product’s intuitive design,

security, and dependability. Less time spent on nonessentials means

more time spent on revenue-generating activities such as expanding your

business’s product line and improving existing ones.

In the next chapter, you will learn about another IaC automation and

delivery tool named Chef, why businesses should consider it, details of the

infrastructure, how Chef works, and how you can implement Chef in your

projects.

Chapter 7 Hands-on Infrastructure as Code with Puppet

165

CHAPTER 8

Introduction
to Infrastructure
as Code with Chef
An infrastructure as code (IaC) tool must be chosen with care. Each IaC

tool and platform has been developed to accomplish a specific goal. Over

time, most IaC systems have improved to the point that they can meet the

vast majority of IaC requirements and support a broad range of use cases.

One of the many advantages an IaC tool brings is that depending on your

needs and the expertise of your present personnel, you may also be able to

develop and deploy your own custom providers and modules.

One of the most important new trends in software engineering is

the DevOps movement. DevOps experts have access to a wide variety of

helpful technologies. Chef is an open-source, sophisticated IaC framework

developed by Opscode. Chef uses the Ruby programming language

to create key building components such as recipes and cookbooks.

Automating infrastructure using Chef helps save time spent on mundane,

manual tasks in IT operations.

© Sneh Pandya and Riya Guha Thakurta 2022
S. Pandya and R. Guha Thakurta, Introduction to Infrastructure as Code,
https://doi.org/10.1007/978-1-4842-8689-0_8

https://doi.org/10.1007/978-1-4842-8689-0_8

166

�Introduction to Chef
DevOps engineers and system administrators face a number of challenges

when attempting to roll out new services and applications, distribute

machines, and successfully maintain and update network packages.

These challenges must be overcome before the rollout of new services and

applications can be considered successful. For businesses to run properly,

large amounts of human capital in addition to physical labor are required.

Under such circumstances, configuration management is often

recommended as a solution. Automatic application deployment,

maintenance, and updates are available utilizing configuration

management systems like Chef. By analyzing its constituent parts, you can

make educated decisions about the roles that Chef can play in the various

DevOps environments.

Managing configurations is easy with Chef, which can be used to

automate several facets of the IaC. Codification of infrastructure is made

feasible by the automation tools provided by Chef.

You are free to use Chef in either a client-server or stand-alone

configuration, whichever better suits your needs. A central hub that can be

used for monitoring and administration is necessary for any Chef system.

Agents may be deployed to workstations using Secure Shell with the use of

the knife tool (SSH).

After that, the authentication process between the master and

the managed nodes is carried out with the use of certificates. The

establishment of antecedents is required for Chef agents to recognize

when it is appropriate to speak with the “head chef.” Investigating the

numerous aspects that make up Chef architecture can assist you in

developing a deeper comprehension of the inner workings of a “chef’s

kitchen.”

Chapter 8 Introduction to Infrastructure as Code with Chef

167

�Understanding Chef
To guarantee that Chef code is deployed throughout the infrastructure

having a clear understanding of Chef building blocks is required. The

following are the building blocks of Chef.

�Recipe
Recipes are a set of characteristics that regulate the system. These recipe

components are used to modify the configuration or status of a single

node in the infrastructure. They are read by the Chef client during runtime

and compared to the current node’s settings (machine). When the node

resource is reached, the recipe is in the final state as visible in Figure 8-1.

The bulk of the cookbook is concentrated here. Complex recipes, on

the other hand, need more sophisticated approaches like conditional

statements to carry out the steps in the recipe. Blending vanilla Ruby with

the Chef DSL yields impressive results.

Figure 8-1.  Chef client-server

Chapter 8 Introduction to Infrastructure as Code with Chef

168

�Cookbook
The cookbook is the most basic building piece that configuration consists

of. It does this by amassing resources in an effort to do what it needs to,

such as recipes, templates, and files. You will initially only have access to

a single folder in your cookbook that is labeled “recipes” when you first

create a cookbook. If you want, you may keep your templates and other

components organized in their own distinct folders.

