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Abstract

This paper provides a comprehensive technical and historical overview of
NVIDIA's Jetson embedded computing platforms, tracing their evolution
from the initial Jetson TK1 in 2014 to the powerful Orin series. We detail the
significant advancements in computing power and power efficiency across
generations, highlighting key architectural changes and their impact on AI
and robotics applications. Furthermore, the paper delves into Sony's
pioneering SenSWIR MX series image sensors, specifically comparing the
initial offerings against the latest MX993 series. We analyze their unique
capabilities, including the crucial dual camera modes (visible and SWIR),
advancements in cooling technologies, and the considerable advantages
these features offer for diverse industrial and scientific applications. This
historical perspective aims to illustrate the rapid progress in edge AI
hardware and advanced imaging solutions. Building upon this, the paper
then integrates these technologies into a detailed technical analysis of an
autonomous marine microplastic detection system. This system employs a
symbiotic drone-buoy architecture, leveraging the NVIDIA Jetson AGX Orin
and Orin NX platforms as computational backbones. The architectural
details, capabilities, and intricate interplay of these edge AI processors with
the Sony SWIR IMX993 sensor are meticulously presented. A significant
focus is placed on the Adaptive SWIR Sensor Readout and Edge Processing
(ASREP) algorithm, outlining its conceptual framework and precise
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mathematical formulations for adaptive exposure, gain, and frame rate
control. The NVIDIA Isaac ROS robotic development platform and the utility
of NVIDIA Sim for synthetic data generation and surface/area data
processing are also elucidated for their roles in facilitating the real-time,
accelerated execution of advanced machine learning models and the robust
development of the system. Drawing from foundational and advanced
technical analyses in embedded systems and sensor modeling underscores
the critical role of hardware-software co-design and dynamic mathematical
optimization in achieving efficient, scalable, and autonomous environmental
monitoring [R.K.D. Kho 2017, 2019, 2020, 2025].

1. Introduction

The fields of embedded AI and advanced imaging have witnessed
exponential growth over the past decade. The demand for powerful, energy-
efficient computing at the edge, coupled with increasingly sophisticated
sensor technologies, has driven innovation in both hardware and software.
This paper aims to provide a structured technical and historical overview of
two key players in this evolution: NVIDIA's Jetson platform and Sony's
SenSWIR MX series image sensors. By examining their development from
their respective introductions to the present day, we can better understand
the trajectory of these technologies and their profound impact on various
industries. Furthermore, this paper will illustrate the practical application of
these cutting-edge technologies within the context of an autonomous
marine microplastic detection system.

1.1. Context and Significance of Autonomous SWIR Sensing

The escalating global threat posed by microplastic pollution in marine
environments necessitates the development of advanced and scalable
monitoring solutions [1.1]. Microplastic particles, defined as less than 5 mm
in size, are ubiquitous contaminants stemming from diverse sources,
including the fragmentation of larger plastic debris, industrial effluence, and
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consumer products [1.1]. Their pervasive distribution across all marine
environments, from surface waters to deep-sea sediments, underscores the
critical need for robust monitoring technologies to comprehend this
environmental challenge and formulate effective mitigation strategies [1.1].

Traditional methods for quantifying microplastics, such as laborious manual
sampling via nets and subsequent laboratory analysis, are inherently limited
in their spatial and temporal scope [1.1]. These techniques often provide
only a fragmented snapshot of a highly dynamic problem, which is
insufficient for understanding the full extent and movement of microplastic
contamination [1.1]. This fundamental limitation in data collection scale
highlights an urgent demand for more efficient, autonomous, and scalable
monitoring technologies capable of providing broad-area coverage with
high temporal resolution [1.1].

In response, remote sensing technologies have emerged as a promising
alternative for large-scale, non-invasive surveillance [1.1]. Specifically,
imaging within the Short-Wave Infrared (SWIR) spectrum, typically ranging
from 1000 nm to 2500 nm, has proven highly effective for identifying
various plastic polymers [1.1]. Different plastics exhibit unique spectral
absorption and reflection characteristics within this range, enabling their
differentiation from surrounding materials such as water, algae, and other
organic matter [1.1]. Several studies have successfully demonstrated the
potential of SWIR imagery for detecting plastic items, including debris on
beaches and in coastal areas [1.1]. The integration of unmanned aerial
vehicles (UAVs), or drones, for environmental monitoring further enhances
this capability by enabling rapid deployment and efficient coverage [1.1].
This strategic shift from localized, discrete data points to continuous, broad-
area coverage is essential for understanding dynamic environmental
problems and is a direct consequence of the inherent limitations of manual
sampling.
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1.2. Overview of the Integrated Drone-Buoy System

This paper introduces a novel design framework for an autonomous system
dedicated to the efficient detection and mapping of microplastics on sea
surfaces [1.1]. The proposed system integrates a stationary sea buoy and a
mobile drone, conceived as a symbiotic pairing of two intelligent platforms
[1.1]. The buoy functions as an autonomous base station, serving as the
operational anchor and command hub for long-term, autonomous
deployment [1.1]. It is equipped with environmental sensors, a Sony Short-
Wave Infrared (SWIR) sensor for continuous localized monitoring, and an
NVIDIA Jetson AGX Orin 64GB for onboard data processing and mission
management [1.1]. The drone, conversely, serves as the primary mobile data
acquisition platform, carrying a Sony SWIR IMX993 sensor and an NVIDIA
Jetson Orin NX 16GB [1.1].

This integrated approach aims to maximize the scanned sea surface area for
microplastic detection within defined operational constraints, specifically a
45-minute drone flight time and a 25-meter maximum scan height [1.1]. The
system's intelligence is significantly enhanced by the Adaptive SWIR Sensor
Readout and Edge Processing (ASREP) algorithm, which is central to its
intelligent data processing pipeline [1.1]. The symbiotic relationship
between the buoy and the drone addresses the inherent limitations of each
platform individually. Drones possess limited endurance, while stationary
buoys have restricted spatial coverage. By combining these elements, the
system achieves both persistence through the buoy's continuous operation
and broad-area coverage via the drone, enabling repeated, extended
autonomous missions without manual intervention [1.1]. This represents a
critical advancement for long-term environmental monitoring.

1.3. Scope and Contributions of This Technical Paper

Building upon foundational investigations into integrated SWIR sensing and
UAV-buoy systems [1.1], and drawing insights from previous advanced
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technical analysis of embedded systems and sensor modeling, including the
work of Raymund K.D. Kho et al. (2017, 2019, 2020) on topics such as
advanced technical analysis of NVIDIA Jetson systems and mathematical
modeling for SWIR sensor readout and edge processing, as well as their
anticipated contributions in 2025 [1.4, 1.5, 1.7, 1.11], this paper presents a
comprehensive strategic framework for a next-generation autonomous
microplastic detection system. The primary contribution of this work is a
detailed technical analysis of the system's core components, their functional
interplay, and the intelligent data processing pipeline. A specific focus is
placed on the architectural details and capabilities of the NVIDIA Jetson AGX
Orin and Orin NX platforms, the technical specifications and operational
considerations of the Sony SWIR IMX993 sensor, the intricate mathematical
modeling underpinning the ASREP algorithm, and the integration of NVIDIA
Isaac ROS and NVIDIA Sim for robust development and deployment. This
paper aims to provide a robust foundation and a clear roadmap for
developing autonomous systems capable of supplying critical data for
scientific research, environmental policy, and future remediation efforts
related to marine microplastic pollution [1.1].

2. Evolution of NVIDIA Jetson Platforms: From Kepler to
Ampere

NVIDIA's Jetson series has consistently pushed the boundaries of embedded
AI computing, offering developers and engineers increasingly powerful and
efficient System-on-Modules (SOMs). This section details the progression of
key Jetson modules, focusing on their computational capabilities and power
consumption.

2.1. Early Series: Jetson TK1, TX1, and TX2

The foundational Jetson modules laid the groundwork for NVIDIA's
dominance in edge AI.
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NVIDIA Jetson TK1 (Launched October 2014)

Architecture: Kepler 2.0 (GK20A GPU)

GPU: 192 CUDA Cores

CPU: NVIDIA Tegra K1 (ARM Cortex-A15 based)

Memory: 2 GB DDR3L (64-bit interface, 7.472 GB/s bandwidth)

Computing Power (FP32): 365.2 GFLOPS

Power Consumption (TDP): 8 W

Key Features: Pioneering the concept of an embedded supercomputer, the
TK1 demonstrated the potential of GPU-accelerated computing for vision
and basic AI tasks at the edge. Its low power consumption for the
performance offered was a significant highlight.

