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Basic ideas

There is an obvious problem about getting to grips with an understanding of matter in
thermal equilibrium. Let us suppose you are interested (as a designer of saucepans?)
in the thermal capacity of copper at 450 K. On the one hand you can turn to ther-
modynamics, but this approach is of such generality that it is often difficult to see
the point. Relationships between the principal heat capacities, the thermal expansion
coefficient and the compressibility are all very well, but they do not help you to
understand the particular magnitude and temperature dependence of the actual heat
capacity of copper. On the other hand, you can see that what is needed is a micro-
scopic mechanical picture of what is going on inside the copper. However, this picture
becomes impossibly detailed when one starts to discuss the laws of motion of 1024

or so copper atoms.
The aim of statistical physics is to make a bridge between the over-elaborate detail

of mechanics and the obscure generalities of thermodynamics. In this chapter we shall
look at one way of making such a bridge. Most readers will already be familiar with
the kinetic theory of ideal gases. The treatment given here will enable us to discuss
a much wider variety of matter than this, although there will nevertheless be some
limitations to the traffic that can travel across the bridge.

1.1 THE MACROSTATE

The basic task of statistical physics is to take a system which is in a well-defined
thermodynamic state and to compute the various thermodynamic properties of that
system from an (assumed) microscopic model.

The ‘macrostate’ is another word for the thermodynamic state of the system. It is
a specification of a system which contains just enough information for its thermody-
namic state to be well defined, but no more information than that. As outlined in most
books on thermal physics (e.g. Finn’s book Thermal Physics in this series), for the
simple case of a pure substance this will involve:

• the nature of the substance – e.g. natural copper;
• the amount of the substance – e.g. 1.5 moles;
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2 Basic ideas

• a small number of pairs of thermodynamic co-ordinates – e.g. pressure P and
volume V ; magnetic field B and magnetization M ; surface tension and surface
area, etc.

Each of these pairs is associated with a way of doing work on the system. For many
systems only P − V work is relevant, and (merely for brevity) we shall phrase what
follows in terms of P − V work only. Magnetic systems will also appear later in the
book.

In practice the two co-ordinates specified, rather than being P and V , will be those
appropriate to the external conditions. For instance, the lump of copper might be at a
specific pressure P (= 1 atm) and temperature T (= 450 K). In this case the macrostate
would be defined by P and T ; and the volume V and internal energy U and other
parameters would then all be determined in principle from P and T . It is precisely
one of the objectives of statistical physics to obtain from first principles what are
these values of V , U , etc. (In fact, we need not set our sights as low as this. Statistical
physics also gives detailed insights into dynamical properties, and an example of this
is given in Chapter 12.)

Now comes, by choice, an important limitation. In order to have a concrete situation
to discuss in this chapter (and indeed throughout the first eight chapters of this book),
we shall concentrate on one particular type of macrostate, namely that appropriate
to an isolated system. Therefore the macrostate will be defined by the nature of the
substance, the amount, and by U and V . For the isolated system in its energy-proof
enclosure, the internal energy is a fixed constant, and V is also constant since no work
is to be done on the system. The (fixed) amount of the substance we can characterize
by the number N of microscopic ‘particles’ making up the system.

This limitation is not too severe in practice. For an isolated system in which
N is reasonably large, fluctuations in (say) T are small and one finds that T is
determined really rather precisely by (N , U , V ). Consequently one can use results
based on the (N , U , V ) macrostate in order to discuss equally well the behaviour in
any other macrostate, such as the (N , P, T ) macrostate appropriate to our piece of
copper.

Towards the end of the book (Chapters 12 and 13, in particular), we shall return to
the question as to how to set up methods of statistical physics which correspond to
other macrostates.

1.2 MICROSTATES

Let us now consider the mechanical microscopic properties of the system of inter-
est, which we are assuming to be an assembly of N identical microscopic particles.
For the given (N , U , V ) macrostate there are an enormous number of possible
‘microstates’.

The word microstate means the most detailed specification of the assembly that
can be imagined. For example, in the classical kinetic theory of gases, the microstate
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would need to specify the (vector) position and momentum of each of the N gas par-
ticles, a total of 6N co-ordinates. (Actually even this is assuming that each particle
is a structureless point, with no internal degrees of freedom like rotation, vibration,
etc.) Of course, this microstate contains a totally indigestible amount of informa-
tion, far too much for one to store even one microstate in the largest available
computer. But, worse still, the system changes its microstate very rapidly indeed –
for instance one mole of a typical gas will change its microstate roughly 1032 times
a second.

Clearly some sort of averaging over microstates is needed. And here is one of those
happy occasions where quantum mechanics turns out to be a lot easier than classical
mechanics.

The conceptual problem for classical microstates, as outlined above for a gas, is that
they are infinite in number. The triumph of Boltzmann in the late 19th century – had
he lived to see the full justification of it – and of Gibbs around the turn of the century,
was to see how to do the averaging nevertheless. They observed that a system spends
equal times in equal volumes of ‘phase-space’ (a combined position and momentum
space; we shall develop these ideas much later in the book, in section 14.4). Hence the
volume in phase-space can be used as a statistical weight for microstates within that
volume. Splitting the whole of phase-space into small volume elements, therefore,
leads to a feasible procedure for averaging over all microstates as required. However,
we can nowadays adopt a much simpler approach.

In quantum mechanics a microstate by definition is a quantum state of the whole
assembly. It can be described by a single N -particle wave function, containing all
the information possible about the state of the system. The point to appreciate is that
quantum states are discrete in principle. Hence although the macrostate (N , U , V )

has an enormous number of possible microstates consistent with it, the number is
none the less definite and finite. We shall call this number �, and it turns out to play
a central role in the statistical treatment.

1.3 THE AVERAGING POSTULATE

We now come to the assumption which is the whole basis of statistical physics:

All accessible microstates are equally probable.