�Resource
In addition, the Chef cookbooks provide useful resources, and the Chef

documentation may give trustworthy recommendations on how to make

use of those resources. You can count on resources to only be precisely

what the configuration policy says they are. This is the only thing you can

depend on. The documents explain the configuration object’s ultimate

objective as well as the steps to follow to reach it. The configuration policy

also defines the characteristics of what comprises a service, package, or

template.

The resource block consists of four components: a name, a type, at

least one property with a key-value pair, and one or more action(s). The

following is a simple resource example that will install a simple package on

a Linux server:

// Ruby

type `package` do

 attribute `name`

 action :install

 version `1.1.1`

 name `mypkg.tar.gz`

end

Chapter 8 Introduction to Infrastructure as Code with Chef

169

�Attributes
You may consider attributes to be different locales. You may consider them

to be a key-value pair, with one pair corresponding to each ingredient

listed in the cookbook. There are many different kinds of attributes, and

each of these forms has its own distinct effect on the configuration of a

node after it has reached its ultimate state.

At every Chef client’s run, the default attributes are reset and have the

least precedence. On the other hand, the override attributes are also reset

at every new run, but they do have a higher precedence. The following is

the order of precedence from top to bottom for attributes to be applied in

the Chef run, meaning applied first with least precedence:

•	 Default attribute in Chef cookbook attributes file

•	 Default attribute located in a Chef recipe

•	 Default attribute located in an environment

•	 Default attribute located in a role

•	 Force default attribute in Check cookbook

attributes file

•	 Force default attribute located in a Chef recipe

•	 Normal attribute located in a Chef cookbook

attributes file

•	 Normal attribute located in a Chef recipe

•	 Override attribute located in a Chef cookbook

attributes file

•	 Override attribute located in a Chef recipe

•	 Normal attribute located in a role

•	 Normal attribute located in an environment

Chapter 8 Introduction to Infrastructure as Code with Chef

170

•	 Force_Override attribute located in Chef cookbook

attributes file

•	 Force_Override attribute located in a Chef recipe

�Metadata
The management of metadata is included as part of its functionality in

this package. This provides information, such as the name of the label as

well as its measurements. In addition, it provides a list of the necessary

cookbooks that should be used in conjunction with this one. This ensures

that the data is sent accurately and provides the Chef server with the

capability to produce a suitable run list for the node. The following

example showcases contents of a metadata file:

// Ruby

name 'chefexample'

maintainer_email 'dev@chefexample.com'

description 'Set up a new Chef instance'

version '3.0.1'

chef_version ">= 12.9"

�Templates
The majority of time, test plans and templates may be found in Chef

cookbooks with the recipes. Cookbook templates that have embedded

Ruby (ERB) code make it possible to generate dynamic versions of text files

that were previously static. To get better cookbooks, we need to evaluate

the ones that are now available. As a consequence, syntactic testing is not

the only kind of testing that is required for Chef cookbooks; moreover, tests

at the unit and integration levels are required. For example, the following is

an example template file that prints a “Hello World” string for the specific

Chef node it is executed on:

Chapter 8 Introduction to Infrastructure as Code with Chef

171

// HTML

<html>

 <body>

 <h1>Hello world on <%= node[:fqdn] %></h1>

 </body>

</html>

The previous template then can be called into the recipe file, as

shown here:

// Ruby

template 'home/ubuntu/ChefDemo/index.html' do

 source 'index.html.erb'

 owner '${user}'

 group '${user}'

 wheel '${user}'

end

�Libraries
It is necessary to go to the library to get to know Chef. Because of Ruby’s

extensive library system, practically any chunk of Ruby code may be

included in a recipe. Library-made tools are very adaptable, since they

are often used in a broad range of recipes as well as materials that are

manufactured to order.