NVIDIA Jetson TX1 (Launched 2015)

Architecture:Maxwell (256 CUDA Cores)

CPU: Quad-core ARM Cortex-A57

Memory: 4 GB LPDDR4 (25.6 GB/s bandwidth)

Computing Power (FP32): 1 TFLOP/s

Power Consumption (TDP): 10W - 15W

Key Features: The TX1 significantly boosted performance over the TK1,
introducing the Maxwell architecture to the embedded space. It offered
greater memory bandwidth and was designed for more complex deep
learning applications.

NVIDIA Jetson TX2 (Launched 2017)

Architecture: Pascal (256 CUDA Cores)

CPU: Dual-Core NVIDIA Denver 2 + Quad-Core ARM Cortex-A57

Memory: 8 GB 128-bit LPDDR4 (59.7 GB/s bandwidth)



7

Computing Power (FP32): 1.3 TFLOP/s (Single Precision), 665.6 GFLOPS
(FP32)

Power Consumption (TDP): 7.5W / 15W (configurable)

Key Features: The TX2 offered improved power efficiency and increased
performance compared to the TX1, primarily due to the more advanced
Pascal architecture and the "Denver 2" custom CPU cores, making it suitable
for even more demanding edge AI applications.

2.2. The Xavier Generation: Stepping Up AI Performance

The Xavier series marked a substantial leap in AI inference capabilities,
introducing Tensor Cores for the first time in the Jetson line.

NVIDIA Jetson Xavier NX 16GB (Launched 2020)

Architecture: Volta (384 CUDA Cores, 48 Tensor Cores)

CPU: 6-core NVIDIA Carmel ARMv8.2 64-bit CPU

Memory: 16 GB 128-bit LPDDR4X (51.2 GB/s bandwidth)

AI Performance: 21 TOPS (INT8), 1.33 TFLOPS (FP16)

Power Consumption (TDP): 10W, 15W, 20W (configurable)

Comparison to First Jetson NX (8GB): The first Jetson Xavier NX (8GB)
featured 8GB of LPDDR4X memory and the same GPU/CPU architecture. The
16GB version doubled the memory capacity, which is crucial for running
larger deep learning models and more complex multi-sensor applications,
where memory size often becomes a bottleneck. While the core AI
performance (TOPS) remains similar for a given power mode, the increased
memory allows for a greater variety and complexity of workloads to be
handled efficiently. The 8GB version also has slightly less memory
bandwidth at 25.6 GB/s, while the 16GB version offers 51.2 GB/s.
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2.3. The Orin Era: Redefining Edge AI Performance

The Jetson Orin series represents the current pinnacle of NVIDIA's
embedded computing, leveraging the Ampere architecture for
unprecedented AI performance at the edge.

NVIDIA Jetson AGX Orin 64GB (Launched 2022)

Architecture: Ampere (2048 CUDA Cores, 64 Tensor Cores) [1.2]

CPU: 12-core Arm Cortex-A78AE v8.2 64-bit CPU [1.2]

Memory: 64 GB 256-bit LPDDR5 (204.8 GB/s bandwidth) [1.2]

AI Performance: 275 TOPS (INT8), 10.65 TFLOPS (FP16)

Power Consumption (TDP): 15W - 60W (configurable) [1.2]

Comparison to Older AGX Xavier (32GB): The AGX Orin 64GB dwarfs the
AGX Xavier in every performance metric. The AGX Xavier (32GB) offered up
to 32 TOPS (INT8) and 11 TFLOPS (FP16), with 32GB of LPDDR4X memory at
136.5 GB/s, and a TDP of 10W-30W. The AGX Orin 64GB provides an 8.5x
increase in AI performance (TOPS), significantly higher memory
bandwidth, and double the memory capacity. This massive leap is attributed
to the Ampere GPU architecture, which brings more powerful Tensor Cores
and a more efficient design, enabling the execution of much larger and
more sophisticated AI models in real-time.

NVIDIA Jetson Orin NX 16GB (Launched 2022)

Architecture: Ampere (1024 CUDA Cores, 32 Tensor Cores) [1.3]

CPU: 8-core Arm Cortex-A78AE v8.2 64-bit CPU [1.3]

Memory: 16 GB 128-bit LPDDR5 (102.4 GB/s bandwidth) [1.3]

AI Performance: 100 TOPS (INT8)

Power Consumption (TDP): 10W - 25W (configurable) [1.3]
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Comparison to First Jetson Xavier NX (8GB/16GB): The Orin NX 16GB is a
direct successor to the Xavier NX series. Compared to the Jetson Xavier NX
16GB, the Orin NX 16GB offers a nearly 5x increase in AI performance (TOPS)
while maintaining similar power envelopes. This significant boost comes
from the shift to the Ampere architecture, which provides superior
performance per watt. The Orin NX also features a more powerful CPU and
higher memory bandwidth, enabling faster data processing and improved
overall system responsiveness for advanced edge AI applications.
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Note: TOPS (Tera Operations Per Second) and TFLOPS (Tera Floating-point
Operations Per Second) are used to represent AI inference and general floating-
point performance, respectively. The exact performance metrics can vary based
on workload and optimization.

3. Sony SenSWIR MX Series: Advancements in Short-Wave
Infrared Imaging

Sony's SenSWIR technology has revolutionized short-wave infrared (SWIR)
imaging by integrating InGaAs (Indium Gallium Arsenide) photodiodes with
standard silicon CMOS readout circuits using a unique Cu-Cu connection
technology [1.12, 1.13]. This innovation enables compact, high-resolution
SWIR sensors that can also capture visible light, opening new possibilities
for industrial inspection and scientific research [1.13].
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3.1. The First Sony SenSWIR MX Series (e.g., IMX990/IMX991, Introduced
2019)

The initial SenSWIR sensors, such as the IMX990 and IMX991, were
groundbreaking for their ability to cover a wide spectral range from 400 nm
(visible) to 1700 nm (SWIR) with a single sensor [1.13, 1.14].

Key Features (IMX990/IMX991):

Pixel Size: Industry's smallest 5 µm InGaAs pixels (at the time of release)
[3.1].

Resolution: IMX990: Approx. 1.34 effective megapixels (1296x1032), 1/2-
inch type. IMX991: Approx. 0.34 effective megapixels (656x520), 1/4-inch
type [3.1].

Spectral Range: 400 nm to 1700 nm, enabling both visible and SWIR
imaging [1.13, 1.15].

Shutter Type: Global Shutter.

Cooling: Often integrated with thermoelectric (TE) cooling elements (Peltier
coolers) to reduce dark current and noise, crucial for high-sensitivity SWIR
imaging [1.16, 3.2]. For example, the SWIR330KMA camera based on the
IMX991 offers regulated cooling with a max. Δt of 25°C below ambient [2].

Digital Output: Featured integrated digital conversion circuits, simplifying
camera design for manufacturers [3.1].

3.2. Advancements in the MX993 Series (e.g., IMX993)

TheMX993 series builds upon the success of the earlier SenSWIR sensors,
pushing the boundaries of resolution and pixel density.

Key Features (IMX993):

Resolution: 3.21 megapixels (2080x1544), making it the highest-resolution
SWIR image sensor in the industry at its release [1.6].
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Pixel Size: Even smaller at 3.45 µm, further enhancing resolution and
allowing for smaller optical formats while maintaining high pixel count [1.6].

Optical Format: 1/1.8" optical format, commonly found in visible-light
global shutter sensors, enabling the use of widely available C-mount lenses
[1.6].

Spectral Range: Continues to support the 400 nm to 1700 nm range [1.8].

Shutter Type: Global Shutter [1.6].

Cooling:While specific integrated cooling details for the IMX993 are less
widely published at the component level, the higher resolution and denser
pixel array generally necessitate efficient cooling solutions (often external to
the sensor itself, integrated into the camera module) to manage heat and
maintain signal-to-noise ratio, especially at higher frame rates. The
principles of TE cooling remain essential for optimal SWIR performance [1.1].

Frame Rate: Achieves up to 170fps (8bit), 150fps (10bit), and 90fps (12bit) at
full resolution, a significant improvement for high-speed applications [1.6].