This averaging postulate is to be treated as an assumption, but it is of interest to
observe that it is nevertheless a reasonable one. Two types of supporting argument
can be produced.

The first argument is to talk about time-averages. Making any physical measure-
ment (say, of the pressure of a gas on the wall of its container) takes a non-zero time;
and in the time of the measurement the system will have passed through a very large
number of microstates. In fact this is why we get a reproducible value of P; observ-
able fluctuations are small over the appropriate time scale. Hence it is reasonable that
we should be averaging effectively over all accessible microstates. The qualification
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‘accessible’ is included to allow for the possibility of metastability. There can be
situations in which groups of microstates are not in fact accessed in the time scale
of the measurement, so that there is in effect another constant of the motion, besides
N , U and V ; only a subset of the total number � of microstates should then be aver-
aged. We shall return to this point in later chapters, but will assume for the present
that all � microstates are readily accessible from each other. Hence the time-average
argument indicates that averaging over all microstates is necessary. The necessity to
average equally over all of them is not so obvious, rather it is assumed. (In passing one
can note that for a gas this point relates to the even coverage of classical phase-space
as mentioned above, in that quantum states are evenly dispersed through phase-space;
for example see Chapter 4.)

The second type of supporting argument is to treat the postulate as a ‘confession
of ignorance’, a common stratagem in quantum mechanics. Since we do not in fact
know which one of the � microstates the system is in at the time of interest, we simply
average equally over all possibilities, i.e. over all microstates. This is often called an
‘ensemble’ average, in that one can visualize it as replicating the measurement in a
whole set of identical systems and then averaging over the whole set (or ensemble).

One can note that the equality of ensemble and time averages implies a particular
kind of uniformity in a thermodynamic system. To give an allied social example,
consider the insurer’s problem. He wishes to charge a fair (sic) premium for life
insurance. Thus he requires an expectation of life for those currently alive, but he
cannot get this by following them with a stop-watch until they die. Rather, he can
look at biographical records in the mortuary in order to determine an expectation of
life (for the wrong sample) and hope for uniformity.

1.4 DISTRIBUTIONS

In attempting to average over all � microstates we still have a formidable problem. A
typical system (e.g. a mole of gas) is an assembly of N = 1024 particles. That is a large
enough number, but the number � of microstates is of order N N , an astronomically
large number. We must confess that knowledge of the system at the microstate level
is too detailed for us to handle, and therefore we should restrict our curiosity merely
to a distribution specification, defined below.

A distribution involves assigning individual (private) energies to each of the N par-
ticles. This is only sensible (or indeed possible) for an assembly of weakly interacting
particles. The reason is that we shall wish to express the total internal energy U of
the assembly as the sum of the individual energies of the N particles

U =
N∑

l=1

ε(l) (1.1)

where ε(l) is the energy of the lth particle. Any such expression implies that the
interaction energies between particles are much smaller than these (self) energies ε.
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Actually any thermodynamic system must have some interaction between its parti-
cles, otherwise it would never reach equilibrium. The requirement rather is for the
interaction to be small enough for (1.1) to be valid, hence ‘weakly interacting’ rather
than ‘non-interacting’ particles.

Of course this restriction of approach is extremely limiting, although less so than
one might first suspect. Clearly, since the restriction is also one of the assumptions
of simple kinetic theory, our treatment will be useful for perfect gases. However,
it means that for a real fluid having strong interactions between molecules, i.e. an
imperfect gas or a liquid, the method cannot be applied. We shall return briefly to
this point in Chapter 14, but a full treatment of interacting particles is well outside
the scope of this book. At first sight it might seem that a description of solids is
also outside this framework, since interactions between atoms are obviously strong
in a solid. However, we shall see that many of the thermal properties of solids are
nevertheless to be understood from a model based on an assembly of N weakly inter-
acting particles, when one recognizes that these particles need not be the atoms, but
other appropriate entities. For example the particles can be phonons for a discussion
of lattice vibrations (Chapter 9); localized spins for a discussion of magnetic prop-
erties (Chapters 2 and 11); or conduction electrons for a description of metals and
semiconductors (Chapter 8).

A distribution then relates to the energies of a single particle. For each microstate
of the assembly of N identical weakly interacting particles, each particle is in an
identifiable one-particle state. In the distribution specification, intermediate in detail
between the macrostate and a microstate, we choose not to investigate which par-
ticles are in which states, but only to specify the total number of particles in the
states.

We shall use two alternative definitions of a distribution.

Definition 1 – Distribution in states This is a set of numbers (n1, n2, . . . , njn , . . .)
where the typical distribution number njn is defined as the number of particles in state
j, which has energy εjε . Often, but not always, this distribution will be an infinite set;
the label j must run over all the possible states for one particle. A useful shorthand
for the whole set of distribution numbers (n1, n2, . . . , njn , . . .) is simply {njn }.

The above definition is the one we shall adopt until we specifically discuss gases
(Chapter 4 onwards), at which stage an alternative, and somewhat less detailed,
definition becomes useful.

Definition 2 – Distribution in levels This is a set of numbers (n1, n2, . . . , ni, . . .) for
which the typical number ni is now defined as the number of particles in level i, which
has energy εi and degeneracy gi, the degeneracy being defined as the number of states
belonging to that level. The shorthand {ni} will be adopted for this distribution.

It is worth pointing out that the definition to be adopted is a matter of one’s choice.
The first definition is the more detailed, and is perfectly capable of handling the case
of degenerate levels – degeneracy simply means that not all the εjε s are different.
We shall reserve the label j for the states description and the label i for the levels
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description; it is arguable that the n symbols should also be differentiated, but we
shall not do this.

Specifications – an example Before proceeding with physics, an all too familiar
example helps to clarify the difference between the three types of specification of a
system, the macrostate, the distribution, and the microstate.