�Chef Infrastructure
When it comes to encapsulating infrastructure in code, the powerful

automation tool Chef Infra is an excellent choice. Chef Infra is able to

automate the setting up, deploying, and maintaining of your infrastructure

no matter how extensive your network is or whether it is hosted in the

cloud, on-premises, or in a hybrid configuration.

Chapter 8 Introduction to Infrastructure as Code with Chef

172

�Chef Workstation
You are welcome to manage your infrastructure and develop recipes with

the help of Chef Workstation. You are able to install Chef Workstation on a

computer running either macOS, Linux, or Windows.

Many testing tools are accessible through Chef Workstation. These

configurations are ideal for testing Chef Infra code before releasing it to

servers that are accessible to a wider audience. Utilizing various resources

while simultaneously creating code is necessary for the development of

an infrastructure. A file is one example of a resource; however, resources

may also contain things like templates and packages. An example of a

resource is a file. In every document, the intended operational condition

of a system component is laid forth, but there is no instruction given for

how to actually reach that level. Your problems will be fixed by Chef Infra,

rest assured. There are lots of Chef Infra’s tools that you can use. You have

the option of constructing resources that are tailored particularly to the

requirements of your system, or you may use components derived from

recipes that have been published.

A single Chef Infra recipe contains all of the instructions and

components required to successfully install a web server, database

server, or load balancer. The preparation of your meals will become more

organized and uncomplicated if you use a cookbook written by Chef Infra.

The code that you generated and verified on your local machine will be

accepted by the Chef Infra Server. On the Chef Infra Server, each and every

piece of configuration data is safely stored. It is responsible for maintaining

a record of the definitions of all of the systems, as well as the rules and

norms that dictate how they should operate. Through the use of the knife

command, it is possible for your computer and the Chef Infra server to

connect with one another. For instance, you might add your own recipes

by using this method.

Chapter 8 Introduction to Infrastructure as Code with Chef

173

�Configuration of Nodes with Chef Clients
The majority of the computing power for Chef Infra comes from the

nodes themselves rather than from the Chef Infra Server. Each individual

server, regardless of whether it is a virtual machine, container instance, or

physical machine, is represented by a node in the network. In a nutshell,

Chef Infra is in charge of controlling each and every server that is part of

the infrastructure. The Chef Infra Client is compatible with a broad range

of operating systems, including Linux, macOS, Windows, AIX, and Solaris.

It is configured on every node.

To get the most recent version of the cookbooks, the Chef Infra Client

maintains continuous communication with the Chef Infra Server. The

Chef Infra Client will take action to fix the situation whenever the node’s

present state is in a state that is inconsistent with the intended state that is

stated in the cookbook. It is possible that, after sufficient back and forth,

the network will finally arrive at the point that is envisioned by the firm

strategy.

�Chef Habitat
There is no other technique of application deployment that even comes

close to matching the automatic application deployment that Chef Habitat

provides. The term application automation refers to the automation

elements that are already built into the application and may be used

straightaway. The application and any relevant automation together make

up the deployment unit. The functioning of the software shouldn’t be

altered in any way; therefore, you shouldn’t notice any differences.

The program Chef Habitat has both a manager and a packaging system

for its users. This approach results in the specification of individual Chef

Habitat packages that are both immutable and verifiable. The manager

Chapter 8 Introduction to Infrastructure as Code with Chef

174

at Chef Habitat has a high level of expertise in the field of package

management. The interdependencies of the package, as well as its upgrade

methods and security rules, are all quite familiar to the package.

�Chef InSpec
A language for establishing requirements such as policy, security, and

regulatory compliance may be obtained via the use of the open-source

testing framework Chef InSpec. When policy conformance is supplied

in code, you have the option of including it in your deployment pipeline

and having it check itself automatically to ensure that it conforms with the

policy that has been expressed.

