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Abstract
The presence of contaminants in water has been of great concern worldwide, as it causes health risks to living organisms 
and general deterioration of the environment. Therefore, their elimination is essential. In the present study, rice husk (BRH) 
and wild sugarcane (BWS) biochars obtained by gasification were evaluated for their use as sorbents of malachite green 
dye (MG) and arsenite [As (III)] in aqueous solution. The chemical composition and physical structure of the two biochars 
were characterized by various techniques, including elemental analysis,  N2 adsorption–desorption isotherms, FTIR, and 
Z potential. In addition, the adsorbate removal rate was determined using the pseudo-first-order and pseudo-second-order 
models. Batch sorption studies were carried out to remove arsenite and MG from aqueous solutions, considering the operating 
parameters such as initial solution pH, temperature, contact time, concentration, and temperature. The results showed that 
120 min contact time is enough to reach sorption equilibrium. The percent removal of BRH and BWS to MG was 61.99% 
and 97.46%, respectively, while for arsenite, it was 82.79% and 82.36%, respectively. The kinetic analysis concluded that 
the sorption process predominantly followed the pseudo-second-order kinetic model for both case studies since the R2 value 
is approximately one. The sorption capacity calculated based on this model fitted better with the sorption capacity experi-
mental. Finally, it was demonstrated that BRH and BWS biochars obtained as a by-product of rice husk and wild sugarcane 
gasification could be used as low-cost sorbent materials to remove MG dye and arsenite from an aqueous solution.
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1 Introduction

Water quality is affected by persistent or pseudo-persistent 
organic and inorganic pollutants from natural sources and 
anthropogenic activities. The persistence of pollutants in 
water sources is of great concern since they may be able to 
be transferred to the trophic chain, presenting a risk to the 
environment and human health [1, 2].

Malachite green (MG) synthetic dye is a cationic organic 
compound used mainly by the textile industry. Besides, MG 
is used as an antifungal and antibacterial agent in the aqua-
culture industry [3]. Discharges of untreated dye effluents 
pollute surface water and groundwater as dyes tend to be sta-
ble, difficult to degrade, cumulative, and toxic [4]. In addi-
tion, MG hinders the photosynthesis process in the aquatic 
ecosystem contributing to high chemical oxygen demand 
(COD) [5]. The non-biodegradable and genotoxic character-
istics of the MG induce carcinogenicity and mutagenicity. 
In the aquaculture industry, the use of MG is not allowed in 
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many countries for the treatment of food-producing animals, 
including the USA, the UK, China, Canada, and the Euro-
pean Union. However, food control authorities established a 
minimum required performance limit (MRPL) of 2 μg/kg of 
MG residues in aquaculture products and the environmental 
quality standard limit for the concentration of MG in water 
was set around 0.5–100 μg/L [6, 7].

On the other hand, toxic inorganic elements such as arse-
nic tend to release into the environment from the natural 
weathering of rocks and industrial, agricultural, and min-
ing activities [8]. Arsenic contamination has been reported 
in many countries because of high concentrations in water 
sources. Arsenic-contaminated irrigation water represents a 
major risk to food safety, agricultural production, and soil 
contamination. Different studies have reported the bioac-
cumulation of arsenic in different parts of the plant, in the 
order roots > stem > leaves > edible parts in crops such as 
rice, wheat, maize, and some fruits and vegetables [9, 10]. 
Therefore, the recommended permissible limit of arsenic 
intake in drinking water as set by the World Health Organi-
zation (WHO) should be lower than 10 μg/L as a provisional 
guideline value [11]. Arsenic is a metalloid that can be pre-
sent as arsenite [As (III)] or arsenate [As (V)]. They are more 
toxic and mobile than organic arsenic compounds [12, 13]. 
Additionally, As (III) is more difficult to remove from water 
than As (V) because at pH < 9 As (III) exists in the uncharged 
form  (H3AsO3). The negatively charged species of As (III), 
including  H2SO3

−,  HAsO3
2−, and  AsO3

3−, are found at a pH 
higher than 9.2. Consequently, the removal of As (III) in 
water by ion exchange or sorption processes is less effective 
than for As (V), which can exist in the form of different ions 
in a wide range of pHs [14, 15].