The example concerns the marks of a class of students. The macrostate specification
is that the class of 51 students had an average mark of 55%. (No detail at all, but that’s
thermodynamics.) The microstate is quite unambiguous and clear; it will specify the
name of each of the 51 individuals and his/her mark. (Full detail, nowhere to hide!)
The definition of the distribution, as above, is to some extent a matter of choice. But
a typical distribution would give the number of students achieving marks in each
decade, a total of 10 distribution numbers. (Again all identity of individuals is lost,
but more statistical detail is retained than in the macrostate.)

1.5 THE STATISTICAL METHOD IN OUTLINE

The object of the exercise is now to use the fundamental averaging assumption about
microstates (section 1.3) to discover the particular distribution {njn } (section 1.4) which
best describes the thermal equilibrium properties of the system.

We are considering an isolated system consisting of a fixed number N of the iden-
tical weakly interacting particles contained in a fixed volume V and with a fixed
internal energy U . There are essentially four steps towards the statistical description
of this macrostate which we discuss in turn:

I. solve the one-particle problem;
II. enumerate possible distributions;

III. count the microstates corresponding to each distribution;
IV. find the average distribution.

1.5.1 The one-particle problem

This is a purely mechanical problem, and since it involves only one particle it is a
soluble problem for many cases of interest. The solution gives the states of a particle
which we label by j (= 0, 1, 2, …). The corresponding energies are εjε . We should note
that these energies depend on V (for a gas) or on V /N the volume per particle (for a
solid).

1.5.2 Possible distributions

The possible sets of distribution numbers {njn } can now be simply written down (given
appropriate patience, because usually there will be very many possibilities). However,
we give this relatively straightforward task a section of its own, in order to stress that
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a valid distribution must satisfy the two conditions implied by the macrostate∑
j

njn = N (1.2)

∑
j

njn εjε = U (1.3)

Equation (1.2) ensures that the distribution contains the correct number of particles.
Equation (1.3) follows from (1.1), and guarantees that distribution corresponds to the
correct value of U . All of the conditions of the (N , U , V ) macrostate are now taken
care of.

1.5.3 Counting microstates

Next we need to count up the number of microstates consistent with each valid set
of distribution numbers. Usually, and especially for a large system, each distribution
{njn } will be associated with a very large number of microstates. This number we
call t({njn }). The dependence of t on {njn } is a pure combinatorial problem. The result
is very different for an assembly of localized particles (in which the particles are
distinguishable by their locality) and for an assembly of gas-like particles (in which
the particles are fundamentally indistinguishable). Hence the statistical details for
localized particles and for gases are treated below in separate chapters.

1.5.4 The average distribution

The reason for counting microstates is that, according to the postulate of equal proba-
bility of all microstates, the number t({njn }) is the statistical weight of the distribution
{njn }. Hence we can now in principle make the correct weighted average over all
possible distributions to determine the average distribution {njn }av. And this aver-
age distribution, according to our postulates, is the one which describes the thermal
equilibrium distribution.

1.6 A MODEL EXAMPLE

Before further discussion of the properties of a large system, the realistic case in
thermodynamics, let us investigate the properties of a small model system using the
methodology of the previous section.

1.6.1 A simple assembly

The macrostate we consider is an assembly of N = 4 distinguishable particles. We
label the four particles A, B, C and D. The total energy U = 4ε, where ε is a constant
(whose value depends on V ).
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Step I. The mechanical problem is to be solved to give the possible states of one
particle. We take the solution to be states of (non-degenerate) energies 0, ε, 2ε, 3ε, . . .
For convenience we label these states j = 0, 1, 2, . . . with εjε = jε.

Step II. Defining the distribution numbers as {njn }, with j = 0, 1, 2, . . . , we note that
any allowable distributions must satisfy

∑
njn = 4;

∑
njn εjε = 4ε (i.e.

∑
njn jjj = 4)

There are thus five possible distributions:

Distribution n0 n1 n2 n3 n4 n5 . . .

1 3 0 0 0 1 0 . . .

2 2 1 0 1 0 0 . . .

3 2 0 2 0 0 0 . . .

4 1 2 1 0 0 0 . . .

5 0 4 0 0 0 0 . . .

Step III. A microstate specifies the state of each of the four particles. We need to
count the number of microstates to each of the five distributions. To take distribution
1 as an example, we can identify four possible microstates:

(i) A is in state j = 4; B, C and D are in state j = 0
(ii) B is in state j = 4, the others are in state j = 0

(iii) C is in state j = 4, the others are in state j = 0
(iv) D is in state j = 4, the others are in state j = 0

Hence t(1) = 4. Similarly one can work out (an exercise for the reader?) the numbers
of microstates for the other four distributions. The answers are t(2) = 12, t(3) =
6, t(4) = 12, t(5) = 1. It is significant that the distributions which spread the particles
between the states as much as possible have the most microstates, and thus (Step
IV) are the most probable. The total number of microstates � is equal to the sum
t(1) + t(2) + t(3) + t(4) + t(5), i.e. � = 35 in this example.

(Aside(( . A general formula for this situation is developed in Appendix A and we shall
make much use of it in Chapter 2. The result is

t({njn }) = N !
/∏

j

njn ! (1.4)

where the denominator
∏

njn ! represents the extended product
n0!n1!n2! . . . njn ! . . .. The result for t(1) follows from (1.4) as 4!/3!, when one substitutes
0! = 1 and 1! = 1. The other t values follow similarly.)
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Step IV. The average value of every distribution number can now be obtained by an
equal averaging over every microstate, readily computed as a weighted mean over
the five possible distributions using the t values as the weight. For instance

(n0)av = (n(1)
0 t(1) + n(2)

0 t(2) + · · · )/�

= (3× 4+ 2× 12+ 2× 6+ 1× 12+ 0× 1)/35

= 60/35 = 1.71

Similarly for n1, n2 etc. give finally

{njn }av = (1.71, 1.14, 0.69, 0.34, 0.11, 0, 0 . . .)

