

SCALE DRAWINGS

1) On a drawing, the scale is 1 cm to 10 km. What do the following lengths on the drawing represent in real life?

a. 2 cm
b. 4 cm
c. 5 cm
d. 1.5 cm
20 km
40 km
50 km
15 km

2) On a design layout, the scale is 1 cm to 5 m. What do the following lengths on the layout represent in real life?

a. 2 cm
b. 3 cm
c. 0.5 cm
d. 0.2 cm
10 m
15 m
2.5 m
1 m

3) On a globe, the scale is 1 cm to 500 miles. What do the following lengths on the globe represent in real life?

a. 5 cm
b. 10 cm
c. 0.5 cm
d. 0.1 cm

2500 miles
250 miles
50 miles

- 4) On the diagram of a stadium, the scale is 2 cm to 10 m. How many centimetres on the diagram are needed to represent 30 m?
 6 cm
- 5) On a blueprint, the scale is 0.5 cm to 1 m. How many centimetres on the blueprint are needed to represent 3 m? 1.5 cm
- 6) On a map, the scale is 1 cm to 8 miles. How many centimetres on the map are needed to represent 12 miles? 1.5 cm
- 7) On a scale diagram, 1 cm represents 4 m. What is the actual distance for a line of 6.5 cm? 26 m

- 8) A map uses a scale of 1 cm to 2 km. How far is 7.5 cm on the map in real life? 15 km
- 9) A statue model uses a scale of 1 cm to 20 cm. The model is 18 cm long. What is the actual length of the statue in real life? 360 cm (3.6 m)
- 10) Express the following scales as ratios in the form 1: n.

a. 1 cm to 2 m 1: 200
b. 1 mm to 10 cm 1: 100
c. 2 cm to 10 m 1: 500
d. 4 cm to 5 m 1: 125
e. 2 cm to 1 km 1: 50,000
f. 0.2 cm to 3 km 1: 1,500,000

11) The model of a car has a scale of 1:30. The actual length of the car is 4.2 m. How long is the model of the car in centimetres?

 $420 \text{ cm} \div 30 = 14 \text{ cm}$

12) The model of an office building has a scale of 1:150. The height of the model is 60 cm. What is the actual height of the office building in metres?

 $60 \times 150 = 9,000 \text{ cm} = 90 \text{ m}$

13) The map of a national park has a scale of 1: 25,000. The distance between two points on the map is 14 cm. Work out the actual distance between the two points in kilometres.

 $14 \times 25,000 = 350,000 \text{ cm} = 3.5 \text{ km}$

14) A garden pond is made of a rectangle 14 m by 6 m with a semicircle attached to one of the long 14 m sides.

A scale drawing of the pond is made with a scale of 1: 200.

a. Find the length (in mm) on the drawing of the straight long edge.

```
14 \div 200 = 0.07 \text{ m}

0.07 \times 100 = 7 \text{ cm}

7 \text{ cm} \times 10 = 70 \text{ mm}
```

b. Work out the area of the pond on the drawing in cm². Give your answer to 3 significant figures.

```
Dimensions of rectangle on drawing:

Length = 14 \div 200 = 0.07 \text{ m} = 7 \text{ cm}

Width = 6 \div 200 = 0.03 \text{ m} = 3 \text{ cm}

Rectangle area = 7 \times 3 = 21 \text{ cm}^2

Semi-circle area = \frac{1}{2} \times \pi \times 3.5^2

= 19.2422... \text{ cm}^2

Area of pond = 21 + 19.2
```

c. Find the actual area of the pond in m². Give your answer to 3 significant figures.

 $= 40.2 \text{ cm}^2 (3 \text{ sf})$

Actual area =
$$(14 \times 6) + (\frac{1}{2} \times \pi \times 7^2)$$

= $160.9690...$
= $161 \text{ m}^2 (3 \text{ sf})$

d. A stone border is built 0.5 m from the outer perimeter of the pond. The border follows the same shape as the pond. Calculate the area between the border and the pond. Give your answer to 3 significant figures.

15 m Total enclosed area

$$= (15 \times 6.5) + (\frac{1}{2} \times \pi \times 7.5^{2})$$

= 185.857 ...

Area between pond and border

 $= 24.9 \text{ m}^2 (3 \text{ sf})$