Different remediation technologies have been used for 
the removal of inorganic and organic pollutants present in 
water, such as flocculation-coagulation [16], electrochemi-
cal oxidation and photocatalytic processes[17], membrane 
separation [18], and phytoremediation [19], among others 
[20]. Currently, special attention is focused on the sorption 
process as a simple, efficient, and low-cost alternative for 
effectively remedying different contaminants in water [21]. 
Activated carbon is the most common and widely used sorb-
ent for removing pollutants. However, the high production 
price and the use of non-renewable feedstocks have pro-
moted the search for alternative materials of low cost and 
greater availability [22, 23]. Recent studies have focused 
on the use of different materials as potential sorbents, such 
as biochar, obtained by pyrolysis of industrial organic by-
products of agricultural wastes, including the use of plant 
and animal wastes, sewage sludge, and organic municipal 
solid waste as materials for the removal of dyes, heavy met-
als, metalloids, and other contaminants [24].

Conventionally, studies have used the slow pyrolysis pro-
cess to obtain biochar by thermal decomposition of biomass in 

an inert atmosphere [24]. Generally, biochar from gasification 
has not been used extensively for environmental management; 
its use has been studied mainly as a soil amendment agent or 
growing media component [25, 26]. However, the utilization 
of the top-lit updraft gasification process has previously been 
tested to produce biochar with properties for new uses [27]. 
Therefore, it is an alternative that can be explored to use bio-
char for environmental management.

The main objective of this study is to evaluate the potential 
of rice husk and wild sugarcane biochars obtained by the gasifi-
cation process as sorbents in removing the MG and the As (III) 
from aqueous solutions. Rice husk is a highly available agro-
industrial waste biomass; its main components are cellulose, 
hemicellulose, lignin, and minerals that depend on the variety 
of rice, climatic conditions, and geographical location of the 
crop [28]. In Panama, the wild sugarcane (Saccharum sponta-
neum L.) is considered an invasive species of rapid propaga-
tion and persistence since it alters the growth process of native 
plants [29]. In addition, other studies have focused on using 
wild sugarcane as an energy resource [30] or for bioremediation 
of groundwater contaminated with nitrate [31, 32]. Recently, 
biochar from wild sugarcane was evaluated for removing a syn-
thetic herbicide (atrazine) in aqueous solutions [33].

The main objective of the present work is to study the 
potential use as sorbents of MG and As (III) of two biochars 
obtained as by-products of rice husk and wild sugarcane 
gasification. Batch sorption studies were carried out, and 
the interaction between sorbent and sorbate was evaluated 
using kinetic models (pseudo-first-order, pseudo-second-
order) and sorption parameters.

2  Materials and methods

2.1  Sorbates

Sodium (meta) arsenite and malachite green oxalate dye 
with purity ≥ 90% were supplied by Sigma–Aldrich chemical 
company. These were used to prepare the stock solutions for 
the batch sorption experiments. The chemical characteristics 
of both sorbates are shown in Table 1.

2.2  Preparation of biochars

Two types of biomasses were selected as raw materials to 
produce biochar, rice husks (RH) and wild sugarcane (WS) 
(Saccharum spontaneum L.). The rice husk biomass is the 
agro-residual product of the company Molino el Anhelo in 
Panama, and the sugarcane wild was obtained from the local 
area in Chilibre (Panama), according to [33]. A top-lit updraft 
(TLUD) gasification reactor was used to carbonize the bio-
masses with an air supply of 16 L/min. The carbonization 
process used a total of 1107 g of RH and 1741 g of WS with 
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a particle size of less than 4.75 mm. The gasification process 
was carried out according to previous studies [25, 34]. Reac-
tion temperatures were measured using 2 K-type thermocou-
ples (1/8 in. diameter) distributed along the reactor, and tem-
peratures were recorded at a sampling rate starting from 1 s 
with a data acquisition system 4-channel K thermometer SD 
logger (88,598 AZ model, Taichung City 427, Taiwan R.O.C).