The result is not unlike a falling exponential curve, the general result for a large
assembly which we shall derive in the next chapter.

1.6.2 A composite assembly

We now briefly reconsider the four-particle model assembly as a composite two-part
assembly. We take as an initial macrostate a more restrictive situation than before. Let
us suppose that the two particles A and B form one sub-assembly, which is thermally
isolated from a second sub-assembly consisting of particles C and D; and that the
values of internal energies are UABU = 4ε, UCDUU = 0. This initial macrostate is more
fully specified than the situation in section 1.6.1, since the division of energy between
AB and CD is fixed.

The total number of microstates is now only five rather than 35. This arises as
follows. For sub-assembly CD we must have j = 0 for both particles, the only way
to achieve UCDUU = 0. Hence �CD = 1 and {njn } = (2, 0, 0, 0, 0, . . .). (This result
corresponds to a low-temperature distribution, as we shall see later, in that all the
particles are in the lowest state). For sub-assemblyAB there are five microstates to give
UABU = 4ε. In a notation [j[[ (A), j(B)] they are [4, 0], [0, 4], [3, 1], [1, 3], [2, 2]. Hence
�AB = 5 and {njn } = (0.4, 0.4, 0.4, 0.4, 0.4, 0, 0, . . .). (This is now a high-temperature
distribution, with the states becoming more evenly populated.)

In order to find the total number of microstates of any composite two-part assembly,
the values of� for the two sub-assemblies must be multiplied together. This is because
for every microstate of the one sub-assembly, the other sub-assembly can be in any
one of its microstates. Therefore in this case we have � = �AB ·�CD = 5, as stated
earlier.

Now let us place the two sub-assemblies in thermal contact with each other, while
still remaining isolated from the rest of the universe. This removes the restriction of
the 4:0 energy division between AB and CD, and the macrostate reverts to exactly the
same as in section 1.6.1. When equilibrium is reached, this then implies a distribution
intermediate in shape (and in temperature). But of particular importance is the new
value of � (namely 35). One way of understanding the great increase (and indeed
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another way of calculating it) is to appreciate that microstates with UABU = 3ε, 2ε, ε,
0 are now accessible in addition to 4ε; and correspondingly for UCDUU . So we can
observe from this example that internal adjustments of an isolated system towards
overall equilibrium increase the number of accessible microstates.

1.7 STATISTICAL ENTROPY AND MICROSTATES

First, a word about entropy. Entropy is introduced in thermodynamics as that rather
shadowy function of the state of a system associated with the second law of ther-
modynamics. The essence of the idea concerns the direction (the ‘arrow of time’) of
spontaneous or natural processes, i.e. processes which are found to occur in practice.

A pretty example is the mixing of sugar and sand. Start with a dish containing a
discrete pile of each substance. The sugar and sand may then be mixed by stirring,
but the inverse process of re-separating the substances by un-stirring (stirring in the
opposite direction?) does not in practice happen. Such un-mixing can only be achieved
with great ingenuity. In a natural process, the second law tells us that the entropy S of
the universe (or of any isolated system) never decreases. And in the mixing process the
entropy increases. (The ‘great ingenuity’ would involve a larger increase of entropy
somewhere else in the universe.) All this is a statement of probability, rather than
of necessity – it is possible in principle to separate the mixed sugar and sand by
stirring, but it is almost infinitely improbable. And thermodynamics is the science of
the probable!

Statistical physics enables one to discuss entropy in terms of probability in a direct
and simple way. We shall adopt in this book a statistical definition for the entropy of
an isolated system

S = kBkk ln � (1.5)

with kBkk equal to Boltzmann’s constant 1.38 × 10−23 J K−1. This definition has an
old history, originating from Boltzmann’s work on the kinetic theory of gases in
the last century, and (1.5) appears on Boltzmann’s tombstone. The relationship was
developed further by Planck in his studies of heat radiation – the start of the quantum
theory.

Logically perhaps (1.5) is a derived result of statistical physics. However, it is
such a central ideal that it is sensible to introduce it at this stage, and to treat it as a
definition of entropy from the outset. We shall gradually see that the S so defined has
all the properties of the usual thermodynamic entropy.

What we have observed so far about the behaviour of � is certainly consistent with
this relation to entropy.

1. As noted above, for an isolated system a natural process, i.e. one which spon-
taneously occurs as the system attains overall equilibrium, is precisely one in
which the thermodynamic entropy increases. And we have seen in the example of
section 1.6 that � also increases in this type of process. Hence a direct relation
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between S and � is suggested, and moreover a monotonically increasing one, in
agreement with (1.5).

2. For a composite assembly, made up of two sub-assemblies 1 and 2 say, we have
shown in section 1.6.2 that the number of microstates of the whole assembly �

is given by � = �1 · �2. The required behaviour of the thermodynamic entropy
is of course S = S1 + S2, and the relation (1.5) is consistent with this; indeed
the logarithm is the only function which will give the result. (This was Planck’s
original ‘proof’ of (1.5).)

3. The correlation between entropy and the number of microstates accessible (i.e.
essentially a measure of disorder) is a very appealing one. It interprets the third
law of thermodynamics to suggest that all matter which comes to equilibrium will
order at the absolute zero in the sense that only one microstate will be accessed
(� = 1 corresponding to S = 0, a natural zero for entropy).

Later in the book, we shall see much more evidence in favour of (1.5), the final
test being that the results derived using it are correct, for example the equation of
state of an ideal gas (Chapter 6), and the relation of entropy to temperature and heat
(Chapter 2).

