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Abstract:

The pervasive issue of microplastic pollution in marine environments presents a
critical global threat, necessitating advanced and scalable monitoring solutions [1].
This paper introduces a novel design framework for an autonomous system
dedicated to the efficient detection and mapping of microplastics on sea surfaces
[26].

The proposed system integrates a stationary sea buoy and a mobile drone. The
buoy functions as an autonomous base station [30], equipped with environmental
sensors [34], a Sony Short-Wave Infrared (SWIR) sensor, and an NVIDIA Jetson AGX
Orin 64GB for onboard data processing [3]. The drone serves as the primary data
acquisition platform [41], carrying a Sony SWIR IMX993 sensor [5] and an NVIDIA
Jetson Orin NX 16GB [8]. This integrated approach [27] aims to maximize the
scanned sea surface area within defined operational constraints [28], specifically a
45-minute drone flight time and a 25-meter maximum scan height [50], [6].

We detail a methodology encompassing the technological components, their
functional interplay [27], and an intelligent data processing pipeline centered on
the Adaptive SWIR Sensor Readout and Edge Processing (ASREP) algorithm [7]. The
ASREP algorithm leverages the advanced processing capabilities of the NVIDIA
Jetson Orin NX 16GB for real-time data processing and intelligent data acquisition
[46]. A mathematical model for optimizing the scanned sea surface area is also
presented, considering sensor characteristics and flight dynamics [97]. This
framework emphasizes dynamic flight planning, informed by real-time
environmental data [82], to maximize detection efficiency. This system is intended
as a crucial tool for understanding and addressing marine microplastic pollution
globally.

Keywords:Microplastics, autonomous monitoring, drone, sea buoy, SWIR sensor,
NVIDIA Jetson, remote sensing, environmental surveillance, optimization, edge
computing, sensor readout algorithm [11].
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1. Introduction:

Microplastic pollution, defined as plastic particles under 5 mm, poses a critical
global threat to marine ecosystems, aquatic wildlife, and potentially human health
[12]. These contaminants are widespread [16], originating from sources like larger
plastic debris fragmentation, industrial effluent, and personal care products [13].
They persist and are distributed extensively, found from surface waters to deep-
sea sediments [14], [15]. Developing robust monitoring technologies is crucial to
understanding this challenge and formulating mitigation strategies [10].

Traditional methods involve laborious manual sampling with nets and subsequent
laboratory analysis. While accurate, these techniques are limited in spatial and
temporal scope, offering fragmented snapshots of a dynamic problem [17]. This
highlights the urgent need for more efficient, autonomous, and scalable
monitoring technologies providing broad-area coverage with high temporal
resolution.

Remote sensing technologies offer a promising alternative for large-scale, non-
invasive surveillance [18], [23]. Specifically, Short-Wave Infrared (SWIR) spectrum
imaging (1000-2500 nm wavelength range) is highly effective for identifying
various plastic polymers [51], [4]. Different plastics exhibit unique spectral
absorption and reflection in this range, enabling differentiation from materials like
water, algae, and organic matter [52]. By capturing hyperspectral or multispectral
images, where each pixel contains information across multiple narrow spectral
bands [53], the spectral signature of the material in that pixel can be analyzed. This
enables differentiation of plastic materials from water, organic matter like algae,
foam, and sediment [54].

The deployment of unmanned aerial vehicles (UAVs), or drones, is another
significant technological advancement for environmental monitoring [24]. Recent
research has focused on using drone-based systems to map marine debris and
identify microplastic accumulation zones [22]. Building on foundational work by
Raymund K.D. Kho et al. in 2017 [25], who demonstrated the feasibility of coupling
a SWIR sensor with a drone and buoy system for marine microplastic detection,
this paper proposes a comprehensive strategic framework for a next-generation
autonomous microplastic detection system [26]. The framework details integrating
a stationary sea buoy with a drone carrying a specialized Sony SWIR sensor [27].
The primary technical objective is to maximize the scanned sea surface area for
microplastic detection under the drone's operational constraints [28]: a maximum
flight endurance of 45 minutes and a maximum operational scan height of 25
meters [6].
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2. Proposed System Architecture: The system is designed as a symbiotic
pairing [29]: a stationary sea buoy as a persistent monitoring and command hub
[30], and a mobile drone for rapid, wide-area data acquisition [41].

