1.1 MITC4 Shell Element

Constructors:

NonlinearShellMITC4 Constructor for the Linear and Geometric Stiffness matrices

and for the Internal Force vector.

Input: path_in (string), xyz_in (vector<vector<double>>),

vnor_in (vector<vector<double>>), thick_in

(vector<double>), xlocal_in (vector<vector<double>>), ylocal_in (vector<vector<double>>), zetGPcoord_in (vector<double>), zetGPweigth_in (vector<double>),

Stresses_in (vector<double>), DMatrix_in

(vector<double>)

path_in full path for the license file.

xyz_in nodal coordinates (e.g. xyz_in[2][0] is the x-coordinate of the third node of the element, xyz_in[0][1] is the

y-coordinate of the first node of the element).

vnor_in nodal normal vector components (e.g. vnor_in[2][0] is the

normal vector's x-component of the third node of the element, vnor_in[0][1] is the normal vector's y-component of the first node of the element).

thick_in thickness at the nodes of the element (e.g. thick_in[3] is the thickness value for the fourth node of the element).

xlocal_in x-local axis at the nodes. Together with "vnor_in" and

"ylocal_in" they form a local nodal coordinate system. The API constructs these vectors automatically if both "xlocal_in" and "ylocal_in" are passed through as empty

vectors.

ylocal_in y-local axis at the nodes. Together with "vnor_in" and

"xlocal_in" they form a local nodal coordinate system. The API constructs these vectors automatically if both "xlocal_in" and "ylocal_in" are passed through as empty

vectors.

zetGPcoord_in through the thickness Gauss integration coordinates

defined in the natural coordinate system. A minimum of 2 integration points must be used. If this vector goes in empty then the API will consider 2 integration points along the thickness direction of the shell

along the thickness direction of the shell.

zetGPweigth_in through the thickness Gauss integration weights. A

minimum of 2 integration points must be used. If this vector goes in empty then the API will consider 2 integration points along the thickness direction of the

shell.

Stresses_in stresses at the Gauss integration points of the element.

This vector is required as "non-empty" for the calculation of the internal force vector and the geometric (initial stress) stiffness matrix for nonlinear analysis.

DMatrix_in plane stress ($\sigma_{zz} = 0$) constitutive matrix in vector form

for all integration points. Each integration point has $25\,$

(5x5) positions in the D-Matrix vector.

NonlinearShellMITC4 Constructor for the Strains and Stresses.

Input: **path_in** (string), **xyz_in** (vector<vector<double>>),

vnor_in (vector<vector<double>>), thick_in

(vector<double>), xlocal_in (vector<vector<double>>), ylocal_in (vector<vector<double>>), zetGPcoord_in (vector<double>), Displacements_in (vector<double>),

DMatrix_in (vector<double>)

path_in full path for the license file.

xyz_in nodal coordinates (e.g. xyz_in[2][0] is the x-coordinate of

the third node of the element, xyz_in[0][1] is the

y-coordinate of the first node of the element).

vnor_in nodal normal vector components (e.g. vnor_in[2][0] is the

normal vector's x-component of the third node of the element, vnor_in[0][1] is the normal vector's y-component

of the first node of the element).

thick_in thickness at the nodes of the element (e.g. thick_in[3] is

the thickness value for the fourth node of the element).

xlocal_in x-local axis at the nodes. Together with "vnor_in" and "ylocal_in" they form a local nodal coordinate system.

The API constructs these vectors automatically if both "xlocal_in" and "ylocal_in" are passed through as empty

vectors.

ylocal_in y-local a

y-local axis at the nodes. Together with "vnor_in" and "xlocal_in" they form a local nodal coordinate system. The API constructs these vectors automatically if both "xlocal_in" and "ylocal_in" are passed through as empty vectors.

 $zetGPcoord_in$

through the thickness Gauss integration coordinates defined in the natural coordinate system. A minimum of 2 integration points must be used. If this vector goes in empty then the API will consider 2 integration points along the thickness direction of the shell.

Displacements_in

nodal displacement vector components (e.g. Displacements_in[2] is the z-displacement of node 1, Displacements_in[3] is the rotation of the "xlocal_in" axis of node 1, Displacements_in[4] is the rotation of the "ylocal_in" axis of node 1, and Displacements_in[5] is always 0.0. Displacements_in[12] is the x-displacement of node 3, Displacements_in[19] is the y-displacement of node 4).