1.8 SUMMARY

In this chapter, the main ideas of a statistical approach to understanding thermal
properties are introduced. These include:

1. Statistical methods are needed as a bridge between thermodynamics (too general)
and mechanics (too detailed).

2. This bridge is readily accessible if we restrict ourselves to a system which can be
considered as an assembly of weakly-interacting particles.

3. Three ways of specifying such a system are used. The macrostate corresponds
to the thermodynamic specification, based on a few external constraints. The
microstate is a full mechanical description, giving all possible knowledge of its
internal configuration. Between these is the statistical notion of a distribution of
particles which gives more detail than the macrostate, but less than the microstate.

4. The number � of microstates which describe a given macrostate plays a central
role. The basic assumption is that all (accessible) microstates are equally probable.

5. If we define entropy as S = kBk ln �, then this is a good start in our quest to
"understand" thermodynamics.
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Distinguishable particles

The next step is to apply the statistical method outlined in Chapter 1 to realistic
thermodynamic systems. This means addressing the properties of an assembly which
consists of a large number N of weakly interacting identical particles. There are two
types of assembly which fulfil the requirements.

One type is a gaseous assembly, in which the identical particles are the gas
molecules themselves. In quantum mechanics one recognizes that the molecules are
not only identical, but they are also (in principle as well as in practice) indistinguish-
able. It is not possible to ‘put a blob of red paint’ on one particular molecule and
to follow its history. Hence the microstate description must take full account of the
indistinguishability of the particles. Gaseous assemblies will be introduced later in
Chapter 4.

In this chapter we shall treat the other type of assembly, in which the particles
are distinguishable. The physical example is that of a solid rather than that of a gas.
Consider a simple solid which is made up of N identical atoms. It remains true that the
atoms themselves are indistinguishable. However, a good description of our assembly
is to think about the solid as a set of N lattice sites, in which each lattice site contains
an atom. A ‘particle’ of the assembly then becomes ‘the atom at lattice site 4357
(or whatever)’. (Which of the atoms is at this site is not specified.) The particle is
distinguished not by the identity of the atom, but by the distinct location of each
lattice site. A solid is an assembly of localized particles, and it is this locality which
makes the particles distinguishable.

We shall now develop the statistical description of an ideal solid, in which the
atoms are weakly interacting. How far the behaviour of real solids can be explained
in this way will become clearer in later chapters. The main results of this chapter will
be the derivation of the thermal equilibrium distribution (the Boltzmann distribution)
together with methods for the calculation of thermodynamic quantities. Two physical
examples are given in Chapter 3.

13
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2.1 THE THERMAL EQUILIBRIUM DISTRIBUTION

We follow the method outlined in section 1.5. For the macrostate we consider an
assembly of N identical distinguishable (localized) particles contained in a fixed
volume V and having a fixed internal energy U . The system is mechanically and
thermally isolated, but we shall be considering sufficiently large assemblies that the
other thermodynamic quantities (T , S, etc.) are well defined.

2.1.1 The one-particle states

The one-particle states will be specified by a state label j (= 0, 1, 2 . . .). The corre-
sponding energies εjε may or may not be all different. These states will be dependent
upon the volume per particle (V /N// ) for our localized assembly.

2.1.2 Possible distributions

We use the distribution in states {njn } defined in section 1.4. The distribution numbers
must satisfy the two conditions (1.2) and (1.3) imposed by the macrostate∑

j

njn = N (1.2) and (2.1)

∑
j

njn εjε = U (1.3) and (2.2)

2.1.3 Counting microstates

It is here that the fact that we have distinguishable particles shows up. It means that
the particles can be counted just as macroscopic objects. A microstate will specify the
state (i.e. the label j) for each distinct particle. We wish to count up how many such
micro-states there are to an allowable distribution {njn }. The problem is essentially the
same as that discussed in Appendix A, namely the possible arrangements of N objects
into piles with njn in a typical pile. The answer is

t({njn }) = N !
/∏

j

njn ! (1.4) and (2.3)

2.1.4 The average distribution

According to our postulate, the thermal distribution should now be obtained by eval-
uating the average distribution {njn }av. This task involves a weighted average of
all the possible distributions (as allowed by (2.1) and (2.2)) using the values of t
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(equation (2.3)) as statistical weights. This task can be performed, but fortunately we
are saved from the necessity of having to do anything so complicated by the large
numbers involved. Some of the simplifications of large numbers are explored briefly
in Appendix B.

The vital point is that it turns out that one distribution, say {n∗jn }, is overwhelmingly
more probable than any of the others. In other words, the function t({njn }) is very
sharply peaked indeed around {n∗jn }. Hence, rather than averaging over all possible
distributions, one can obtain essentially the same result by picking out the most prob-
able distribution alone. This then reduces to the mathematical problem of maximizing
t({njn }) from (2.3) subject to the conditions (2.1) and (2.2).

Another even stronger way of looking at the sharp peaking of t is to consider the
relationship between � and t. Since � is defined as the total number of microstates
contained by the macrostate, it follows that

� =
∑

t({njn })

where the sum goes over all distributions. What is now suggested (and compare the
pennies problem of Appendix B) is that this sum can in practice be replaced by its
maximum term, i.e.

� ≈ t({n∗jn }) = t∗(for short) (2.4)

2.1.5 The most probable distribution

To find the thermal equilibrium distribution, we need to find the maximum t∗ and to
identify the distribution {n∗jn } at this maximum. Actually it is a lot simpler to work
with ln t, rather than t itself.