2.1. The Autonomous Sea Buoy Platform (Base Station): The sea buoy acts as
the operational anchor [30], designed for long-term, autonomous deployment. It
functions as a base station, collecting environmental data and managing drone
operations. Key subsystems include:

· Power Supply: A self-sustaining system with solar panels and a high-
capacity battery bank for continuous operation [31].

· Positioning and Georeferencing: A high-precision GPS module provides
accurate, real-time buoy positioning [32], serving as a stable georeferencing
point for drone operations.

· Communications Hub: Equipped with a robust, high-speed WiFi module for
command, control, and high-bandwidth data exchange with the drone [33].
It also includes long-range communication hardware (e.g., cellular or
satellite) for data backhaul to a central ground station.

· Environmental Sensor Suite: Scientific-grade sensors provide data crucial
for dynamic flight planning and contextualizing microplastic detection data
[34]. This suite includes sensors for wind direction and speed, sea current
direction and speed, and wave height and frequency [35].

· Drone Operations Platform: Features a hardened, automated docking and
charging platform for safe and precise drone landing and takeoff,
facilitating wireless recharging for extended autonomous missions [36].

· Stationary SWIR Sensor: An integrated Sony SWIR sensor provides
continuous, localized monitoring of the immediate water surface [37]. This
serves to provide a constant data stream for a single point and acts as a
calibration reference for the drone's sensor [38].

· Central Processing Unit: An NVIDIA Jetson AGX Orin 64GB module [3]
serves as the buoy's central brain. Its processing capabilities are used for
aggregating and pre-processing sensor data, running complex algorithms
for dynamic drone mission planning, executing machine learning models for
data analysis, and managing the buoy's power and communication systems
[40].

2.2. The Aerial Sensing Platform (Drone): The drone is the system's mobile data
acquisition platform [41], designed for rapid deployment and efficient coverage
under the guidance of the sea buoy. Its critical features include:
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· Autonomous Flight Control: Utilizes an advanced flight controller
integrated with a GPS module to execute precise, pre-programmed flight
paths and dynamically adjust its route based on real-time commands from
the buoy [42].

· Primary Imaging Payload: The primary sensor is a Sony SWIR IMX993
camera [5], chosen for its high sensitivity in detecting microplastic spectral
signatures on the water surface [43]. The sensor has a specified
instantaneous scan area of 5 𝑚2 [44].

· Onboard Edge AI Processor: An NVIDIA Jetson Orin NX 16GB module [8] is
integrated into the drone for edge computing [45]. Its functions are critical
to the system's intelligence [46], including real-time SWIR data processing,
implementation of the sensor readout optimization algorithm, and
execution of intelligent data compression routines. The use of pre-trained
deep learning models, such as YOLOv8 variants adapted for spectral data
[47], is envisioned for real-time object identification. The Orin NX's
processing power enables true edge AI, allowing immediate identification
and geotagging of microplastic hotspots without constant data streaming to
the buoy or ground station [48].

· Communications Module: A high-speed WiFi module mirrors the one on
the buoy, ensuring a robust, high-bandwidth link for command reception
and data transmission [49].

· Power System: The drone's battery provides a maximum operational flight
time of 45 minutes [50], defining the primary constraint for mission
duration.

2.3. System Architecture Diagram:

· Central Node (Buoy): The NVIDIA Jetson AGX Orin 64GB [3] is at the core.
o Inputs: Connects to the Solar/Battery Power System [31],

Environmental Sensor Suite (Wind, Current, Wave) [34], buoy's GPS
Module [32], and stationary Sony SWIR Sensor [37].

o Outputs/Control: Controls the Drone Docking/Charging Platform [36]
and communicates via the High-Speed WiFi Module [33] and a Long-
Range Comms Module (to Ground Station) [33].

· Mobile Node (Drone): The NVIDIA Jetson Orin NX 16GB [8] is at the core.
o Inputs: Receives data from the Sony SWIR IMX993 Sensor [5] and is

powered by the Drone Battery [50].
o Control/Communication: Interfaces with the drone's Flight

Controller [42] and GPS Module (for navigation telemetry and control)
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[42] and communicates with the buoy via its own High-Speed WiFi
Module [49].