DMatrix_in

plane stress ($\sigma_{zz} = 0$) constitutive matrix in vector form for all integration points. Each integration point has 25 (5x5) positions in the D-Matrix vector.

Public Methods:

void **get_BMatrix**

Strain-Displacement B-matrix in vector form (defined in the local coordinate system). The strain-displacement matrix is evaluated at each integration point of the element. There is a fixed number of in-plane integration points, 4 in-plane integration points, and a user-defined number of integration points along the thickness direction of the element. For instance, if the user defines 2 integration points along the thickness direction then the total number of integration points will be $2 \times 4 = 8$.

Arguments (Input):

igaus_in (int), zet_in (double). igaus_in is the variable controlling the in-plane integration points (ranges from 0 to 3) with igaus_in = 0: $\xi = -1.0/\sqrt(3.0)$, $\eta = -1.0/\sqrt(3.0)$, igaus_in = 1: $\xi = 1.0/\sqrt(3.0)$, $\eta = -1.0/\sqrt(3.0)$, igaus_in = 2: $\xi = -1.0/\sqrt(3.0)$, $\eta = 1.0/\sqrt(3.0)$, and igaus_in = 3: $\xi = 1.0/\sqrt(3.0)$, $\eta = 1.0/\sqrt(3.0)$

Arguments (Output):

*BMat_out (vector<double>). The strain-displacement B-matrix is calculated and stored in vectorial form with BMat_out[0:23] = B(1,1:24), BMat_out[24:47] = B(2,1:24), BMat_out[48:71] = B(3,1:24), BMat_out[72:95] = B(4,1:24) and BMat_out[96:119] = B(5,1:24). The rows of the strain-displacement matrix are consistent with the rows in the deformation tensor, i.e. row 1: ϵ_{xx} , row 2: ϵ_{yy} , row 3: $2\epsilon_{xy}$, row 4: $2\epsilon_{xz}$ and row 5: $2\epsilon_{yz}$.

void get_BMatrix_Transposed()

Determines the transpose of the B-matrix at each integration point defined by **igaus_in** and **zet_in**.

Arguments (Input): —

Arguments (Output): *BMatT (vector<double>), transposed B-matrix.

void set_LocalAxes_All() Sets the local axes (co-rotational axes) at each

in-plane integration point. The local axes are set

for $zet_{-} = 0.0$

Arguments (Input): **axesgp_in** (vector<double>).

axesgp_in[igaus_*9+0:2] = x-local vector, axesgp_in[igaus_*9+3:5] = y-local vector and axesgp_in[igaus_*9+6:8] = z-local vector, with

igaus_ representing the in-plane integration points

 $0 \le igaus_{-} < 4$.

Arguments (Output): —

 ${\tt vector}{<} {\tt double}{\gt} \ \mathbf{get_LocalAxes_All()} \quad {\tt Gets \ the \ local \ axes \ (co-rotational \ axes \ (co-rotational$

axes) for all in-plane integration points. The local axes are

calculated for $zet_{-} = 0.0$

Arguments (Input): —

Arguments (Output): —

vector<double> Calculate_StiffnessMITC4() Calculates the linear (tangent) Stiffness matrix of the element.

Arguments (Input): —

Arguments (Output): —

vector <double> get_StiffnessMITC4()</double>	(tang elem calle	is a getter for the linear gent) Stiffness matrix of the ent. This getter should be d after the method culate_StiffnessMITC4".
Arguments (Input):	_	
Arguments (Output):	_	
vector <double> get_Stiffness_InitialS</double>	tress(() Getter for the Geometric (Initial Stresses) Stiffness matrix of the element.
Arguments (Input): —
Arguments (O	utput): —
vector <double> get_StrainsMITC4()</double>	co-re	the Strain tensor in the local otational coordinate system ll integration points of the ent.
Arguments (Input):		
Arguments (Output):		
${\it vector}{<}{\it double}{>}~{\bf get_StrainsMITC4_Globa}$		Get the Strain tensor in the global coordinate system for all integration points of the element
Arguments (Inpu	ıt):	<u> </u>