3.3. Dual Camera Modes: Normal Camera Mode and SWIR Mode

A significant advantage of Sony's SenSWIR technology, present in both the
earlier and newer MX series, is the inherent capability for dual camera
modes: visible (normal camera mode) and SWIR mode, within a single
sensor.

Mechanism: This is achieved through Sony's unique SenSWIR architecture,
where photodiodes formed on an InGaAs compound semiconductor layer
are connected via Cu-Cu connections with a silicon (Si) layer that forms the
readout circuit. This design allows for high sensitivity across a broad
wavelength range, from the visible (400 nm) to the short-wave infrared
(1700 nm) [1.1, 1.2].
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Advantages of Dual Mode:

Reduced System Complexity and Cost: Previously, applications requiring
both visible and SWIR data necessitated two separate cameras, each with its
own optics, mounting, and processing pipeline [1.19]. A single SenSWIR
camera dramatically reduces hardware complexity, integration effort, and
overall system cost [1.1, 1.20].

Perfect Pixel-Level Alignment: Since both visible and SWIR images are
captured by the same sensor, there is no issue of spatial misalignment
between the two spectral bands. This is critical for applications requiring
precise data fusion or analysis, eliminating the need for complex calibration
routines to align images from separate cameras [1.1].

Enhanced Information Gathering: The combination of visible and SWIR
data provides a more comprehensive understanding of the scene or object
being imaged. Visible light reveals surface features and color, while SWIR
light can penetrate certain materials, detect moisture content, identify
chemical compositions, or "see through" obscurants like fog or smoke [1.4,
1.5, 1.21].

Expanded Application Scope: This dual-mode capability broadens the
range of applications for a single camera system. For example:

Industrial Inspection: Detecting defects or contaminants invisible in the
visible spectrum (e.g., moisture in food, foreign objects in packaging,
internal cracks in silicon wafers) while simultaneously capturing visual
quality [1.4, 1.5, 1.22].

Agriculture:Monitoring plant health by detecting subtle changes in
nitrogen content, water stress, or pests not visible to the naked eye,
alongside visible light for general crop assessment [1.4].

Recycling: Sorting materials by their unique spectral signatures (e.g.,
different types of plastics) while also allowing for visual identification [1.4].

Security and Surveillance: Improved night vision and ability to "see
through" challenging atmospheric conditions like fog, haze, or smoke,
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combined with standard visible light surveillance for contextual information
[1.4, 1.5].

Art and Cultural Heritage: Revealing underlying layers, detecting repairs,
and identifying pigments or materials in paintings and artifacts that are not
visible in normal light [1.4].

Faster Image Processing:With a single data stream from one sensor,
processing pipelines can be more efficient, leading to improved throughput
in high-speed inspection or analysis tasks [1.1].
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4. Core Hardware Components and Inter-Platform Interaction
(Autonomous Marine Microplastic Detection System)

4.1. NVIDIA Jetson AGX Orin 64GB: Architecture and Role in Base Station
Processing

The NVIDIA Jetson AGX Orin 64GB module serves as the central processing
unit and "central brain" of the autonomous sea buoy platform [1.1]. This
powerful edge AI platform is designed for high-performance computing,
making it exceptionally well-suited for the complex tasks required of a
persistent monitoring and command hub, which is not as constrained by
size, weight, and power as the drone.

The technical specifications of the Jetson AGX Orin 64GB underscore its
robust capabilities. It delivers up to 275 TOPS (Tera Operations Per Second)
of AI performance, driven by a 2048-core NVIDIA Ampere architecture GPU
with 64 Tensor Cores [1.2]. The CPU complex features a 12-core Arm Cortex-
A78AE v8.2 64-bit CPU with 3MB L2 and 6MB L3 cache [1.2]. Memory consists
of 64GB of 256-bit LPDDR5 DRAM, providing a substantial bandwidth of
204.8GB/s, complemented by 64GB of eMMC 5.1 storage [1.2]. The module
also includes two NVDLA (NVIDIA Deep Learning Accelerator) v2.0 engines,
further enhancing its deep learning inference capabilities [1.2]. Its power
consumption ranges from 15W to 60W, and its dimensions are 110mm x
110mm x 71.65mm [1.2].

The AGX Orin's powerful processing capabilities are utilized for several
critical functions on the buoy. These include aggregating and pre-processing
sensor data received from the buoy's environmental suite (wind, current,
wave sensors) and its stationary SWIR sensor [1.1]. Beyond data
aggregation, the AGX Orin runs complex algorithms for dynamic drone
mission planning, executing machine learning models for comprehensive
data analysis, and managing the buoy's power and communication systems
[1.1]. It plays a pivotal role in generating optimal flight plans for the drone
based on real-time environmental data [1.1]. The AGX Orin thus acts as a
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powerful central intelligence hub that offloads computationally intensive
strategic planning from the resource-constrained drone. This architecture
ensures that the drone's edge AI focuses on immediate, reactive tasks, while
the buoy handles proactive, long-term mission optimization, enabling a
distributed yet centrally coordinated autonomous system.

Feature Specification Source

AI Performance 275 TOPS (INT8
Sparse)

[1.2]

GPU 2048-core NVIDIA
Ampere architecture
GPU with 64 Tensor
Cores

[1.2]

CPU 12-core Arm Cortex-
A78AE v8.2 64-bit
CPU (3MB L2 + 6MB
L3)

[1.2]

Memory 64GB 256-bit
LPDDR5, 204.8 GB/s
bandwidth

[1.2]

Storage 64GB eMMC 5.1 [1.2]

DL Accelerator 2x NVDLA v2.0 [1.2]

Power Consumption 15W - 60W [1.2]

Dimensions (LxWxH) 110mm x 110mm x
71.65mm

[1.2]
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4.2. NVIDIA Jetson Orin NX 16GB: Architecture and Edge AI Capabilities
on the Drone

The NVIDIA Jetson Orin NX 16GB module is integrated into the drone,
serving as its "Onboard Edge AI Processor" [1.1]. This module was
specifically chosen for its optimal balance of high performance and power
efficiency within a compact form factor, which is crucial for an aerial
platform with inherent size, weight, and power (SWaP) constraints [1.1]. The
selection of the Orin NX, rather than the larger and more power-demanding
AGX Orin, is critical for maximizing the drone's operational endurance and
payload capacity.

The Orin NX features a GPU with 1024 CUDA Cores and 32 Tensor Cores
based on the NVIDIA Ampere architecture [1.1, 1.3]. These Tensor Cores are
purpose-built to accelerate the intensive matrix operations that form the
core of deep learning models, thereby making the onboard classification of
microplastics highly efficient [1.1]. Its CPU comprises 8 Arm Cortex-A78AE
cores [1.3]. It offers 16GB of 128-bit LPDDR5 memory with a bandwidth of
102.4 GB/s, and internal storage is typically eMMC 5.1, though the exact size
can vary depending on the specific module [1.3]. The power consumption
for the Orin NX 16GB is significantly lower than the AGX Orin, configurable
from 10W to 25W, which is vital for extending drone flight time [1.3]. Its
compact dimensions (69.6 mm x 45 mm) further facilitate integration into
space-constrained drone platforms [1.3].

The processing power of the Orin NX enables true edge AI, allowing for the
immediate identification and geotagging of microplastic hotspots directly on
the drone [1.1]. This capability significantly reduces latency and mitigates
the need for constant streaming of vast amounts of raw data back to the
buoy or ground station [1.1]. The selection of the Orin NX is not merely
about raw processing power; it is a fundamental enabler for the drone's
practical autonomy, directly mitigating the severe power and bandwidth
limitations inherent in aerial platforms operating for extended periods. By
performing critical detections and decisions locally, the system conserves
bandwidth and power, which directly translates to extended operational
flight time [1.1].
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Feature Specification Source

AI Performance Up to 100 TOPS
(INT8 Sparse)

[1.3]

GPU 1024 CUDA Cores, 32
Tensor Cores
(Ampere
architecture)

[1.1, 1.3]

CPU 8-core Arm Cortex-
A78AE

[1.3]

Memory 16GB 128-bit
LPDDR5, 102.4 GB/s
bandwidth

[1.3]

Storage eMMC 5.1 (size
varies)

[1.3]

Power Consumption 10W - 25W [1.3]

Dimensions (LxW) 69.6 mm x 45 mm [1.3]

4.3. Sony SWIR IMX993 Sensor: Detailed Technical Specifications and
Thermoelectric Cooling (TEC) Integration

The Sony SWIR IMX993 camera serves as the drone's primary imaging
payload, specifically chosen for its high sensitivity in detecting the spectral
signatures of microplastics on the water surface [1.1]. This sensor is part of
Sony's SenSWIR™ family, which also includes the IMX990 [1.1].