There are several computer setups that might be used to execute

Chef InSpec code. The same battery of tests may be done locally using

technologies such as the Docker API, remotely via SSH or WinRM, or even

outside in the fresh air. All of these options are possible. The scope of

Chef InSpec’s compliance testing capabilities is far broader than those of

physical servers alone.

�Final Words
According to (ISC)2 2021 Cloud Security Report,1 the biggest threat with

public clouds is the misconfiguration of resources, which can lead any

organization to catastrophic failures. This introduction to Chef may be

the beginning of a relationship that lasts the rest of your working life with

DevOps and IaC to mitigate any such situations. Using Chef makes the

process of delivering software more streamlined and improves the stability

of services.

1 https://cloud.connect.isc2.org/cloud-security-report

Chapter 8 Introduction to Infrastructure as Code with Chef

https://cloud.connect.isc2.org/cloud-security-report

175

Because of the ease with which it may be deployed in the cloud,

businesses may make better use of the features that Chef offers. When

carrying out large-scale deployments in either a public or private

environment, it is essential to maintain a close check on the stability,

maturity, and dependability of Chef. The following are the differences and

trade-offs of IaC.

Infrastructure as a service (IaaS) will streamline the most time-

consuming parts of initial setup and maintenance, and it will be easy to

roll out “standard” instances, assuming you anticipated the shift and your

infrastructure accommodates it. Otherwise, you must start using it right

away. Depending on the choices you made during implementation, the

level of difficulty may vary.

The automation and IoC platform that you choose will be the center

of your organization’s programming efforts. This, like with any software,

requires regular programming maintenance to avoid the ensuing unwieldy

spaghetti code. You need a group of DevOps engineers that are well-

versed in both system administration and development to handle the

management of such a platform on a large scale. The challenges of IoC

should not be compared to the regular management of your business.

As a result of automation, human error and missed steps are far less

likely. Just remember that humans are still fallible, even if their blunders

are now more conceptual. Human error from entering incorrect values will

be eliminated with the use of automation. However, errors may be made

whenever a new instance is launched or its configuration is altered. It’s

also possible that the automated system is flawed and underperforming.

Every administrative position calls for occasional upkeep and

unanticipated adjustments, so keep that in mind. If you try to address

an issue by reducing the degree of expertise of the team you currently

have, you can end up with an unsolvable situation. Restoring service after

an extended outage would incur far higher costs than laying off skilled

workers.

Chapter 8 Introduction to Infrastructure as Code with Chef

176

As a result, there is no longer any reason to put off taking action. Invest

some time today into learning Chef so that you may have a secure future

working in DevOps. The use of Chef, an essential tool for DevOps, has

lately seen an increase in popularity.

Chapter 8 Introduction to Infrastructure as Code with Chef

177

Index

A
A/B testing, 77, 78
Agile Software Development,

40, 73, 87, 88
Alias meta-argument, 115
Amazon Web Services (AWS), 7, 27,

37, 64, 101, 102,
106, 118–123

Application automation, 173
Application performance

monitoring (APM), 81
Application programming

interfaces (APIs), 12, 13, 17,
101, 103, 113, 123, 133, 174

Architecture teams, 90
Automation, 4, 24, 90, 128–129

B
Back-end administration, 6
Blue-green deployment strategy,

54, 55, 65, 80
deployments, 57, 58
environment replicability, 60
mechanism, 57
process/architecture, 56
simplicity, 59, 60

Business ecosystem, 87

Business possibilities, 85–87
Business requirements, 19, 45–46

C
Canary deployment strategy, 79, 81

vs. blue-green deployments, 66
definition, 66
environment replicability, 70
mechanism, 68
process/architecture, 67, 68
simplicity, 69, 70
versions, 66

Canary release, 66–67, 77
Catalogs, 140, 142, 143, 161, 162
Certificate revocation list