· Primary Data/Control Flow: The Buoy Jetson AGX Orin processes
environmental data to generate an optimal flight plan [40]. The plan is
transmitted via WiFi to the Drone Jetson Orin NX [49]. The Drone launches
and executes the mission [42], with the Jetson Orin NX and Flight Controller
navigating. The SWIR IMX993 captures data [43], which is fed to the Jetson
Orin NX [45]. The Jetson Orin NX runs the ASREP algorithm [7], processing
data in real-time [46], performing detections [48], and dynamically adjusting
sensor parameters. Compressed data and detection metadata are
transmitted back to the buoy via WiFi [49]. The Buoy Jetson AGX Orin can use
this real-time feedback to update the flight plan mid-mission [40].
Aggregated data is sent from the buoy to the Ground Station via the long-
range link [33].

3. Core Technologies and Principles:

3.1. SWIR Sensing for Polymer Identification: The detection system's operational
principle is based on spectroscopy in the SWIR range [51]. Materials interact with
electromagnetic radiation differently based on their molecular composition. Water
strongly absorbs light in the SWIR range, appearing very dark, while many
common plastic polymers (e.g., polyethylene, polypropylene) exhibit distinct
absorption features at specific SWIR wavelengths [52]. By capturing hyperspectral
or multispectral images, where each pixel contains information across multiple
narrow spectral bands [53], the spectral signature of the material in that pixel can
be analyzed. This enables differentiation of plastic materials from water, organic
matter like algae, foam, and sediment [54].

3.2. Sony IMX993 Sensor and TEC Integration: The drone's primary sensor, the
Sony SWIR IMX993 [5], belongs to the SenSWIR™ family [55], which includes the
IMX990. The IMX990 is a 1/2-inch type, 1.34-megapixel sensor available in a
ceramic Pin Grid Array (PGA) package [56]. A critical feature available for this
sensor family is an optional built-in single-stage thermoelectric cooling (TEC)
device [57]. For this framework, the IMX993 payload is assumed to be similarly
equipped with TEC.

Thermoelectric cooling is essential for high-performance SWIR imaging [58]. It
actively regulates the sensor's operating temperature, which is crucial for reducing
thermal noise and dark current (extraneous signal generated by the sensor) [59].
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By stabilizing temperature, TEC enhances image clarity, improves the signal-to-
noise ratio, and ensures more consistent and repeatable measurements vital for
reliable spectral analysis [60].

The integration of a TEC module, however, introduces two engineering
considerations for a drone platform:

· Power Consumption: TEC modules require power [61], adding demand on
the drone's battery and potentially impacting maximum flight time [50].

· Heat Dissipation: A TEC device transfers heat from the sensor to a heat sink
on the opposite side [62]. This waste heat must be effectively dissipated
away from the camera and other sensitive drone components to prevent
overheating and performance degradation [63]. This necessitates careful
thermal design, often involving heat sinks and consideration of airflow,
which is a major challenge on a size- and weight-constrained aerial platform
[64]. The cooling capacity can achieve a significant temperature differential
below ambient, but overall effectiveness is tied to the efficiency of heat
transfer away from the drone [65].

3.3. Edge AI with NVIDIA Jetson Orin Platform: The selection of the NVIDIA
Jetson Orin NX 16GB [8] for the drone and the AGX Orin 64GB [3] for the buoy is
central to the system's proposed intelligence. The Orin NX is well-suited for the
drone due to its combination of high performance and power efficiency in a
compact form factor [66]. The platform's capabilities, driven by its GPU with 1024
CUDA Cores and 32 Tensor Cores [67], are essential for implementing the ASREP
algorithm in real time [72]. The Tensor Cores are specifically designed to accelerate
matrix operations central to deep learning models [68], making onboard
microplastic classification highly efficient. This enables true edge AI, where critical
detections and decisions can be made directly on the drone, reducing latency and
the need to transmit vast amounts of raw data [69].

4. Methodology: The ASREP Algorithm and Flight Optimization:

4.1. Conceptual Framework of the ASREP Algorithm: To maximize data quality
and relevance within the drone's constraints, the Adaptive SWIR Sensor Readout
and Edge Processing (ASREP) algorithm [70], [7] is proposed. This is a dynamic
feedback loop that intelligently adjusts sensor parameters and data handling
based on real-time analysis of the environment and sensor data [71]. The
algorithm is designed to be executed entirely on the drone's NVIDIA Jetson Orin
NX processor [72].
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· Start:Mission begins. Initial parameters (FRdefault, ET default, etc.) are
loaded [73].