The IMX993 boasts a resolution of 3.21 megapixels, with recording pixels of
2080(H) x 1544(V) [1.6]. It features a 1/1.8" optical format and a small pixel
size of 3.45 µm x 3.45 µm, which contributes to its ability to capture fine
details [1.6]. The sensor employs a global shutter, is monochrome, and
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offers high maximal frame rates: 170fps at 8-bit depth, 150fps at 10-bit, and
90fps at 12-bit [1.6]. Its spectral range extends from 400 nm to 1700 nm,
enabling both SWIR and visible light imaging [1.8]. The instantaneous scan
area of the sensor is specified as 5 m² [1.1].

A critical feature available for the SenSWIR™ family, and assumed for the
IMX993 payload in this framework, is an optional built-in single-stage
thermoelectric cooling (TEC) device [1.1]. Thermoelectric cooling is essential
for high-performance SWIR imaging, as it actively regulates the sensor's
operating temperature [1.1]. This regulation is crucial for reducing thermal
noise and dark current, which are extraneous signals generated by the
sensor itself [1.1]. By stabilizing the temperature, TEC significantly enhances
image clarity, improves the signal-to-noise ratio, and ensures more
consistent and repeatable measurements, all of which are vital for reliable
spectral analysis and microplastic identification [1.1].

However, the integration of a TEC module introduces significant engineering
considerations for a drone platform. TEC modules require additional power
to operate, which places an increased demand on the drone's battery,
potentially impacting the maximum achievable flight time [1.1].
Furthermore, a TEC device functions by transferring heat from the sensor to
a heat sink on the opposite side [1.1]. This waste heat must be effectively
dissipated away from the camera and other sensitive drone components to
prevent overheating and performance degradation [1.1]. This necessitates
careful thermal design, often involving specialized heat sinks and
consideration of airflow, presenting a major challenge on a size- and weight-
constrained aerial platform [1.1]. The choice of a high-performance sensor
like the IMX993 with TEC creates a cascading set of engineering challenges.
The benefits of superior image quality for detection must be carefully
balanced against the fundamental constraints of drone operation (power,
weight, endurance), making thermal and power management as critical to
system success as the sensor itself.
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Feature Specification Source

Resolution 3.21 Megapixels
(2080(H) x 1544(V))

[1.6]

Optical Format 1/1.8" [1.6]

Pixel Size 3.45 µm x 3.45 µm [1.6]

Shutter Type Global Shutter [1.6]

Chromaticity Monochrome [1.6]

Maximal Frame Rate 170fps (8bit), 150fps
(10bit), 90fps (12bit)

[1.6]

Bit Depth 8bit, 10bit, 12bit [1.6]

Spectral Range 400 - 1700 nm [1.8]

Instantaneous Scan
Area

5 m² [1.1]

TEC Integration Yes (optional,
assumed for
framework)

[1.1]

Power Consumption
(Camera)

~13 W (for FXO
camera
incorporating
IMX993)

[1.8]

Dimensions
(Camera)

50 x 50 x 82.1 mm
(for FXO camera
incorporating
IMX993)

[1.8]

Weight (Camera) 240 g (for FXO
camera
incorporating

[1.8]
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Feature Specification Source

IMX993)

4.4. Technical Interaction and Data Flow between Jetson AGX Orin
(Buoy) and Jetson Orin NX (Drone)

The operational efficacy of the autonomous microplastic detection system
hinges on the intricate technical interaction and dynamic data flow between
the NVIDIA Jetson AGX Orin on the buoy and the NVIDIA Jetson Orin NX on
the drone. This "symbiotic pairing" forms a sophisticated, adaptive feedback
loop that optimizes mission execution and data acquisition [1.1].

The primary data and control flow initiates with the buoy's Jetson AGX Orin.
Leveraging its powerful processing capabilities, the AGX Orin aggregates
and pre-processes environmental data from its suite of sensors (e.g., wind,
current, wave conditions) [1.1]. Based on this contextual information, it
generates an optimal flight plan for the drone, designed to maximize
scanned sea surface area and account for environmental factors [1.1]. This
flight plan is then transmitted to the drone's Jetson Orin NX via a robust,
high-speed WiFi module [1.1].

Upon receiving the mission plan, the drone launches and executes its
assigned tasks. The drone's Jetson Orin NX, in conjunction with its advanced
flight controller and GPS module, navigates precisely along the pre-
programmed flight path [1.1]. As the drone traverses the target area, the
Sony SWIR IMX993 sensor continuously captures raw image data, which is
immediately fed to the onboard Jetson Orin NX [1.1].

A critical aspect of this interaction is the real-time processing performed by
the Orin NX. It executes the Adaptive SWIR Sensor Readout and Edge
Processing (ASREP) algorithm, which intelligently processes the SWIR data,
performs microplastic detections, and dynamically adjusts sensor
parameters such as frame rate, exposure time, and gain based on real-time
analysis of the environment and the sensor data itself [1.1]. This on-device
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processing allows the drone to make immediate decisions, such as
determining if a focused Region of Interest (ROI) readout is warranted [1.1].

Following processing, compressed data and detection metadata (e.g.,
detection confidence and density) are transmitted back from the drone to
the buoy via the high-speed WiFi link [1.1]. This real-time feedback is crucial
for the system's adaptability. The buoy's Jetson AGX Orin can utilize this
incoming information to update the flight plan mid-mission, allowing for
adaptive and efficient monitoring [1.1]. For instance, if the drone identifies a
significant microplastic hotspot confirmed over several frames, the ASREP
algorithm can send a feedback command to the drone's flight controller,
instructing it to slow down or initiate a localized, high-density scan pattern
around the hotspot [1.1]. This capability transforms the system from a pre-
programmed robot into an intelligent, responsive agent, allowing it to
optimize its behavior not just before a mission, but during the mission,
maximizing detection efficiency and resource utilization in dynamic and
unpredictable marine environments. Finally, aggregated data from the buoy
is sent to a central ground station via a long-range communication link for
further analysis and archiving [1.1].

5. NVIDIA Isaac ROS for Enhanced Marine Microplastic
Detection

The accurate and efficient detection and classification of marine
microplastics present significant challenges, particularly in real-world
deployments. This project leverages the NVIDIA Isaac ROS robotic
development platform, coupled with the powerful NVIDIA Jetson AGX Orin,
to overcome these hurdles by providing accelerated computing capabilities
for perception, navigation, and data processing. Furthermore, NVIDIA Sim,
specifically through NVIDIA Isaac Sim and Omniverse Replicator, plays a
crucial role in synthetic data generation and the understanding of surface
and area data.
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5.1. NVIDIA Isaac ROS and Jetson AGX Orin Integration

NVIDIA Isaac ROS is a collection of GPU-accelerated computing packages
and AI models built on the Robot Operating System (ROS 2) framework. It is
designed to streamline and expedite the development of advanced AI
robotics applications. For our marine microplastic detection system, Isaac
ROS offers several key advantages when deployed on the NVIDIA Jetson AGX
Orin:

Hardware Acceleration: The Jetson AGX Orin is an embedded system with a
powerful NVIDIA Ampere architecture GPU, purpose-built for AI at the edge.
Isaac ROS packages are optimized to leverage this hardware acceleration,
leading to significantly faster processing of sensor data. This is crucial for
real-time microplastic detection in dynamic marine environments, where
rapid image analysis and object classification are paramount. Key packages
like isaac_ros_object_detection (utilizing models like YOLOv8 or RT-DETR) are
accelerated on the Jetson AGX Orin, enabling high-throughput image
processing for identifying microplastic candidates [5.1]. Performance
benchmarks demonstrate the Jetson AGX Orin's capability to process high-
resolution images at significant frame rates, which is essential for
comprehensive area coverage and timely detection [5.1].

Perception Modules: Isaac ROS provides a rich set of perception modules
vital for our application.

Object Detection (isaac_ros_object_detection): This module is central to
identifying potential microplastic particles in camera feeds. It employs GPU-
accelerated deep neural network (DNN) models (e.g., DetectNet, YOLOv8,
RT-DETR) to perform spatial classification with bounding boxes, classifying
detected objects as "microplastic" or "non-microplastic" [5.1]. The project
will involve training these models on datasets containing various types and
sizes of microplastics under different lighting and water conditions.