2.3  Biochar characterization

The following parameters were determined for each biochar: 
pH and redox potential (Eh) were determined at a dilution of 
0.1:25 (g  mL−1) using a Crison micro pH 2000 and a pH 60 
DHS, respectively [35, 36]. Ash percentage was determined by 
loss on ignition (LOI) method [37], and cation exchange capac-
ity (CEC) was determined with the PerkinElmer AAnalyst 400 
AA Spectrophotometer according to the standardized protocol 
of ISO 2347 [38]. Z potential analysis was performed using 
the Malvern Zetasizer Nano ZS90. C, H, N, and S contents 
were determined by dry combustion using a LECO CHNS 
932 analyzer (SCAI-Málaga University). Oxygen was calcu-
lated by difference as 100% − (%C + %H + %N + %S + %Ash
). Textural parameters of two biochars were determined by  N2 
adsorption isotherms, obtained using an ASAP 2420 gas sorp-
tion analyzer from Micromeritics (SCAI-Málaga University). 
The sample (around 120 mg) was previously degassed under 
dynamic vacuum conditions to constant weight at 150 °C. The 
apparent specific surface area (SBET) and micropore volume 
(Smic) were obtained using the MicroActive software (v-4.03) 
from Micromeritics.

Finally, biochars were analyzed by Fourier transform infra-
red spectroscopy (FTIR) using a Bruker vertex70 FTIR spec-
trophotometer (SCAI-Malaga University). The measurements 
were carried out by transmission with the biochar power sam-
ple dispersed in KBr. A standard spectral resolution of 4  cm−1 
in the spectral range of 4000–400  cm−1 and 64 accumulations 
per sample was used for the spectra acquisition.

2.4  Sorption studies

Sorption studies will be performed with MG and As (III) 
solutions.

2.4.1  Batch sorption experiments

The essential parameter to consider when designing sorption 
experiments is the sorption kinetics, which determines the rate at 
which sorption occurs. In the batch sorption kinetics study, BRH 
and BWS were used as sorbents of MG and As (III) in a 250-mL 
solution, composed of a concentration of 30 ppm of sorbate and 
250 mg of each biochar, placed in a shaker in a water bath. Sorp-
tion experiments were performed at room temperature (21 °C), 
with controlled agitation, and carried out at the natural pH of 
the MG and As (III) solutions. Aliquot samples were extracted 
at specific time intervals of 10, 20, 30, 50, 70, and 120 min for 
MG and at time intervals of 10, 20, 30, 60, and 120 min for As. 
The final dye concentration of each aliquot was analyzed at a 
wavelength of 618 nm using a UV–Vis (Zuzi 4201/50 spectro-
photometer), and the final As (III) concentration was quantified 
by ICP-MS (SCIEX Perkin Elmer model) from SCAI-Malaga 
University. The equilibrium sorption capacity of MG and As, qe 
(mg·g−1), was calculated using Eq. 1:

Ci and Ce (mg·L−1) are the liquid-phase initial and equilibrium 
concentrations of MG and As (III) in solution, respectively. V is 
the batch volume (L), and W is the mass of dry sorbent used (g).

2.4.2  Kinetic models

The sorption analysis has been carried out using kinetic 
models, which provide insight into the sorption pathways, 

(1)qe =

(

Ci − Ce

)

(V)

W

Table 1  Chemical parameters 
of sorbates

Adsorbate Malachite Green oxalate Sodium (meta) arsenite  

Chemical Structure

Chemical formula C52H54N4O12 AsNaO2

Weight molecular 

(g·mol-1)

927.02 129.91

pKa 6.90 -

Kow Not determined -
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the likely mechanisms involved, and possible rate-limiting 
steps. To complete this analysis concerning the possible 
nature of the interactions between the sorbent and the 
sorbate (i.e., physisorption or chemisorption), the experi-
mental data were fitted to kinetic models such as pseudo-
first- and pseudo-second-order models [39].

Pseudo‑first‑order (PFO) It is also known as the Lagergren 
model. It assumes that the rate-limiting involves the diffusion 
process and that the sorption kinetic depends only on the sorb-
ate concentration. Physisorption phenomena control this model 
(Van der Waal forces, mechanical adhesion, and/or hydrogen 
bonding). The PFO equation is defined according to Eq. 2

After integration, the linearized form of PFO is obtained 
according to Eq. 3:

where qt is the sorption capacity at time t (mg·g−1), qe is the 
sorption capacity at the equilibrium (mg·g−1), and k1 is the 
rate constant of PFO  (min−1).