(CRL), 147
Change management, 33–35, 61
Chef

administrative position
calls, 175

attributes, 169, 170
authentication process, 166
automation/IoC platform, 175
client-server, 167
cookbook, 168
DevOps environments, 166
infrastructure

© Sneh Pandya and Riya Guha Thakurta 2022
S. Pandya and R. Guha Thakurta, Introduction to Infrastructure as Code,
https://doi.org/10.1007/978-1-4842-8689-0

https://doi.org/10.1007/978-1-4842-8689-0

178

Habitat, 173, 174
InSpec, 174
nodes, with clients, 173
workstation, 172

large-scale deployments, 175
libraries, 171
metadata, 170
recipes, 167
resource, 168
templates, 170, 171

Cloud computing, 7, 8, 10, 22, 30,
84, 92, 117

Cloud-native systems, 99
Cloud resources, 91
Cloud service providers, 42,

47, 87, 101
Cloud services, 41, 47, 64
Code developers, 91, 144
Command-line

interface (CLI)
terraform apply, 123
terraform apply -auto-

approve, 124
terraform apply

 -backup=path, 123
terraform apply -lock=true, 123
terraform apply -state=path, 124
terraform apply -var-file= abc.

tfvars, 124
terraform console, 124
terraform console

 -state=path, 124
terraform destroy, 124

terraform destroy -auto-
approve, 124

terraform fmt, 124
terraform fmt -check, 124
terraform fmt– diff, 124
terraform fmt– recursive, 124
terraform get, 123
terraform graph, 125
terraform import, 125
terraform init, 123
terraform init -input=true, 123
terraform init -lock=false, 123
terraform init -upgrade, 123
terraform output, 125
terraform plan, 123
terraform plan -compact-

warnings, 123
terraform plan -out=path, 123
terraform plan -var-file= abc.

tfvars, 123
terraform refresh, 126
terraform state list, 125
terraform state list

 -state=path, 125
terraform state list– id=id, 125
terraform state mv, 126
terraform state pull, 126
terraform state push, 126
terraform state rm, 126
terraform state show, 125
terraform state show

 -state=path, 125
terraform validate -json, 125
terraform validates, 124

Chef (cont.)

INDEX

179

Computer resources, 50
Configuration drift, 9, 12, 15, 22–23,

28, 32, 86
Configuration management, 62,

135, 136
CMDB, 62
definition, 61
process/architecture, 61, 62

Consistent systems, 32
Content delivery network (CDN),

53, 84, 127
Continuous integration/

continuous deployment
(CI/CD), 8, 9, 16, 20, 39, 55,
63, 66, 74, 75, 88, 130

Continuous verification, 78
Cross-functional teams, 4

D
Decision-making, businesses

design, 94
general rule of thumb, 94
IaC, 92
infrastructure, 93
security issues, 93
technological solution, 92
transitioning, 93

Deployment management,
downtime, 64–66

Deployment verification, 79
Development teams, 11, 27, 49, 62,

64, 96, 147
DevOps, 3, 176

aims, 4
automation, 4
cross-functional teams, 4
developers, 5
IaC, 6
organizations, 5

DevOps teams, 7, 25, 27, 82, 84, 91
Disposable systems, 30
Documentation, 15, 16, 34, 36, 38,

89, 92, 108, 136, 168
Domain-specific language (DSL),

12, 138, 161, 167
Domain sustainability, 87–90

E
E-commerce business, 71, 90
egress keyword, 119
Elastic Compute Cloud (EC2),

83, 99, 106, 108–122
Embedded Ruby (ERB)

code, 170
Encryption technology, 146
Erosion, 24, 25
Ever-evolving designs, 33–34

F
Facter tool, 143
Feature toggles/feature flags,

68, 76, 77
Fragility, 23
Fully managed services, 64
Functional approach, 12

INDEX

180

G
GitOps, 36
Git repository, 152–154, 159
Google Cloud Platform (GCP),

27, 101, 102, 106

H
Hashicorp Terraform, 99–133
Hybrid strategies, 54

I
Idempotency, 28, 137, 150
id_rsa.pub file, 119
Immutability, 28–29
Immutable architecture, 86
Immutable infrastructure, 6, 8, 11,

