

GOA Community Services Science Research Institute (GCSSRI)

Early-Stage Engineering IP

GCSSRI Technology & Innovation Author: GCSSRI Date: 12/19/2025

CONFIDENTIAL TECHNICAL INTELLECTUAL PROPERTY

Early-Stage Engineering IP

Controlled Public Disclosure

Access Classification

Restricted — NDA Required for Full Disclosure

Disclosure Type

Paid Access Summary (Non-Transferable)

LEGAL NOTICE

This document contains confidential intellectual property disclosed for evaluation purposes only.

By accessing this document, the recipient agrees that:

No rights, licenses, or permissions are granted

No implementation, replication, or derivative use is permitted

All intellectual property remains exclusively with the Author

Further technical access requires a formal Non-Disclosure Agreement (NDA)

Unauthorized use, disclosure, or exploitation is strictly prohibited.

EXECUTIVE OVERVIEW

This document presents a high-quality early-stage technical concept addressing a real-world safety and usability challenge through non-invasive sensing logic and low-power system behavior.

The concept is:

Technically sound

Physically realizable

Scalable for manufacturing

Adaptable across multiple application contexts

This disclosure is intentionally scoped to preserve IP value while enabling serious evaluation.

PROBLEM DOMAIN

Across many everyday environments, there exists a recurring condition where human attention is relied upon for safety, despite the condition being:

Predictable

Detectable

Suitable for passive monitoring

Current solutions are often:

Over-engineered

Inefficient

Cost-ineffective

Poorly suited for simple, real-world use

This gap represents a clear opportunity for a compact, external, intelligent safety mechanism.

CONCEPTUAL SOLUTION

The proposed system is a standalone safety-oriented device designed

to:

Operate independently of existing infrastructure

Monitor a physical state using non-contact principles

Respond to state changes through deterministic logic

Function continuously with minimal energy demand

The system emphasizes simplicity, reliability, and external attachment, avoiding invasive integration or complex calibration.

TECHNICAL FOUNDATION

The concept is grounded in:

Established physical sensing principles

Lightweight signal interpretation

Threshold-based decision logic

Practical power management strategies

All underlying mechanisms are compatible with current, widely available technology and standard manufacturing processes.

ENGINEERING CHARACTERISTICS

External, non-intrusive deployment

Minimal user interaction required

Designed for consumer accessibility

Suitable for mass production

Flexible architecture for variant applications

The system design intentionally prioritizes robustness over complexity.

INTELLECTUAL PROPERTY POSITION

This IP represents:

A defined system behavior and application logic

A clear problem-solution mapping

A strong foundation for proprietary development

It is suitable for:

Acquisition

Exclusive licensing

Strategic partnership

Internal R&D expansion

This disclosure does not include implementation-level artifacts by design.

SCOPE OF DISCLOSURE

This document provides:

Conceptual architecture

Functional intent

Technical feasibility confirmation

Detailed schematics, firmware logic, component selection, and implementation specifics are reserved for NDA-protected disclosure.

NEXT STEPS

Interested parties seeking:

Full technical disclosure

Commercial rights

Development collaboration

Licensing discussions

Must proceed under a formal NDA.

CONTACT FOR NDA REQUEST

IP Holder:

(GOA Community Services Science Research Institute / Ilechukwu Michael Chikamso)

Contact Email: support@goacommunityservices.com

Reference: NDA Request — Early-Stage Technical IP

End of Disclosure

Prepared and presented by GOA Community Services Science Research Institute (GCSSRI)