Pseudo‑second‑order (PSO) It assumes that the rate-limiting 
step is mediated by chemisorption (ion exchange, covalent 
forces, and/or sharing of electrons between sorbate and 
sorbent), which is related to sharing electrons between the 
surface of the sorbent and the sorbate. PSO equation is 
expressed according to Eq. 4:

where k2 (g/mg·min) is the equilibrium rate constant of PSO. 
After the equation is integrated and considering the boundary 
conditions, the PFO equation is defined according to Eq. 5:

3  Results and discussion

3.1  Physicochemical characterization 
and elemental composition of biochars

From the preparation of the biochars, 250 g of rice husk 
biochar (BRH) was obtained with a yield of 22.85%, and 
250 g of biochar from wild sugarcane (BWS) with a yield 
of 15.74%, reaching an average maximum temperature 
of 1070 °C and 673 °C respectively. Table 2 shows the 

(2)
dqt

dt
= k

1

(

qe − qt
)

(3)ln
(

qe − qt
)

= lnqe − k
1
t

(4)
dqt

dt
= k

2

(

qe − qt
)2

(5)
1

qt
=

[

1

k
2
qe

2

]

1

t
+

1

qe

physicochemical properties of the two biochars. BRH and 
BWS exhibit alkaline pH values of 9.63 and 10.6, respec-
tively. A high CEC value allows the retention and exchange 
of positively charged ions, since it influences the mobility 
or retention of certain contaminants. In the case of BWS, 
the CEC value is high value compared to BRH (346 and 99 
mmolc  kg−1, respectively). Other studies [25, 26, 40] also 
reported similar pH and CEC results for biochar obtained by 
gasification. Furthermore, the difference between the proper-
ties of each biochar could be due to the different feedstocks 
and thermochemical decomposition method (oxidation rate, 
temperature, and thermal heating rate) since they have a sub-
stantial influence on the intrinsic properties of biochar and 
directly can affect the selectivity of sorbents in terms of effi-
ciency for maximum sorbate removal [41, 42].

Table 2 shows the specific surface area of 197.64 and 
16.03  m2  g−1 for BRH and BWS, respectively. Additionally, 
the macropore volume was 3.053 and 6.84  cm3  g−1 for BRH 
and BWS, respectively. However, BWS had a lower micropore 
volume than BRH. The  N2 adsorption–desorption isotherms of 
BRH and BWS are displayed in Fig. 1. As seen in the graphs 
(Fig. 1), there is a considerable difference between both iso-
therms. BRH showed type IV isotherms related to mesoporous 
development, whereas BWS behaves as type V, which is also 

Table 2  Main properties, elemental analysis, and surface characteris-
tics of biochars

1 Values are reported as means ± standard deviation. Values in row 
followed by the same letter are not significantly different (p = 0.05) 
using the Duncan test
* Determined by Langmuir. **Determined by BET. aCalculated by 
difference

Properties BRH BWS

pH 9.63 ± 0.05a1 10.6 ± 0.08b
Eh (mV) 378 ± 20b 300 ± 7a
CEC  (mmolc  kg−1) 99 ± 20a 346 ± 12b
C (%) 36.59 54.13
H (%) 0.28 1.08
N (%) 0.36 0.85
Oa (%) 9.24 19.05
S (%) - 0.11
H/C 0.092 0.24
O/C 0.19 0.26
(N + O)/C 0.20 0.28
Ash (%) 53.53 24.78
Specific surface area  (m2  g−1) 197.64* 16.03**
The total pore volume  (cm3  g−1) 0.096 0.012
Average pore diameter (nm) 1047 2468
Vmicro  (cm3  g−1) 0.0604 0.00092
Vmeso  (cm3  g−1) 0.035 0.012
Vmacro  (cm3  g−1) 3.053 6.84
Porosity (%) 80.64 88.58
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associated with macroporous or non-porous materials. Differ-
ences at low relative pressures (P/P0 < 1) indicated high devel-
opment of microporosity in BRH compared to BWS.