14–15, 28, 29, 86
Imperative method, 12, 13
Information technology

systems, 135
Infrastructure as a service (IaaS),

10, 30, 45, 49, 84, 106, 175
Infrastructure as code (IaC),

99, 165
adaption, 11
adoption, 95
advantages, 17
applicability, 86
approaches, 12, 13
artifacts, 89
automating workloads, 53
benefits, 8, 83

best practices, 13–16
concerns, 43–45
configuration drift, 9
considerations

in-depth knowledge, 26
organizational workflow, 26
perpetual steps, 27

cost/ROI, 10
data, structuring, 52
definition, 6
deployment, 95
elements, 50, 51
evaluation, 51, 52
goals, 20
issue, 20
key components, 93
life cycle, 9
organization’s project, 91
patterns, 35
perspectives, 7
provisioning, 10
secrets flow, 37, 38
security mechanisms, 52
situational criticality, 90
standard processes, 96
testing, 42, 43
time to production, 9
tools, 10
transformation, 95
use cases, 90
uses, 92, 95
utilization, 132

Infrastructure automation
chain, 83

INDEX

181

Infrastructure management
solutions, 102

Infrastructure teams, 13, 31, 50
ingress keyword, 119
Integrated development

environment (IDE), 41, 42
Integration testing, 14, 42

J, K
JSON, 100, 112, 117, 125

L
Least privileged position (LPR), 41
Load balancing, 78

M
Maintainers, 88
main.tf file, 105
Manifests, 138, 140, 143, 144, 150,

160, 162
Methodologies, 87, 147
Mobile application, 64
Modern infrastructures, 84–85
Mutable infrastructure, 11

N
Network functions virtualization

(NFV), 130
Network infrastructure automation

(NIA), 130

Nodes, 65, 68, 71, 86, 102, 136, 141,
152, 162, 166, 173

N-tier application architecture,
128, 129

O
Open Policy Agents (OPAs), 96
Operationalization, 73
Opscode, 165
Organizations, 5, 20, 21, 37, 43, 58,

85, 95, 131, 144
output.tf file, 105

P, Q
Performance indicators (KPIs),

77, 78, 81
Platform as a service (PaaS), 127
Practitioners, 43
Procedural approach, 13
Production complexity

deployment strategies, 78, 79
fail-safe environment

management, 74
feature flagging, 76, 77
monitoring, 75
power, 74
releases, 75
serverless architecture, 76

Production environments,
76, 78–80

Provider requirements, 47
providers.tf file, 105

INDEX

182

Public cloud providers, 7, 41, 51, 87
Puppet

actions, 140, 141
agents, 142, 148
applications, 163
architecture, 141–143
commands, 151, 160, 161
configurations, 144, 158
definition, 136
DevOps, 163
dynamic file

generation, 155–157
encryption technology, 146
environment, 138
indirector, 149
infrastructure, 147, 148
interaction, 150, 151
master-node communication,

139, 140
modeling language, 137
model structure, 145
modules, 138, 151, 154, 155
node-based agent, 140, 141
plugins, 148
principles, 147
procedural scripts, 137
programs, 140
repositories, 149, 152, 153,

158, 160
resource declaration, 137
roles/profiles, 138, 139
security mechanism, 146, 147
software developer–specific

procedures, 147

software engineers, 150
subcommands, 162
users, setting up, 153, 154

puppet apply command, 150, 153
Puppetlabs/apache, 138, 151
Puppet master, 139, 140, 142, 150,

152, 153, 155, 160, 161

R
Repeatable processes, 31
Reproducible systems, 29–30
Role-based access control

(RBAC), 37
Rolling deployment strategy

actions, 72
advantages, 72
architecture, 73
backward compatibility, 71
disadvantages, 72
e-commerce business, 71
factors, 72
mapping, 71
process, 73
stages, 71
uses, 71