Since ln x is a monotonically increasing function of x, this does not change the
problem; it just makes the solution a lot more straightforward. Taking logarithms of
(2.3) we obtain

ln t = ln N ! −
∑

j

ln njn ! (2.5)

Here the large numbers come to our aid. Assuming that all the ns are large enough
for Stirling’s approximation (Appendix B) to be used, we can eliminate the factorials
to obtain

ln t = (N ln N − N )−
∑

j

(njn ln njn − njn ) (2.6)

To find the maximum value of ln t from (2.6) we express changes in the distribution
numbers as differentials (large numbers again!) so that the maximum will be obtained
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by differentiating ln t and setting the result equal to zero. Using the fact that N is
constant, and noting the cancellation of two out of the three terms arising from the
sum in (2.6), this gives simply

d(ln t) = 0−
∑

j

dnjn (ln njn + njn /njn − 1)

= −
∑

j

ln n∗jn dnjn = 0 (2.7)

where the dnjn s represent any allowable changes in the distribution numbers from
the required distribution {n∗jn }. Of course not all changes are allowed. Only changes
which maintain the correct values of N (2.1) and of U (2.2) may be countenanced.
This lack of independence of the dnjn s gives two restrictive conditions, obtained by
differentiating (2.1) and (2.2)

d(N ) =
∑

j

dnjn = 0 (2.8)

d(U ) =
∑

j

εjε dnjn = 0 (2.9)

A convenient way of dealing with the mathematics of a restricted maximum of this
type is to use the Lagrange method of undetermined multipliers. The argument in
our case goes as follows. First we note that we can self-evidently add any arbitrary
multiples of (2.8) and (2.9) to (2.7), and still achieve the result zero. Thus∑

j

(− ln n∗jn + α + βεjε )dnjn = 0 (2.10)

for any values of the constants α and β . The second and clever step is then to recognize
that it will always be possible to write the solution in such a way that each individual
term in the sum of (2.10) equals zero, so long as specific values of α and β are chosen.
In other words the most probable distribution {n∗jn } will be given by

(− ln n∗jn + α + βεjε ) = 0 (2.11)

with α and β each having a specific (but as yet undetermined) value. This equation
can then be written

n∗jn = exp(α + βεjε ) (2.12)

and this is the Boltzmann distribution. We may note at once that it has the exponen-
tial form suggested for the thermal equilibrium distribution by the little example in
Chapter 1. But before we can appreciate the significance of this central result, we
need to explore the meanings of these constants α and β. (A note of caution:(( α and β
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are defined with the opposite sign in some other works. Looking at a familiar result
(e.g. the Boltzmann distribution) easily makes this ambiguity clear.)

2.2 WHAT ARE α AND β?

Here (as ever?) physics and mathematics go hand in hand. In the mathematics, α

was introduced as a multiplier for the number condition (2.1), and β for the energy
condition (2.2). So it will follow that α is determined from the fixed number N of
particles, and can be thought of as a ‘potential for particle number’. Similarly β is
determined by ensuring that the distribution describes an assembly with the correct
energy U , and it can be interpreted as a ‘potential for energy’.

2.2.1 α and number

Since α enters the Boltzmann distribution in such a simple way, this section will be
short! We determine α by applying the condition (2.1) which caused its introduction
in the first place. Substituting (2.12) back into (2.1) we obtain

N =
∑

j

njn = exp(α)
∑

j

exp(βεjε ) (2.13)

since exp(α) (= A, say) is a factor in each term of the distribution. In other words, A is
a normalization constant for the distribution, chosen so that the distribution describes
the thermal properties of the correct number N of particles. Another way of writing
(2.13) is: A = N/Z , with the ‘partition function’, Z , defined by Z = ∑j

∑
exp(βεjε ).

We may then write the Boltzmann distribution (2.12) as

njn = A exp(βεjε ) = (N/Z) exp(βεjε ) (2.14)

We leave any fuller discussion of the partition function until later in the chapter, when
the nature of β has been clarified.

2.2.2 β and energy

In contrast, the way in which β enters the Boltzmann distribution is more subtle. Nev-
ertheless the formal statements are easily made. We substitute the thermal distribution
(2.14) back into the relevant condition (2.2) to obtain

U =
∑

j

njn εjε = (N/Z)
∑

j

εjε exp(βεjε )
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or

U/N =
∑

j

εjε exp(βεjε )
/∑

j

exp(βεjε ) (2.15)

The appropriate value of β is then that one which, when put into this equation,
gives precisely the internal energy per particle (U/N ) specified by the macrostate.
Unfortunately this is not a very tidy result, but it is as far as we can go explicitly,
since one cannot in general invert (2.15) to give an explicit formula for β as a function
of (U , V , N ). Nevertheless for a given (U , V , N ) macrostate, β is fully specified by
(2.15), and one can indeed describe it as a ‘potential for energy’, in that the equation
gives a very direct correlation between (U/N ) and β.

However, that is not the end of the story. It turns out that this untidy (but absolutely
specific) function β has a very clear physical meaning in terms of thermodynamic
functions other than (U , V , N ). In fact we shall see that it must be related to
temperature only, a sufficiently important point that the following section will be
devoted to it.

2.3 A STATISTICAL DEFINITION OF TEMPERATURE

2.3.1 β and temperature

To show that there is a necessary relationship between β and temperature T , we
consider the thermodynamic and statistical treatments of two systems in thermal
equilibrium.

The thermodynamic treatment is obvious. Two systems in thermal equilibrium
have, effectively by definition, the same temperature. This statement is based on the
‘zeroth law of thermodynamics’, which states that there is some common function of
state shared by all systems in mutual thermal equilibrium – and this function of state
is what is meant by (empiric) temperature.