3.2  Elemental analysis

The two biochars (BWS and BRH) showed different contents 
of oxygen (Table 2), which was higher for the BWS biochar 
(19.05%). Carbon content was also higher in BWS (54.13%) 
than in BRH (36.59%). The H/C, O/C, and (O + N)/C ratios 
were calculated in view of the values of C, H, O, and N in 
samples. BWS shows a higher H/C ratio (0.24), indicating 
lower aromaticity than BWS (H/C ratio of 0.09). Addition-
ally, BWS showed slightly higher O/C and (N + O)/C values 
than BRH. Similar to the results obtained previously, James 
et al. [34] reported carbon, hydrogen, and nitrogen contents 
of 36.99%, 5.14%, and 0.58%, respectively, for rice husk 
biochar obtained in a TLUD gasifier. Similarly, Peterson 
and Jackson [43] used a TLUD gasifier to obtain biochar 
from pelletized wheat straw and corn stover with a carbon 
content of 74.04% and 40.66%, respectively. In addition, 
Hansen et al. [44] obtained less H/C and O/C atomic ratios 
in pine wood biochar than in wheat straw biochar, indicating 
increased dehydration and decarboxylation concurrently and 
high aromaticity and stability resulting from the carboniza-
tion process of pine wood.

3.3  FTIR analysis

FTIR analysis of two biochars was performed to characterize 
the surface oxygenated functional groups (Fig. 2). The two 

biochars show similar spectra with main differences related 
to the relative band intensity. The broad band centered at 
3400  cm−1 can be attributed to -OH stretching vibrations 
of hydroxyl and carboxyl groups. The small bands at 2900 
and 2850  cm−1 indicated that both materials had a low con-
tent on aliphatic structures. Their intensity was similar for 
the two biochars. The band centered at 1630  cm−1 can be 
ascribed to C = O vibrations in carboxylic, ester, lactones, or 
quinone functional groups, becoming more intense in BWS 
than in BHR. This result was according to high O/C content 
of BWS (0.26) than of BHR (0.19). Probably, the higher 
gasification temperature used for BHR leads to the loss of 
some oxygenated groups. The slight band at 1380  cm−1 can 
be related to C-O in phenolic and ether groups and the pres-
ence of C-N groups. This band is more intense for BWS. 
Additionally, the broadband between 1000 and 1200  cm−1 
can be attributed to C-O bonds due to the presence of alco-
hols (C-O) and aliphatic ethers (C–O–C). Finally, Si–O 
stretching can be observed in this FTIR region, indicating 
the presence of  SiO2.

3.4  XRD analysis

Figure 3 shows the XRD analysis of the two biochars, 
BRH and BWS. The intensity of the diffraction beam has 
been expressed as a function of 2 theta. As can be seen 
in the graph, BRH and BWS are amorphous in nature, 
showing a broad band between 15 and 25° characteristic 
in these materials. On the other side, BWS also exhibits 
the crystallographic planes 28 and 40° that can indicate 
the presence of calcite that does not decompose during 
gasification at 673 °C.

Fig. 1  N2 adsorption–desorp-
tion isotherms of biochars BRH 
and BWS
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3.5  Zeta potential

Zeta potential (electro potential kinetics in colloidal systems) is 
the potential that is formed between the biochar and the medium. 
This potential provides important information about the behavior 
of the materials and stability in an aqueous solution. A large posi-
tive or negative Z potential indicates good stability of the suspen-
sions due to repulsion between particles. Figure 4 depicts the zeta 
potential as a function of the pH of BRH and BWS. Both materials 
show a negative Z potential in the utilized pH range, highlighting 
that BWS presents the most negative Z potential in magnitude.

3.6  Batch sorption kinetic studies

The kinetic study allows identifying the possible sorption 
mechanisms and the effect of the contact time in the process, 

which is necessary to evaluate the sorption efficiency of the 
dye. The influence of the biochars BRH and BWS on the 
removal of MG and As (III) was analyzed in terms of con-
tact time at intervals of 10 min up to 120 min, at an initial 
concentration of 30 mg  L−1 of the dye (MG), 250 mg of each 
biochar, room temperature (21 °C), constant agitation, and 
with an initial pH of 4.88 MG/BRH, 9.63 As/BRH, 9.95 
MG/BWS, and 10.50 As/BWS for the solution.