Image Segmentation (isaac_ros_image_segmentation): Beyond bounding
box detection, image segmentation (e.g., using isaac_ros_unet) provides
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pixel-level classification. This allows for a more precise delineation of
microplastic shapes and sizes, which is critical for accurate quantification
and characterization [5.7]. This level of detail enhances the project's ability
to differentiate microplastics from other debris or natural elements.

DNN Inference (isaac_ros_dnn_inference): This foundational package
enables the efficient deployment of custom-trained deep learning models
on the Jetson AGX Orin. It handles the pre-processing of input images into
tensors and the post-processing of output tensors into meaningful
predictions, such as bounding boxes or segmentation masks [5.7].

Image Processing Pipeline: Isaac ROS offers an accelerated image
processing pipeline (isaac_ros_image_pipeline) that leverages the Jetson
platform's specialized computer vision hardware. This ensures efficient
handling of raw camera data, including tasks like debayering, rectification,
and resizing, before feeding it into the perception modules [5.7].

Efficient ROS 2 Communication (NITROS): Isaac ROS utilizes NVIDIA Isaac
Transport for ROS (NITROS), an implementation of type adaptation and
negotiation. NITROS optimizes message formats and enables zero-copy data
transfer between compatible ROS 2 nodes, dramatically accelerating
communication within the robotic pipeline [5.3]. This high-throughput
communication is crucial for maintaining real-time performance, especially
when dealing with high-resolution image streams from multiple cameras or
sensors.

Complementing the ASREP Algorithm:While the core ASREP (Adaptive
Sampling and Robotic Exploration Planning) algorithm focuses on intelligent
path planning and sampling strategies, Isaac ROS provides the critical real-
time perception capabilities that feed into ASREP's decision-making process.
The highly accurate and rapid detection and classification of microplastics by
Isaac ROS perception modules enable ASREP to dynamically adjust sampling
locations, prioritize areas with higher microplastic concentrations, and
optimize the robot's exploration path based on real-time visual information.
This tight integration ensures that the robotic system can efficiently and
effectively gather data where it matters most.
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5.2. NVIDIA Sim for Surface and Area Data Processing

NVIDIA's simulation capabilities, primarily through NVIDIA Isaac Sim and
Omniverse Replicator, are indispensable for developing and testing our
microplastic detection system, especially for understanding and processing
complex surface and area data:

Synthetic Data Generation with Omniverse Replicator: Training robust
deep learning models for microplastic detection requires vast amounts of
diverse data, which is often difficult and expensive to collect in real marine
environments. NVIDIA Omniverse Replicator, built on the Omniverse
platform, addresses this by enabling the generation of high-fidelity,
physically accurate synthetic datasets [5.5].

Marine Environment Simulation: Replicator allows us to create realistic
virtual marine environments, complete with varying water clarity, lighting
conditions (sunlight, shadows, murky water), wave patterns, and diverse
seabed textures. This includes simulating the interaction of light with water
and suspended particles, which is critical for accurate visual representation
of microplastics.

Microplastic Variation:We can programmatically generate synthetic
microplastics with randomized parameters for size, shape, color,
transparency, material properties, and distribution patterns. This ensures
that the training data covers a wide range of microplastic characteristics
encountered in real-world scenarios, improving the generalization
capabilities of our detection models.

Automated Labeling: A significant advantage of synthetic data is
automated and precise labeling (bounding boxes, segmentation masks,
material properties). This eliminates the laborious manual annotation
process, accelerating model training and iteration.

Edge Cases and Rare Scenarios: Replicator enables the generation of data
for challenging edge cases or rare microplastic occurrences that might be
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difficult to capture in real environments, enhancing the robustness of the
trained models.

Understanding Surface and Area Data with Isaac Sim: NVIDIA Isaac Sim,
built on Omniverse, serves as a high-performance, GPU-accelerated robotics
simulation platform [5.6]. It provides a virtual testbed for our robotic
system, allowing us to simulate its operation and understand how it
processes surface and area data before physical deployment.

Sensor Simulation: Isaac Sim can simulate various sensors crucial for
marine robotics, including high-fidelity cameras (RGB, depth), sonar, and
LiDAR. This allows us to test our perception algorithms against realistic
sensor outputs under controlled conditions. For instance, simulating how
depth cameras perceive the water surface and the varying depths of the
water column helps in understanding volumetric data.

3D Scene Reconstruction (Nvblox): Isaac ROS Nvblox, integrated within
Isaac Sim, allows for real-time 3D reconstruction of the simulated marine
environment [5.9]. This is achieved by processing depth and pose
information from simulated sensors to build a 3D representation of the
scene, including the water surface, underwater terrain, and any detected
objects. This 3D understanding is critical for:

Localizing Microplastics in 3D Space: By integrating detected 2D
microplastic bounding boxes or segmentation masks with depth
information from simulated stereo or depth cameras, Isaac Sim helps us
validate the 3D localization of microplastics relative to the robot and the
marine environment.

Area Mapping and Coverage Analysis: The 3D reconstruction capabilities
allow for precise mapping of the surveyed area, identifying regions with
higher microplastic concentrations, and analyzing the effectiveness of the
robot's coverage patterns. This is fundamental for optimizing the ASREP
algorithm's exploration strategy.

Obstacle Avoidance and Navigation:While the primary focus is
microplastic detection, the 3D reconstruction of the environment provided
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by Nvblox also informs navigation and obstacle avoidance. This ensures the
robot can safely traverse the simulated marine environment while
performing its detection tasks.

Sim-to-Real Transfer: The high fidelity of Isaac Sim simulations, coupled
with physically accurate rendering and sensor modeling, significantly
improves the chances of successful sim-to-real transfer. This means models
trained and algorithms developed in the simulated environment are more
likely to perform effectively when deployed on the real NVIDIA Jetson AGX
Orin-powered robot in the marine environment. Recent advancements, such
as OceanSim, built upon Isaac Sim, further demonstrate the capability for
high-fidelity underwater sensor modeling and rendering, directly benefiting
marine robotics applications [5.2].

In summary, NVIDIA Isaac ROS on the Jetson AGX Orin provides the
necessary real-time, accelerated perception capabilities for microplastic
detection, while NVIDIA Sim (Isaac Sim and Omniverse Replicator) offers a
powerful platform for generating diverse training data and comprehensively
understanding how the system processes crucial surface and area data in a
virtual marine environment, ultimately leading to a more robust and
effective solution for marine microplastic pollution monitoring.
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6. Mathematical Modeling for Adaptive SWIR Sensor Readout
and Control

6.1. Principles of SWIR Spectroscopy for Polymer Identification

The foundational principle governing the microplastic detection system is
based on spectroscopy within the Short-Wave Infrared (SWIR) range [1.1].
Materials exhibit unique interactions with electromagnetic radiation based
on their molecular composition, which is particularly evident in the SWIR
spectrum. While water strongly absorbs light in the SWIR range, causing it
to appear very dark in imagery, many common plastic polymers, such as
polyethylene and polypropylene, display distinct and characteristic
absorption features at specific SWIR wavelengths [1.1].

This differential spectral response is key to identifying and distinguishing
plastics from their surrounding environment. By capturing hyperspectral or
multispectral images, where each pixel contains spectral information across
multiple narrow bands, it becomes possible to analyze the unique spectral
signature of the material within that pixel [1.1]. This capability enables the
accurate differentiation of plastic materials from water, organic matter like
algae, foam, and sediment [1.1]. The extended wavelength range of the
Sony IMX993 sensor, from 400 nm to 1700 nm, further allows for
simultaneous recording of SWIR and visible images, eliminating the need for
dual camera setups and simplifying the analysis of different viewing angles
[1.9]. The sophisticated AI processing, including the ASREP algorithm and
deep learning models, is entirely predicated on and enabled by this
underlying physical phenomenon of SWIR spectroscopy. The mathematical
models and AI algorithms are designed to interpret and exploit these
specific spectral signatures, transforming raw physical data into actionable
detection information. This highlights the interdisciplinary nature of the
system, where physics, sensor technology, and advanced computing
converge to achieve precise environmental monitoring.
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6.2. Conceptual Framework of the Adaptive SWIR Sensor Readout and
Edge Processing (ASREP) Algorithm

To maximize data quality and relevance while operating within the drone's
inherent constraints, the Adaptive SWIR Sensor Readout and Edge
Processing (ASREP) algorithm is proposed [1.1]. This algorithm is not a static
data collection plan but rather a dynamic feedback loop that intelligently
adjusts sensor parameters and data handling based on real-time analysis of
both the environment and the sensor data itself [1.1]. A critical aspect of
ASREP is its execution entirely on the drone's NVIDIA Jetson Orin NX
processor, enabling true edge computing capabilities [1.1].