· Capture Frame: Raw SWIR image data (𝐼𝑟𝑎𝑤) is acquired from the IMX993
[80].

· Analyze Environment: Drone telemetry (𝑉𝑑𝑟𝑜𝑛𝑒, ℎ𝑑𝑟𝑜𝑛𝑒) [81] and illumination
data are read.

· Exposure/Gain Control: Step 2 of the ASREP algorithm is executed [90].
Calculate 𝜇𝐼 of the frame. If it is not within the target range [𝜇𝑚𝑖𝑛

𝑡𝑎𝑟𝑔𝑒𝑡,𝜇𝑚𝑎𝑥
𝑡𝑎𝑟𝑔𝑒𝑡],

adjust 𝐸𝑇𝑜𝑝𝑡𝑖𝑚𝑎𝑙 and 𝐺𝑜𝑝𝑡𝑖𝑚𝑎𝑙 [85], and send new parameters to the sensor. If it
is within range, proceed.

· Microplastic Inference: Step 3 of the ASREP algorithm is executed [91]. The
frame is pre-processed, and the detection model (𝑀𝑝𝑙𝑎𝑠𝑡𝑖𝑐) is run on the
Jetson Orin NX's GPU/Tensor Cores [74].

· Calculate Metrics: Current detection confidence (𝐶𝑑𝑒𝑡(𝑡)) and density (
𝐷𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡)) are calculated [75].

· Frame Rate Control: Step 4 is executed [92]. Based on 𝑉𝑑𝑟𝑜𝑛𝑒 and 𝐷𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡),
𝐹𝑅𝑜𝑝𝑡𝑖𝑚𝑎𝑙 is calculated to balance coverage and sampling density [76]. The
new frame rate is sent to the sensor.

· ROI Determination: Step 5 is executed [77]. Based on 𝐶𝑑𝑒𝑡(𝑡) and 𝐷𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡),
it's determined if a focused ROI readout is warranted, and 𝑅𝑂𝐼𝑐𝑜𝑜𝑟𝑑𝑠 are
defined [86].

· Data Handling: Steps 6 & 7 are executed [93]. Intelligent compression is
applied based on detection density [78]. If 𝐷𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡) exceeds the alert
threshold, feedback (𝐹𝑃𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘) is generated [87] and sent to the flight
controller (e.g., slow down, initiate localized scan) [79].

· Transmit Data: Prioritized, compressed data packet is sent to the buoy.
· Loop: Return to Step 2 for the next frame.

4.2. Detailed Mathematical Formulation of the ASREP Algorithm: The ASREP
algorithm is formalized through a series of interdependent control steps. Inputs:

· 𝐼𝑟𝑎𝑤(𝑥,𝑦,𝜆,𝑡): Raw SWIR image data [80].
· 𝑣𝑑, ℎ𝑑𝑟: Drone's current ground speed and altitude [81].
· 𝐸𝑎, 𝑆𝑤𝑎𝑣𝑒: Ambient illumination and sea surface conditions [82].
· 𝑀𝑝𝑙: Pre-trained spectral signature models [83].
· 𝐶𝑑𝑒𝑡(𝑡−1), 𝐷𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡−1): Detection confidence and density from previous frames

[84].
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Outputs:

· 𝐹𝑅𝑜, 𝐸𝑇𝑜𝑝𝑡𝑖𝑚𝑎𝑙, 𝐺0: Optimal sensor frame rate, exposure time, and gain [85].
· 𝑅𝑂𝐼𝑐𝑜𝑜𝑟𝑑𝑠: Coordinates for dynamic Region of Interest readout [86].
· 𝐹𝑃𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘: Feedback commands to the drone flight controller [87].

Step 1: Initialization Load 𝑀𝑝𝑙𝑎𝑠𝑡𝑖𝑐 onto the Jetson Orin NX, optimized using
NVIDIA's TensorRT framework [88]. Set default sensor parameters (𝐹𝑅𝑑𝑒𝑓𝑎𝑢𝑙𝑡,
𝐸𝑇𝑑𝑒𝑓𝑎𝑢𝑙𝑡, 𝐺𝑑𝑒𝑓𝑎𝑢𝑙𝑡) [89].