Figure 5 shows that the equilibrium state was estab-
lished at 120 min when the removal of MG and As (III) 
was kept constant. A 97.46% removal of MG dye was 
obtained using BWS, and a 61.99% removal of MG dye 
using BRH. Furthermore, it was observed that more than 
90% of MG removal occurred in the first 10 min when using 
BWS, as opposed to using BRH. The great affinity of BWS 
by MG can be related to high functionality, high negative 

Fig. 2  FTIR spectra of biochars 
BHR and BWS

5001000150020002500300035004000

BHR BWS

OH 
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Fig. 3  X-ray diffraction pattern 
of biochars BRH and BWS
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zeta potential, and high porous size (instead of lower total 
porosity). Similar to the results obtained, Rubio-Clemente 
et al. [40] obtained MG removal capacity of 84.60% at the 
equilibrium point (30 min) when using palletized pine wood 
biochar. Pathy et al. [22] obtained a removal efficiency of 
80% MG in the first 60 min of the sorption process when 
using algae biochar. However, the equilibrium point was 
reached at 180 min with a removal efficiency of 80 to 85%. 
In contrast, Tsai et al. [45] reported a maximum removal 
capacity of MG dye of 22.86% after 120 min of reaction 

when using rice husk biochar. On the other hand, 82.79% 
and 82.36% removal of As (III) was observed using BRH 
and BWS, respectively. Previous studies reported similar 
results for arsenic removal efficiency, specifically arsen-
ite. Sattar et al. [46] reported that sorption was achieved at 
120 min (equilibrium point) with 90% removal when using 
peanut shell biochar. Also, Ali et al. [47] reported remov-
ing up to 84% of As (III) when using almond shell biochar.

Table 3 shows the relevant kinetic parameters and cor-
relation coefficients for MG and As (III) sorption on each 

Fig. 4  Zeta potentials of 
biochars BRH and BWS under 
different pH values
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biochar sample employing the pseudo-first-order (PFO) and 
pseudo-second-order (PSO) kinetic models. The lineariza-
tion indicates the correlation coefficient (R2) values for 
the sorption kinetics fitted better to PSO (R2

@BRH = 0.922 
and R2

@BWS = 1) than to PFO (R2
@BRH = 0.828 and 

R2
@BWS = 0.784) suggesting that the sorption of MG on 

both biochars occurred by the chemisorption mechanism. 
In the case of arsenite, the correlation coefficient (R2) values 

were best fitted to PSO, suggesting that arsenic sorption on 
both biochars also occurs by the chemisorption mechanism. 
Therefore, chemisorption was found to be the rate-determin-
ing step, which controls the sorption of MG, and as for As 
(III), possibly both mechanisms (chemisorption and phys-
isorption) were exhibited on biochars.

The sorption process involves a combination of 
diverse types of interactions between biochar and sorbate. 

Table 3  Kinetic parameters for 
MG dye and As (III) sorption 
on each biochars (BRH/BWS)

Sample qe, exp
(mg  g−1)

Pseudo-first-order Pseudo-second-order

qe, cal
(mg  g−1)

k1
(min−1)

R2 qe, cal
(mg  g−1)

k2
(g/mg·min)

R2

MG/BRH 18.57 15.14 0.0141 0.828 18.64 0.00046 0.922
MG/BWS 29.19 28.00 0.0267 0.784 29.18 0.148 1
As/BRH 24.84 23.73 0.0259 0.39 24.85 0.336 1
As/BWS 24.80 24.71 0.0464 0.99 24.69 5.467 1