The logic flow of the ASREP algorithm unfolds through a series of
interdependent steps:

Initialization: The mission begins by loading initial parameters, such as
default frame rate (𝐹𝑅_𝑑𝑒𝑓𝑎𝑢𝑙𝑡) and exposure time (𝐸𝑇_𝑑𝑒𝑓𝑎𝑢𝑙𝑡) [1.1]. The pre-
trained microplastic inference model (𝑀_𝑝𝑙𝑎𝑠𝑡𝑖𝑐) is loaded onto the Jetson
Orin NX, optimized using NVIDIA's TensorRT framework [1.1].

Capture Frame: Raw SWIR image data (𝐼_𝑟𝑎𝑤) is acquired from the Sony
IMX993 sensor [1.1].

Analyze Environment: Drone telemetry, including ground speed (𝑣_𝑑𝑟𝑜𝑛𝑒)
and altitude (ℎ_𝑑𝑟𝑜𝑛𝑒), along with ambient illumination (𝐸_𝑎) and sea surface
conditions (𝑆_𝑤𝑎𝑣𝑒), are read to provide contextual information [1.1].

Adaptive Exposure and Gain Control: The mean intensity ($\\mu\_I$) of the
captured frame is calculated. The algorithm then determines if
$\\mu\_I$ falls within a predefined target range $[\\mu\_{target\_{min}},
\\mu\_{target\_{max}}]$ [1.1]. If not, optimal exposure time (𝐸𝑇_𝑜𝑝𝑡𝑖𝑚𝑎𝑙) and
gain (𝐺_𝑜𝑝𝑡𝑖𝑚𝑎𝑙) are adjusted and sent to the sensor; otherwise, processing
proceeds [1.1].

Microplastic Inference: The pre-processed frame is fed into the detection
model (𝑀_𝑝𝑙𝑎𝑠𝑡𝑖𝑐) running on the Jetson Orin NX's GPU/Tensor Cores to
identify potential microplastic detections [1.1].
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Calculate Metrics: Current detection confidence (𝐶_𝑑𝑒𝑡(𝑡)) and detection
density (𝐷_𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡)) are calculated based on the inference results [1.1].

Adaptive Frame Rate Control: Based on the drone's speed (𝑣_𝑑𝑟𝑜𝑛𝑒) and the
calculated detection density (𝐷_𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡)), the optimal frame rate (𝐹𝑅_𝑜𝑝𝑡𝑖𝑚𝑎𝑙)
is determined to balance coverage and sampling density [1.1]. This new
frame rate is then sent to the sensor [1.1].

ROI Determination: Based on 𝐶_𝑑𝑒𝑡(𝑡) and 𝐷_𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡), the algorithm
assesses whether a focused Region of Interest (ROI) readout is warranted,
defining 𝑅𝑂𝐼_𝑐𝑜𝑜𝑟𝑑𝑠 if necessary [1.1].

Data Handling: Intelligent compression routines are applied based on
detection density [1.1]. If detection density exceeds an alert threshold,
feedback (𝐹𝑃_𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘) is generated and sent to the flight controller (e.g., to
slow down or initiate a localized scan) [1.1].

Transmit Data: Prioritized, compressed data packets are sent to the buoy
[1.1].

Loop: The algorithm then returns to the exposure/gain control step for the
next frame, creating a continuous processing cycle [1.1].

This adaptive nature allows the system to be highly efficient, avoiding the
collection and processing of redundant or irrelevant data, which is
paramount for extending mission endurance and maximizing the utility of
the collected information in a constrained edge environment. The ASREP
algorithm is thus a sophisticated resource management strategy,
dynamically optimizing the use of limited resources such as power,
bandwidth, processing cycles, and flight time.
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6.3. Detailed Mathematical Formulation for Adaptive Exposure and Gain
Control

Adaptive exposure and gain control is a crucial component of the ASREP
algorithm, formalized in Step 2, ensuring consistent image quality for
downstream processing and microplastic inference [1.1]. The primary
objective is to maintain the mean intensity ($\\mu\_I$) of each raw SWIR
image frame (𝐼_𝑟𝑎𝑤) within a predefined target range, denoted as
$[\\mu\_{target\_{min}}, \\mu\_{target\_{max}}]$ [1.1]. This consistency is
vital because varying environmental illumination (e.g., sun angle, cloud
cover, sea state) can drastically affect raw sensor output, potentially
compromising the accuracy of deep learning models that are sensitive to
input variations.

The adjustments to the current exposure time (𝐸𝑇_𝑐𝑢𝑟𝑟𝑒𝑛𝑡) and current gain (
𝐺_𝑐𝑢𝑟𝑟𝑒𝑛𝑡) are calculated using the following multiplicative formulas:

𝐸𝑇𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝐸𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ×
𝜇𝑡𝑎𝑟𝑔𝑒𝑡
𝜇𝐼

𝛼𝐸

𝐺𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝐺𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ×
𝜇𝑡𝑎𝑟𝑔𝑒𝑡
𝜇𝐼

𝛼𝐺

In these equations, $\\mu\_{target}$ represents the midpoint of the desired
target intensity range, serving as the ideal brightness level for the image
[1.1]. The terms $\\alpha\_E$ and $\\alpha\_G$ are response factors, which
are empirically determined parameters that dictate the sensitivity and
aggressiveness of the exposure and gain adjustments, respectively [1.1].
These factors allow the system to be calibrated for different environmental
conditions or specific sensor characteristics. The algorithm prioritizes
exposure time adjustment first; gain is then modified only if further intensity
correction is necessary after exposure has been optimized [1.1]. These
mathematical controls are not merely adjustments; they are a fundamental
prerequisite for reliable downstream AI processing, ensuring that the AI
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model receives consistent, normalized input, thereby enhancing the
robustness and accuracy of microplastic detection across diverse and
dynamic marine environments.

6.4. Detailed Mathematical Formulation for Adaptive Frame Rate
Control

Adaptive frame rate control, formalized in Step 4 of the ASREP algorithm, is
designed to optimize data acquisition by balancing continuous coverage
with efficient resource utilization [1.1]. Given the drone's finite flight time
and limited data storage/transmission capabilities, a fixed high frame rate
would quickly exhaust these resources, particularly in areas devoid of
microplastics.

The algorithm first calculates the required frame rate for continuous
coverage (𝐹𝑅_𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒), ensuring sufficient overlap between consecutive
frames to prevent gaps in the scanned area. This is determined by the
drone's ground speed, the sensor's footprint, and the desired overlap:

𝐹𝑅𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑣𝑑𝑟𝑜𝑛𝑒

𝐻𝑓𝑟𝑎𝑚𝑒 × (1−𝑂𝑟𝑒𝑞)

Here, 𝑣_𝑑𝑟𝑜𝑛𝑒 represents the drone's current ground speed, 𝐻_𝑓𝑟𝑎𝑚𝑒 is the
height of the sensor's ground footprint in the direction of travel, and 𝑂_𝑟𝑒𝑞 is
the required overlap percentage between frames [1.1]. The IMX993 sensor
has a specified instantaneous scan area of 5 m² [1.1], which informs the
calculation of 𝐻_𝑓𝑟𝑎𝑚𝑒.