Step 2: Adaptive Exposure and Gain Control For each frame 𝐼𝑟𝑎𝑤, calculate the
mean intensity 𝜇𝐼. The goal is to keep 𝜇𝐼 within a target range [𝜇𝑚𝑖𝑛

𝑡𝑎𝑟𝑔𝑒𝑡,𝜇𝑚𝑎𝑥
𝑡𝑎𝑟𝑔𝑒𝑡].

𝐸𝑇𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝐸𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 × (
𝜇𝑡𝑎𝑟𝑔𝑒𝑡

𝜇𝐼
)𝛼𝐸 𝐺𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝐺𝑐𝑢𝑟𝑟𝑒𝑛𝑡 × (

𝜇𝑡𝑎𝑟𝑔𝑒𝑡
𝜇𝐼

)𝛼𝐺 Where 𝜇𝑡𝑎𝑟𝑔𝑒𝑡 is the midpoint

of the target range, and 𝛼𝐸, 𝛼𝐺 are response factors. Exposure time is adjusted
first, followed by gain if necessary [90].

Step 3: Real-time Microplastic Detection Apply the inference model 𝑀𝑝𝑙𝑎𝑠𝑡𝑖𝑐 to the
pre-processed frame 𝐼𝑝𝑟𝑜𝑐 to get a set of potential detections 𝑝𝑘. For each detection,
the model outputs a confidence score 𝑃𝑐𝑜𝑛𝑓(𝑝𝑘) and location. Frame-wide metrics

are then updated: 𝐶𝑑𝑒𝑡(𝑡) = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑃𝑐𝑜𝑛𝑓(𝑝𝑘)) 𝐷𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡) =
𝐶𝑜𝑢𝑛𝑡(𝑝𝑘∧𝑃𝑐𝑜𝑛𝑓>𝜏𝑐𝑜𝑛𝑓)

𝐴𝑓𝑟𝑎𝑚𝑒
Where 𝜏𝑐𝑜𝑛𝑓

is a confidence threshold and 𝐴𝑓𝑟𝑎𝑚𝑒 is the area of the frame [91].

Step 4: Adaptive Frame Rate Control The frame rate must be high enough to
ensure sufficient overlap between consecutive frames for continuous coverage.
The required frame rate for coverage is: 𝐹𝑅𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑣𝑑𝑟𝑜𝑛𝑒

𝐻𝑓𝑟𝑎𝑚𝑒×(1−𝑂𝑟𝑒𝑞)
Where 𝐻𝑓𝑟𝑎𝑚𝑒 is the

height of the sensor's ground footprint in the direction of travel and 𝑂𝑟𝑒𝑞 is the
required overlap percentage. The optimal frame rate is then modulated by the
detection density: 𝐹𝑅𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝐹𝑅𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 × 𝑓(𝐷𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡)) Where 𝑓(𝐷𝑑𝑒𝑛𝑠𝑖𝑡𝑦) is a scaling
function that increases the frame rate in high-density areas (to sample more) and
decreases it in sparse areas (to save power and data) [92].

Step 5-7: ROI Readout, Compression, and Flight Feedback If detection density
and confidence exceed a threshold (𝐷𝑑𝑒𝑛𝑠𝑖𝑡𝑦 > 𝜏𝑅𝑂𝐼), the algorithm identifies clusters
of detections and instructs the sensor to read out only those regions of interest
[94]. Data from high-density ROIs is compressed using a lossless algorithm, while
background data is compressed with a higher-ratio lossy algorithm [95]. If a
significant hotspot is confirmed over several frames, a feedback command is sent
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to the flight controller to slow down or initiate a localized, high-density scan
pattern around the hotspot [96].