Ruby programming language, 165

S
Scalability, 29, 95, 135, 141
Secrets, 37–39
Secure Shell (SSH), 39, 166
Security measures

INDEX

183

LPR, 41
threat detection, 42
tools, 41
updation, 41

Security requirements, 46
Security standards, 39
Self-reliant documentation, 34
Simple Storage Service (S3), 99, 118
Site reliability engineers

(SREs), 88, 89
Snowflake server, 23
Software-defined networks

(SDN), 129–130
Software developers, 94, 136, 147
Software development life

cycle, 4, 85
Software development

tools, 20, 44
Software engineers, 4, 94, 99, 144,

150, 165
Sprawling servers, 22
System administrators, 6, 31, 136,

144, 166

T
Technological automation

chains, 83
Technophiles, 43
Terraform, 45

activities, 100
API, 101
arguments, 107
Azure instance, 115

CLI (see Command-line
interface (CLI))

Cloud, 101
concepts

data source, 104
module, 103
output values, 104
providers, 103
resources, 104
state, 104
variables, 103

core, 105, 106
customers, 106
declaring resources, 111, 113
definition, 100
EC2 instance, 120, 121
files, 104
hosted remotely, 118
housed locally, 118
IaC, 122
JSON, 117
modules, 104, 116
providers, 106, 113–115
provisioner, 117
qualities, 100
registry, 114
resource, 119
resources and services, 102
state file, 117, 118
steps, 118
use cases

infrastructure
automation, 128

multicloud deployments, 127

INDEX

184

PaaS, 127
parallel environments, 128
policies, 130–132
SDN, 129, 130
self-manage, 127

variables, 107, 108
declaring output, 110
priority order, 109

workflow
apply, 103
plan, 103
write, 102

terraform apply command, 110
terraform init command, 105
Test-driven development

(TDD), 20
Trusted sources, 40

U
Unified coding, 92
Uniform governance, 53–54
User privileges, 39–40

V
vars.tf file, 105
Version control systems (VCSs), 10,

20, 66, 101, 144
Virtual machines (VMs), 12, 40, 53,

100, 103, 117, 130, 173
Virtual private network

(VPN), 52, 90

W, X, Y, Z
Web servers, 102, 128, 129, 172

Terraform (cont.)

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part 1: Concepts
	Chapter 1: Introduction to Infrastructure as Code
	The Culture of DevOps
	The Evolution from DevOps to Infrastructure as Code
	What Is Infrastructure as Code?
	The Perspectives

	Benefits Adapting Infrastructure as Code
	Improved Time to Production
	Reduction in Drifting Configurations
	Faster and Efficient Development Life Cycle
	Maximizing the Scope of Provisioning
	Lowered Costs and Increase in ROI

	Adapting Tools of Infrastructure as Code
	Factors Deciding Adaption of Infrastructure as Code
	Approaches for Infrastructure as Code

	Best Practices of Infrastructure as Code
	The Way Ahead

	Chapter 2: Patterns and Principles of Infrastructure as Code
	The Emergence of Infrastructure as Code
	The Focus with Infrastructure as Code
	The Challenges with Infrastructure as Code
	Sprawling Servers
	Configuration Drift
	Snowflake Server
	Fragility of Infrastructure
	Fear of Automation
	Erosion of Infrastructure

	Considerations for Quality Infrastructure
	In-Depth Knowledge
	Organizational Workflow
	Perpetual Steps

	The Principles of Infrastructure as Code
	Idempotency
	Immutability
	Easily Reproducible Systems
	Easily Disposable Systems
	Easily Repeatable Processes
	Consistent Systems
	Ever-Evolving Designs
	Self-Reliant Documentation