The optimal frame rate (𝐹𝑅_𝑜𝑝𝑡𝑖𝑚𝑎𝑙) is then dynamically modulated by the
real-time microplastic detection density (𝐷_𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡)) to achieve a "smart
sampling" strategy:

𝐹𝑅𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝐹𝑅𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 × 𝑓(𝐷𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡))
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In this equation, 𝑓(𝐷_𝑑𝑒𝑛𝑠𝑖𝑡𝑦) is a scaling function [1.1]. This function is
designed to increase the frame rate in areas where a high density of
microplastic detections is observed, thereby allowing for more intensive
sampling and detailed analysis of hotspots [1.1]. Conversely, in sparse areas
with low or no detections, the scaling function decreases the frame rate,
conserving valuable power and data transmission resources [1.1]. This
approach ensures that computational and energy resources are allocated
optimally, maximizing the information yield per unit of energy and time,
which is critical for extending mission effectiveness and focusing
remediation efforts.
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6.5. Real-time Microplastic Detection, Region of Interest (ROI) Readout,
and Intelligent Data Handling

Real-time microplastic detection, coupled with adaptive data handling
strategies, forms a cornerstone of the ASREP algorithm, enabling the system
to intelligently respond to detected anomalies. In Step 3 of ASREP, a pre-
trained inference model,𝑀_𝑝𝑙𝑎𝑠𝑡𝑖𝑐, is applied to the pre-processed raw SWIR
image data on the Jetson Orin NX's GPU/Tensor Cores [1.1]. This model
outputs confidence scores (𝑃_𝑐𝑜𝑛𝑓(𝑝_𝑘)) and precise locations for each
potential microplastic detection (𝑝_𝑘) [1.1]. Subsequently, frame-wide
metrics are calculated: detection confidence (𝐶_𝑑𝑒𝑡(𝑡)), determined as the
average confidence of all detections, and detection density (𝐷_𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡)),
calculated as the count of detections exceeding a predefined confidence
threshold ($\\tau\_{conf}$) divided by the area of the frame (𝐴_𝑓𝑟𝑎𝑚𝑒) [1.1].

Steps 5-7 of the ASREP algorithm encompass advanced data handling
strategies, including Region of Interest (ROI) readout, intelligent
compression, and dynamic flight feedback [1.1]. If the calculated detection
density and confidence exceed a specified threshold ($\\tau\_{ROI}$), the
algorithm identifies clusters of detections within the frame [1.1]. It then
instructs the sensor to read out only these specific regions of interest,
effectively focusing data acquisition on areas of high relevance [1.1]. This
targeted data acquisition is complemented by an intelligent compression
strategy: data from high-density ROIs is compressed using a lossless
algorithm to preserve critical information, while background data from less
relevant areas is compressed with a higher-ratio lossy algorithm to minimize
data volume [1.1]. This approach significantly reduces the volume of data
transmitted, conserving bandwidth and power.

More profoundly, if a significant microplastic hotspot is confirmed over
several consecutive frames, a feedback command (𝐹𝑃_𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘) is generated
and sent to the drone's flight controller [1.1]. This command can instruct the
drone to dynamically alter its mission profile, for instance, to slow down or
initiate a localized, high-density scan pattern around the identified hotspot
[1.1]. This sophisticated data handling and flight feedback mechanism
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elevates the system beyond mere data collection to active, intelligent
environmental interaction. It allows the drone to autonomously adapt its
mission profile based on what it finds, enabling highly efficient, targeted
investigation of pollution hotspots, significantly improving the actionable
intelligence derived from each mission. Finally, these prioritized and
compressed data packets are transmitted back to the buoy for aggregation
and onward transmission to a central ground station [1.1].

Category Parameter/Vari
able

Description Source

Inputs $I\_{raw}(x,y,\\l
ambda,t)$

Raw SWIR
image data
(spatial,
spectral,
temporal)

[1.1]

𝑣_𝑑𝑟𝑜𝑛𝑒 Drone's
current ground
speed

[1.1]

ℎ_𝑑𝑟𝑜𝑛𝑒 Drone's
current
altitude

[1.1]

𝐸_𝑎 Ambient
illumination
conditions

[1.1]

𝑆_𝑤𝑎𝑣𝑒 Sea surface
conditions
(e.g., wave
height/frequen
cy)

[1.1]
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Category Parameter/Vari
able

Description Source

𝑀_𝑝𝑙𝑎𝑠𝑡𝑖𝑐 Pre-trained
spectral
signature
models for
microplastic
detection

[1.1]

𝐶_𝑑𝑒𝑡(𝑡−1) Detection
confidence
from previous
frames

[1.1]

𝐷_𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡−1) Detection
density from
previous
frames

[1.1]

Outputs 𝐹𝑅_𝑜𝑝𝑡𝑖𝑚𝑎𝑙 Optimal sensor
frame rate

[1.1]

𝐸𝑇_𝑜𝑝𝑡𝑖𝑚𝑎𝑙 Optimal
exposure time

[1.1]

𝐺_𝑜𝑝𝑡𝑖𝑚𝑎𝑙 Optimal gain [1.1]

𝑅𝑂𝐼_𝑐𝑜𝑜𝑟𝑑𝑠 Coordinates
for dynamic
Region of
Interest
readout

[1.1]

𝐹𝑃_𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 Feedback
commands to

[1.1]
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Category Parameter/Vari
able

Description Source

the drone
flight controller

Internal
Parameters/C
onstants

$\\mu\_I$ Mean intensity
of the current
frame

[1.1]

$[\\mu\_{target
\_{min}},
\\mu\_{target\_
{max}}]$

Target range
for mean
intensity

[1.1]

$\\mu\_{target
}$

Midpoint of the
target intensity
range

[1.1]

$\\alpha\_E,
\\alpha\_G$

Response
factors for
exposure and
gain
adjustments

[1.1]

𝑃_𝑐𝑜𝑛𝑓(𝑝_𝑘) Confidence
score for an
individual
detection 𝑝_𝑘

[1.1]

$\\tau\_{conf}$ Confidence
threshold for
valid
detections

[1.1]

𝐴_𝑓𝑟𝑎𝑚𝑒 Area of the
sensor's frame
footprint on

[1.1]
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Category Parameter/Vari
able

Description Source

the ground

𝐻_𝑓𝑟𝑎𝑚𝑒 Height of the
sensor's
ground
footprint in
direction of
travel

[1.1]

𝑂_𝑟𝑒𝑞 Required
overlap
percentage
between
consecutive
frames

[1.1]

𝑓(𝐷_𝑑𝑒𝑛𝑠𝑖𝑡𝑦) Scaling
function for
frame rate
modulation
based on
density

[1.1]

$\\tau\_{ROI}$ Threshold for
triggering
Region of
Interest
readout

[1.1]
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7. NVIDIA Jetson Linux Software Ecosystem for Edge AI
Processing

7.1. Overview of Jetson Linux and its Board Support Package (BSP)

Jetson Linux is the foundational software platform for NVIDIA Jetson
embedded systems, provided as part of the comprehensive JetPack SDK. It
acts as the Board Support Package (BSP), delivering the essential low-level
software that enables the full capabilities of the Jetson AGX Orin and Orin NX
hardware [1.10]. This optimized Linux-based environment is critical for
developing and deploying high-performance AI applications at the edge.

The core components of Jetson Linux include:

Bootloader (CBoot): Responsible for initializing the hardware and loading
the Linux kernel.

Linux Kernel (e.g., Linux Kernel 5.15 in JetPack 6.0): A customized kernel
optimized for the Jetson architecture, providing core operating system
functionalities and hardware resource management.

Device Drivers: A complete set of drivers for all Jetson components,
including the GPU, CPU, I/O peripherals (e.g., CSI, MIPI, USB, PCIe), and
specialized accelerators like the NVDLA and PVA. These drivers ensure
efficient communication between the software and hardware.

Root File System: A pre-built Ubuntu-based file system (e.g., Ubuntu 22.04
LTS for recent JetPack versions) that provides a familiar and robust
development environment.

Basic Utilities and Libraries: Essential system utilities, libraries, and tools
necessary for operating the Jetson device and developing applications.

This integrated BSP simplifies the complex task of embedded system
development by providing a stable, high-performance foundation. It
ensures that developers can leverage the raw power of the Jetson hardware
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without needing to delve into low-level hardware programming, allowing
them to focus on the AI application logic.

7.2. CUDA: Parallel Computing Platform and Programming Model

CUDA (Compute Unified Device Architecture) is NVIDIA's parallel
computing platform and programming model that enables significant
performance increases by harnessing the power of the GPU's many-core
processors [1.12]. On Jetson platforms, CUDA is indispensable for
accelerating computationally intensive tasks, particularly those found in
deep learning inference and scientific computing.

Key aspects of CUDA's role in the microplastic detection system include:

GPU Acceleration: The NVIDIA Jetson AGX Orin and Orin NX modules are
equipped with powerful Ampere architecture GPUs. CUDA allows developers
to write code that explicitly targets these GPUs, offloading parallelizable
computations from the CPU. This is crucial for real-time processing of high-
resolution SWIR imagery, where pixel-level operations and convolution
layers in neural networks can be massively parallelized.