The statistical treatment can follow directly the lines of section 2.1. The problem
can be set up as follows. Consider two systems P and Q which are in thermal contact
with each other, but together are isolated from the rest of the universe. The statistical
method applies to this composite assembly in much the same way as in the simple
example of section 1.6.2. We suppose that system P consists of a fixed number NPNN of
localized particles, which each have states of energy εjε , as before. The system Q need
not be of the same type, so we take it as containing NQNN particles whose energy states
are ε′k . The corresponding distributions are {njn } for system P and {n′k} for system Q.
Clearly the restrictions on the distributions are∑

j

njn = NPNN (2.16)

∑
k

n′k = NQNN (2.17)
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and

∑
j

njn εjε +
∑

k

n′kε
′
k = U (2.18)

where U is the total energy (i.e. UPUU + UQUU ) of the two systems together.
The counting of microstates is easy when we recall (section 1.6.2) that we may

write

� = �P ×�Q or t = tPtt × tQ (2.19)

with the expressions for tPtt and tQ being analogous to (2.3).
Finding the most probable distribution may again be achieved by the Lagrange

method as in section 2.1.5. The problem is to maximize ln t with t as given in (2.19),
subject now to the three conditions (2.16), (2.17) and (2.18). Using multipliers αP,
αQ and β respectively for the three conditions, the result on differentiation (compare
(2.12)) is

∑
j

(− ln n∗jn + αP + βεjε )dnjn +
∑

k

(− ln n′∗jn + αQ + βε′k)dnk = 0

The Lagrange method then enables one to see that, for the appropriate values of the
three multipliers, each term in the two sums is separately equal to zero, so that the
final result is for system P

n∗jn = exp(αP + βεjε )

and for system Q

n′∗k = exp(αQ + βε′k )

Where does this leave us? What it shows is that both system P and system Q have
their thermal equilibrium distributions of the Boltzmann type (compare (2.12)). The
distributions have their own private values of α, and we can see from the derivation
that this followed from the introduction of the separate conditions for particle conser-
vation ((2.16) and (2.17)). However, the two distributions have the same value of β.
This arose in the derivation from the single energy condition (2.18), in other words
from the thermal contact or energy interchange between the systems. So the impor-
tant conclusion is that two systems in mutual thermal equilibrium and distributions
with the same β. From thermodynamics we know that they necessarily have the same
empiric temperature, and thus the same thermodynamic temperature T . Therefore it
follows that β is a function of T only.



20 Distinguishable particles

2.3.2 Temperature and entropy

We now come to the form of this relation β and T . The simplest approach is to know
the answer(!), and we shall choose to define a statistical temperature in terms of β

from the equation

β = −1/kBkk T (2.20)

What will eventually become clear (notably when we discuss ideal gases in Chapter 6)
is that this definition of T does indeed agree with the absolute thermodynamic scale
of temperature. Meanwhile we shall adopt (2.20) knowing that its justification will
follow.

There is much similarity with our early definition of entropy as S = kBkk ln �,
introduced in section 1.7. And in fact the connection between these two results is
something well worth exploring at this stage, particularly since it can give us a
microscopic picture of heat and work in reversible processes.

Consider how the internal energy U of a system can be changed. From a macro-
scopic viewpoint, this can be done by adding heat and/or work, i.e. change in U =
heat input + work input. The laws of thermodynamics for a differential change in a
simple P − V system tell us that

dU = TdS − PdV (2.21)

where for reversible processes (only) the first (TdS) term can be identified as the heat
input, and the second term (−PdV ) as the work input.

Now let us consider the microscopic picture. The internal energy is simply the
sum of energies of all the particles of the system, i.e. U = ∑ njn εjε . Taking again a
differential change in U , we obtain

dU =
∑

j

εjε dnjn +
∑

j

njn dεjε (2.22)

where the first term allows for changes in the occupation numbers njn , and the second
term for changes in the energy levels εjε .

It is not hard to convince oneself that the respective first and second terms of (2.21)
and (2.22) match up. The energy levels are dependent only on V , so that −PdV
work input can only address the second term of (2.22). And, bearing in mind the
correlation between S and � (and hence t∗, and hence {n∗jn }), it is equally clear that
occupation number changes are directly related to entropy changes. Hence the match-
ing up of the first terms. These ideas turn out to be both interesting and useful. The
relation−PdV =∑ njn dεjε gives a direct and physical way of calculating the pressure
from a microscopic model. And the other relation bears directly on the topic of this
section.
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The argument in outline is as follows. Start by considering how a change in ln �

can be brought about

d(ln �)= d(ln t∗) for a large system

=−
∑

j

ln n∗jn dnjn as in (2.7)

=−
∑

j

(α + βεjε )dnjn using the Boltzmann distribution

=−β
∑

j

εjε dnjn since N is fixed

=−β(dU )no work first term of (2.22)

=−β(T dS) first term of (2.21)

This identification is consistent with S = kBkk ln � together with β = −1/kBkk T .
It shows clearly that the two statistical definitions are linked, i.e. that (2.20)
validates (1.5) or vice versa. Part of this consistency is to note that it must
be the same constant (kBkk , Boltzmann’s constant) which appears in both definitions.

2.4 THE BOLTZMANN DISTRIBUTION AND
THE PARTITION FUNCTION

We now return to discuss the Boltzmann distribution. We have seen that this dis-
tribution is the appropriate one to describe the thermal equilibrium properties of an
assembly of N identical localized (distinguishable) weakly interacting particles. We
have derived it for an isolated assembly having a fixed volume V and a fixed internal
energy U . An important part in the result is played by the parameter β which is a
function of the macrostate (U , V , N ). However, the upshot of the previous section
is to note that the Boltzmann distribution is most easily written and understood in
terms of (T , V , N ) rather than (U , V , N ). This is no inconvenience, since it frequently
happens in practice that it is T rather than U that is known. And it is no embarrass-
ment from a fundamental point of view so long as we are dealing with a large enough
system that fluctuations are unimportant. Therefore, although our method logically
determines T (and other thermodynamic quantities) as a function of (U , V , N ) for
an isolated system, we shall usually use the results to describe the behaviour of U
(and other thermodynamic quantities) as a function of (T , V , N ). (This subject will
be reopened in Chapters 10–12.)