	The Patterns of Infrastructure as Code
	Updates in Documentation
	Using GitOps
	Securing Your Infrastructure
	Securing Secrets
	Adapting Security Standards
	Restricting User Privileges
	Relying on Trusted Sources
	Security Measures
	Least Privileged Position
	Using Security Tools
	Infrastructure Updates
	Threat Detection

	Testing the Infrastructure

	Concerns with Infrastructure as Code
	Infrastructure as Code at Scale
	Evolving Business Requirements
	Evolving Security Requirements
	Evolving Provider Requirements

	The Way Ahead

	Chapter 3: Management of Infrastructure as Code
	The Emergence of Infrastructure Teams
	Preparing Infrastructure as Code
	Evaluation of Infrastructure
	Choosing the Right Security Mechanisms
	Structuring the Data
	Automating Workloads
	Uniform Governance
	Hybrid Strategies

	Blue-Green Deployment Strategy
	Process and Architecture
	Working Mechanism
	Preparing Deployments
	Adapting Simplicity
	Environment Replicability

	Configuration Management
	Process and Architecture

	The Way Ahead

	Chapter 4: Production Complexity Management
	Modern Application Infrastructures
	Managing Deployments Without Downtime
	Canary Deployment Strategy
	Process and Architecture
	Working Mechanism
	Adapting Simplicity
	Environment Replicability

	Rolling Release Deployment Strategy
	Process and Architecture

	Steps for Managing Production Complexity
	Harnessing the Power
	Fail-Safe Environment Management
	Monitoring Your Infrastructure
	Compartmentalizing Releases
	Adapting Serverless Architecture
	Feature Flagging
	The Impact of Deployment Strategies

	Caveats While Managing Complex Production Environments
	The Way Ahead

	Chapter 5: Business Solutions with Infrastructure as Code
	Managing Modern Infrastructures
	Enabling Business Possibilities
	Enabling Domain Sustainability
	Supporting Evolving Strategies
	Decision-Making for Businesses
	The Way Ahead

	Part 2: Hands-on Experience
	Chapter 6: Hands-on Infrastructure as Code with Hashicorp Terraform
	Introduction to Terraform
	Why Choose Terraform?
	Understanding Terraform
	Core Concepts
	Directory Structure

	How Terraform Works
	Terraform Core
	Providers

	Implementing Terraform in Real Projects
	Priority Order for Terraform Variables
	Declaring Output Variables
	Declaring Terraform Resources
	Terraform Provider
	Terraform Modules
	Terraform Provisioner
	Terraform State File
	Example Terraform Configuration
	Terraform Command-Line Interface

	Terraform Use Cases
	Supporting Platform as a Service
	Managing Self-Service Clusters
	Performing Multicloud Deployments
	Managing Parallel Environments
	Application Infrastructure Automation
	Managing Software-Defined Networks
	Policy Compliance

	The Way Ahead

	Chapter 7: Hands-on Infrastructure as Code with Puppet
	Introduction to Puppet
	Why Choose Puppet?
	Understanding Puppet
	Architecture
	Puppet Master
	Puppet Agents
	Configuration Repository
	Facts
	Catalog

	Configuration
	Module Structure
	Security Mechanisms

	How Puppet Works
	Puppet Infrastructure
	Plugins
	Indirector

	Implementing Puppet in Real Projects
	Getting Started with Puppet
	Preparing the Repository
	Running the Repository
	Setting Up Users
	Creating Modules
	Dynamic File Generation
	Modifying Configurations
	Managing Repositories
	Puppet Command-Line Interface

	The Way Ahead

	Chapter 8: Introduction to Infrastructure as Code with Chef
	Introduction to Chef
	Understanding Chef
	Recipe
	Cookbook
	Resource
	Attributes
	Metadata
	Templates
	Libraries

	Chef Infrastructure
	Chef Workstation
	Configuration of Nodes with Chef Clients
	Chef Habitat
	Chef InSpec

	Final Words

	Index