4.3. Coverage Path Planning (CPP) and Optimization Model: The core objective
is to maximize the total unique sea surface area scanned (𝐴𝑡𝑜𝑡𝑎𝑙) [97]. The simple
model (𝐴𝑡𝑜𝑡𝑎𝑙 = 𝑤 × 𝑣 × 𝑡) is insufficient as it ignores time lost during turns in a
typical raster (or "lawnmower") scan pattern. A more realistic model for the total
area covered by a raster scan is: 𝐴𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑠𝑤𝑎𝑡ℎ × 𝑊𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑠𝑤𝑎𝑡ℎ × 𝑁𝑠𝑤𝑎𝑡ℎ𝑠 × 𝑤𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 The
total time spent is the sum of time spent scanning and time spent turning: 𝑇𝑚𝑎𝑥 =
𝑇𝑠𝑐𝑎𝑛 + 𝑇𝑡𝑢𝑟𝑛 = 𝑁𝑠𝑤𝑎𝑡ℎ𝑠 × 𝐿𝑠𝑤𝑎𝑡ℎ

𝑣 + (𝑁𝑠𝑤𝑎𝑡ℎ𝑠−1) × 𝑡𝑡𝑢𝑟𝑛 Where:

· 𝐿𝑠𝑤𝑎𝑡ℎ is the length of one scan line.
· 𝑊𝑡𝑜𝑡𝑎𝑙 is the total width of the scanned area.
· 𝑁𝑠𝑤𝑎𝑡ℎ𝑠 is the number of parallel scan lines.
· 𝑤𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 is the effective scan width of the sensor, which is the sensor's

footprint width minus the overlap (𝑤𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 × (1−𝑂𝑟𝑒𝑞)) [98]. For the IMX993
with a 5 𝑚2 footprint, this is assumed to be ~2.24m without overlap.

· 𝑣 is the drone's flight speed.
· 𝑡𝑡𝑢𝑟𝑛 is the average time taken for the drone to complete a 180-degree turn

between swaths.

Optimizing 𝐴𝑡𝑜𝑡𝑎𝑙 requires finding the optimal balance between a high flight speed
𝑣 (which reduces 𝑇𝑠𝑐𝑎𝑛 but can degrade image quality) and the geometry of the
scan (𝐿𝑠𝑤𝑎𝑡ℎ, 𝑁𝑠𝑤𝑎𝑡ℎ𝑠) that minimizes time lost to turning (𝑇𝑡𝑢𝑟𝑛) within the 𝑇𝑚𝑎𝑥
constraint. Instead of a fixed speed, 𝑣𝑜𝑝𝑡𝑖𝑚𝑎𝑙 is a function of lighting, sea state, and
the processing capacity needed to avoid motion blur and analyze frames
effectively. This optimization will be handled by the mission planner on the buoy,
which can solve this constrained optimization problem before each mission based
on the latest environmental data. For example, aligning the long axis of the scan (
𝐿𝑠𝑤𝑎𝑡ℎ) with the prevailing wind direction can reduce drone energy expenditure and
naturally follow pollution drift lines. Optimal coverage path planning is a well-
established field in robotics [9].
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5. Projected Outcomes and Discussion:

Implementing the proposed framework is anticipated to significantly improve the
efficiency and effectiveness of microplastic surveillance. The system is designed to
generate high-resolution, georeferenced maps of microplastic distribution with a
temporal frequency unattainable by manual methods.

The proposed system involves complex technology integration, and its real-world
performance depends on extensive empirical validation. The ASREP algorithm [7],
while robustly defined, contains parameters (e.g., response factors 𝛼, thresholds)
that require tuning through rigorous experimentation. Future work will focus on
physical prototyping of the buoy and drone systems, followed by controlled
environment testing to calibrate sensors and validate the ASREP algorithm. Finally,
long-term operational deployment in diverse marine environments will be
necessary to assess the system's performance and reliability under real-world
conditions.

6. Conclusion:

This paper has presented a comprehensive design framework for an autonomous
system to detect and monitor marine microplastic pollution. By integrating a SWIR-
equipped drone with an intelligent sea buoy and leveraging edge AI on the NVIDIA
Jetson platform, the proposed system offers a scalable and efficient solution to a
pressing global challenge. The introduction of the ASREP algorithm [7] is a key
innovation designed to maximize the acquisition of high-quality, relevant data in
real-time within the drone platform's operational constraints. The mathematical
model for flight optimization provides a basis for intelligent mission planning that
adapts to environmental conditions. While this work is a design study, it provides a
robust foundation and a clear roadmap for developing next-generation
autonomous systems capable of supplying critical data for scientific research,
environmental policy, and future remediation efforts aimed at addressing marine
microplastic pollution.
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