General Purpose GPU (GPGPU) Computing: Beyond traditional graphics
rendering, CUDA transforms the GPU into a general-purpose parallel
processor. This enables the execution of custom algorithms (kernels) on
thousands of GPU cores simultaneously, which is ideal for pre-processing
steps, spectral analysis, and custom filters within the Adaptive SWIR Sensor
Readout and Edge Processing (ASREP) algorithm [1.1].

CUDA Libraries: CUDA provides a rich set of highly optimized libraries that
streamline common parallel computing tasks. These include:

cuDNN (CUDA Deep Neural Network library): A GPU-accelerated library of
primitives for deep neural networks. It provides highly optimized
implementations of standard routines such as convolution, pooling,
normalization, and activation layers, which are fundamental building blocks
for the microplastic detection models [1.13].
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cuBLAS (CUDA Basic Linear Algebra Subprograms): Provides GPU-
accelerated versions of standard linear algebra routines. Many operations in
neural network inference, such as matrix multiplications, rely on BLAS
functions [1.14].

cuFFT (CUDA Fast Fourier Transform library): For performing Fast Fourier
Transforms, which might be useful for certain image processing or signal
analysis tasks [1.15].

Memory Management: CUDA provides mechanisms for managing data
transfers between the CPU (host) and GPU (device) memory, optimizing data
locality and minimizing latency. The Unified Memory feature further
simplifies memory management by allowing a single pointer to access data
from both CPU and GPU memory spaces, simplifying programming while
maintaining performance benefits.

By leveraging CUDA, the system ensures that the computationally
demanding microplastic inference models and complex image processing
routines within ASREP are executed with maximum efficiency on the Jetson
Orin NX, facilitating real-time detection and decision-making at the edge.

7.3. TensorRT: Optimizing Deep Learning Inference for Edge
Deployment

NVIDIA TensorRT is an SDK for high-performance deep learning inference.
It is designed to optimize trained neural networks for deployment on
NVIDIA GPUs, including the Jetson family, significantly improving
throughput and reducing latency [1.16]. For the autonomous marine
monitoring system, TensorRT is critical for enabling the microplastic
detection models (𝑀_𝑝𝑙𝑎𝑠𝑡𝑖𝑐) to run efficiently on the power-constrained
Jetson Orin NX.

TensorRT's optimization process involves several key techniques:

Graph Optimization: TensorRT analyzes the neural network graph, fusing
layers (e.g., convolution, activation, bias) into single, highly optimized
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kernels. This reduces memory bandwidth requirements and kernel launch
overheads. It also removes redundant layers and operations that do not
contribute to the final output.

Precision Calibration: TensorRT supports various numerical precisions,
including FP32 (single-precision floating-point), FP16 (half-precision floating-
point), and INT8 (8-bit integer). By calibrating the model to INT8, TensorRT
can achieve up to 4x performance improvement compared to FP32, with
minimal loss in accuracy. This is particularly important for edge devices like
the Orin NX, where power efficiency and maximum TOPS are crucial [1.16].

Kernel Auto-Tuning: TensorRT selects the best algorithm (kernel) for a
given layer based on the specific GPU architecture, input tensor sizes, and
batch size. This auto-tuning ensures that the most efficient implementations
are used for each part of the neural network.

Optimized Memory Management: It allocates and reuses GPU memory
efficiently across the network's layers, reducing memory footprint and
improving data flow.

In the context of the ASREP algorithm, the microplastic detection model (
𝑀_𝑝𝑙𝑎𝑠𝑡𝑖𝑐) is first trained offline (e.g., on a powerful GPU workstation). This
trained model is then optimized using TensorRT for deployment on the
Jetson Orin NX. This optimization step transforms the model into a highly
efficient inference engine that can process SWIR images in real-time,
delivering the detection confidence (𝐶_𝑑𝑒𝑡(𝑡)) and density (𝐷_𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡))
metrics with minimal latency [1.1]. The combination of a powerful GPU (on
the Orin NX) and TensorRT's aggressive optimizations ensures that complex
deep learning models can operate effectively within the stringent power and
performance envelopes of an autonomous drone, directly contributing to
the system's ability to achieve real-time environmental monitoring.
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7.4. Integration with the Adaptive SWIR Sensor Readout and Edge
Processing (ASREP) Algorithm

The NVIDIA Jetson Linux software ecosystem forms the backbone for the
efficient execution of the Adaptive SWIR Sensor Readout and Edge
Processing (ASREP) algorithm. Every critical step of the ASREP framework,
from sensor data ingestion to intelligent decision-making and data
transmission, is reliant on the capabilities provided by Jetson Linux, CUDA,
and TensorRT.

Sensor Data Ingestion and Pre-processing: Raw SWIR image data from the
Sony IMX993 sensor is ingested through the Jetson's camera interfaces (e.g.,
MIPI CSI-2), managed by the underlying Linux kernel drivers. Initial image
pre-processing steps (e.g., debayering if the sensor has color filters, basic
denoising, or radiometric corrections) can leverage CUDA-accelerated
kernels to ensure rapid processing before feeding data to the AI model.

Microplastic Inference (𝑀_𝑝𝑙𝑎𝑠𝑡𝑖𝑐): The core microplastic detection model is
a deep neural network, trained offline and then optimized with TensorRT.
This TensorRT engine is loaded and executed on the Jetson Orin NX's GPU.
The optimized kernels accelerate the forward pass of the neural network,
performing highly efficient inference to identify microplastics and calculate
confidence scores and densities in real-time. The Orin NX's Tensor Cores,
specifically, are heavily utilized by the TensorRT engine for INT8 precision
inference, providing maximum throughput within the drone's power
budget.

Adaptive Control Loop: The ASREP algorithm's adaptive control logic,
including calculations for optimal exposure, gain, and frame rate, runs on
the Orin NX's CPU (Arm Cortex-A78AE cores). While these calculations are
not as computationally intensive as neural network inference, their
efficiency is crucial for the overall responsiveness of the system. The tight
integration within Jetson Linux ensures seamless communication between
the CPU-based control logic and the GPU-based inference engine.
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Data Handling and Compression: Once microplastics are detected and
relevant metrics are calculated, the intelligent data handling routines (e.g.,
ROI determination, intelligent compression) also leverage the Jetson's
processing power. Custom CUDA kernels can be developed for fast, on-
device image cropping and various compression algorithms, ensuring that
only essential, high-value data is transmitted to the buoy, minimizing
bandwidth usage.

Flight Controller Feedback: Communication with the drone's flight
controller for adaptive maneuvers (e.g., slowing down over hotspots) is
facilitated through standard communication interfaces supported by Jetson
Linux (e.g., serial, Ethernet).

In essence, the Jetson Linux software ecosystem provides a cohesive and
powerful environment where high-performance computing (CUDA),
specialized AI optimization (TensorRT), and robust system management
(Linux kernel, drivers) converge to enable the complex, real-time
autonomous operation required for effective marine microplastic
monitoring. The design ensures that the drone can perform sophisticated AI
tasks directly at the edge, making it truly autonomous and highly efficient.



46

8. Conclusion

The journey of NVIDIA's Jetson platforms from the modest TK1 to the
powerful Orin series, alongside the transformative innovations in Sony's
SenSWIR MX series image sensors, exemplifies the rapid pace of
advancement in edge AI and advanced sensing technologies. The
exponential increase in computing power and energy efficiency offered by
Jetson modules has enabled increasingly complex AI models to be deployed
at the edge, fostering breakthroughs in robotics, autonomous systems, and
industrial automation. Concurrently, Sony's SenSWIR technology,
particularly the dual-mode visible and SWIR capabilities, has provided a
single-camera solution for multi-spectral imaging, offering unprecedented
data richness and operational efficiency across a myriad of applications
[1.23]. As these technologies continue to evolve, the synergistic integration
of powerful edge AI processing with versatile multi-spectral imaging
promises even more sophisticated and intelligent autonomous systems in
the future. The detailed design framework for the autonomous marine
microplastic detection system showcases a tangible application of these
advancements, highlighting how hardware-software co-design and dynamic
mathematical optimization are critical for efficient, scalable, and
autonomous environmental monitoring. The inclusion of NVIDIA Isaac ROS
for accelerated perception and NVIDIA Sim for robust synthetic data
generation and system testing further solidifies the viability and advanced
capabilities of such an autonomous system for addressing critical
environmental challenges.
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