Fig. 6  (t/qt) versus t. For a MG 
and b As (III), linearization of 
PSO R² = 0.9222
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Fig. 7  Pseudo-second-order 
kinetic model. a MG. b 
As (III). Initial concentra-
tions = 30 mg/L, 250 mg of 
biochars (BRH and BWS), 
250 mL of volume, and room 
temperature
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Fig. 8  FTIR analysis post-sorp-
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Electrostatic interaction, ion exchange, complexation, and pre-
cipitation are the main mechanisms involved in the sorption 
of inorganic contaminants such as arsenic [48]. For organic 
contaminants such as MG, different mechanisms involved in 
sorption are observed, such as hydrogen bonding interaction, 
pore filling, electrostatic interaction, and π-π interactions [48, 
49]. In addition, the sorption mechanism depends mainly on 
factors such as porosity, specific surface area, pH value, and 
functional groups on the surface of biochar [50]. Different 
studies attributed that the functional groups on the surface of 
biochar (-OH, -COOH, thiol (-SH), phenolic) strongly attract 
As [51] and MG [24, 52] through the sorption mechanism.

Figure 6 represents the plot of t/qt versus t showing a 
linear relationship. Values of equilibrium sorption capacity 
qe and k2 were calculated from the intercept and slope of the 
plot. Figure 7 shows that the experimental sorption capacity 
for both samples fits better than theoretical sorption capac-
ity for the case of PSO, indicating that the sorption process 
follows the pseudo-second-order kinetic model.

3.7  FTIR and Z potential analysis of BWS samples 
after sorption of MG and arsenite

To verify the sorption mechanisms, FTIR analysis of BWS 
sample after sorption of MG and As (III) was performed 
(Fig.  8). BWS biochar showed an evident weakening in 
the band related to O–H bonds in As post-sorption mate-
rial  (BWSAs), related to carboxylic and hydroxylic groups 
(3000–3500  cm−1) that indicate the contribution of OH groups 
in the uptake of As (III). Additionally, the C = O stretching 
bands were shifted to higher wavelengths suggesting chemi-
cal interactions between the As (III) and the surface func-
tional groups, such as surface complexation, precipitation, 
and electrostatic interactions [46, 53, 54]. Finally, the new 
bands at peaks at 1380 and 1070–1100  cm−1 were related to 
the adsorbed arsenite (AsO–H) [55]. Furthermore, as can be 
observed in Fig. 8, similarly, there is an evident weakening of 
the O–H band found between 3000 and 3500  cm−1 in the MG 
post-sorption biochar spectra  (BWSMG). This fact indicates 
that there might be a strong sorption mechanism, such as a 
chemical bond through electron sharing between the nitrogen 
part of the amine functional group in the MG structure and the 
O–H functional group in the biochar [53, 56].

Table 4 shows the zeta potential and hydrodynamic diam-
eter of BWS post-sorption of As (III) and MG. As observed, 
the Z potential of BWS biochar increases to less negative 
zeta potential values with the sorption of MG and As (III). 
This difference between the zeta potential of BWS and the 
post-sorption material suggests that MG and As (III) mol-
ecules had been attached to the BWS sorbent. It is noticed 
that hydrodynamic diameter increases; nevertheless, the 
polydispersity index is 1, which indicates that the samples 
are heterogeneous in size, which can be due to their agglom-
eration or aggregation.

4  Conclusions

Biochars obtained as by-products of rice husks and wild sug-
arcane gasification showed adequate characteristics to be 
used as sorbent of malachite green and arsenic from water 
solutions. The main conclusions are summarized as follows:

Sorption capacity values of biochars were 18.57 and 
29.19 mg·g−1 for MG dye and 24.84 and 24.71 mg·g−1 for 
arsenite.

Both biochars showed fast sorption kinetics reaching 
equilibrium at 120 min and, in turn, resulted in a high sorp-
tion capacity, with an initial concentration of 30 mg·L−1 
of both sorbates. The fits of the kinetic results indicated 
more accurately that the pseudo-second-order model best 
describes the sorption of two biochars, suggesting that the 
removal of MG dye and arsenite mainly supported the chem-
isorption. Moreover, according to post-sorption analysis, the 
functional groups -OH, C = O, and C = C were involved in 
the sorption of MG dye and arsenite on biochar. From the 
characterization data, it was observed that biochar obtained 
as by-product of wild sugarcane gasification is the biochar 
with the highest sorption capacity. This can be attributed to 
the combination of properties: functional groups, elemental 
composition, zeta potential, and cation exchange capacity.
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