Therefore, we now write the Boltzmann distribution as

njn = (N/Z) exp(−εjε /kBkk T ) (2.23)
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with the partition function Z defined as

Z =
∑

j

exp(−εjε /kBkk T ) (2.24)

(From now on we shall for simplicity omit the ∗s from njn , since all the discussion
will relate to thermal equilibrium.) It is worth making two points about the partition
function. The first is that its common symbol Z is used from the German word for sum-
over-states, for that is all the partition function is: the sum over all one-particle states of
the ‘Boltzmann factors’ exp(−εjε /kBkk T ). The second point concerns its English name.
It is called the partition function because (in thermal equilibrium at temperature T ) njn
is proportional to the corresponding term in the sum. In other words the N particles
are partitioned into their possible states (labelled by j) in just the same ratios as Z is
split up into the Boltzmann factor terms. This is clear when we rewrite (2.23) as

njn /N = exp(−εjε /kBkk T )/Z (2.25)

or equivalently

njn /nk = exp[−(εjε − εk )/kBkk T ] (2.26)

In fact the way of writing the Boltzmann distribution given in (2.26) is a very straight-
forward way of remembering it. And expressions of the type exp(−�ε/kBkk T ) turn up
in all sorts of different physical situations.

2.5 CALCULATION OF THERMODYNAMIC FUNCTIONS

To finish this chapter we discuss a few practicalities about how the Boltzmann dis-
tribution may be used to calculate thermodynamic functions from first principles. In
the next chapter we apply these ideas to two particular physical cases.

We start with our system at given (T , V , N ) as discussed in the previous section.
There are then (at least) three useful routes for calculation. The best one to use will
depend on which thermodynamic functions are to be calculated – and there is no
substitute for experience in deciding!

Method 1: Use S = kBkk ln � This method is often the shortest to use if only the
entropy is required. The point is that one can substitute the Boltzmann distribution
numbers, (2.23), back into (2.3) in order to give t∗ and hence � (equation (2.4)) and
hence S. Thus S is obtained from a knowledge of the εjε s (which depend on V ), of N
and of T (as it enters the Boltzmann distribution).

Method 2: Use the definition of Z There is a direct shortcut from the partition
function to U . This is particularly useful if only U and perhaps dU/dT (= CV , the
heat capacity at constant volume) are wanted. In fact U can be worked out at once
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from U = ∑ njn εjε , but this sum can be neatly performed by looking back at (2.15),
which can be re-expressed as

(U/N ) = (1/Z)dZ/dβ = d(ln Z)/dβ (2.27)

Note that it is usually convenient to retain β as the variable here rather than to use T .

Method 3: The ‘royal route’ This one never fails, so it is worth knowing! The route
uses the Helmholtz free energy F , defined as F = U − TS. The reason for the
importance of the method is twofold. First, the statistical calculation of F turns out to
be extremely simple from the Boltzmann distribution. The calculation goes as follows

F =U − TS definition

=
∑

njn εjε − kBkk T ln t∗ statistical U and S

=
∑

njn εjε − kBkk T (N ln N −
∑

njn ln njn ) using (2.6) with
∑

njn = N

=−NkBkk T ln Z , simply using (2.23) (2.28)

In the last step one takes the logarithm of (2.23) to obtain ln njn = ln N−ln Z−εjε /kBkk T .
Everything but the ln Z term cancels, giving the memorable and simple result (2.28).

The second reason for following this route is that an expression for F in terms
of (T , V , N ) is of immediate use in thermodynamics since (T , V , N ) are the natural
co-ordinates for F (e.g. see Thermal Physics by Finn, Chapter 10). In fact dF =
−SdT − PdV + μdN , so that simple differentiation can give S, P and the chemical
potential μ at once; and most other quantities can also be derived with little effort.
We shall see how these ideas work out in the next chapter.

2.6 SUMMARY

This chapter lays the groundwork for the statistical method which is developed in
later chapters.

1. We first consider an assembly of distinguishable particles, which makes counting
of microstates a straightforward operation. This corresponds to several important
physical situations, two of which follow in Chapter 3.

2. Counting the microstates leads to (2.3), a result worth knowing.
3. The statistics of large numbers ensures that we can accurately approximate the

average distribution by the most probable.
4. Use of ‘undetermined multipliers’ demonstrates that the resulting Boltzmann

distribution has the form njn = exp(α + βεjε ).
5. α relates to the number N of particles, leading to the definition of the partition

function, Z .
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6. β is a ‘potential for energy U ’ and thus relates to temperature. Note the incon-
sistency in the sign of β between different authors as a possible cause of
confusion.

7. The formula β = −1/kBkk T gives a statistical definition of temperature, which
agrees with the usual thermodynamic definition.

8. Inclusion of T explicitly in the Boltzmann distribution is often useful in
applications in which we specify a (T , V , N ) macrostate.
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Two examples

We now apply the general results of the previous chapter to two specific examples,
chosen because they are easily soluble mathematically, whilst yet being of direct
relevance to real physical systems. The first example is an assembly whose local-
ized particles have just two possible states. In the second the particles are harmonic
oscillators.

3.1 A SPIN- 1
2 SOLID

First we derive the statistical physics of an assembly whose particles have just two
states. Then we apply the results to an ideal ‘spin- 1

2 solid’. Finally we can exam-
ine briefly how far this model describes the observed properties of real substances,
particularly in the realm of ultra-low temperature physics.

3.1.1 An assembly of particles with two states

Consider an assembly of N localized weakly interacting particles in which there are
just two one-particle states. We label these states j = 0 and j = 1, with energies
(under given conditions) ε0 and ε1. The results of the previous chapter can be used
to write down expressions for the properties of the assembly at given temperature T .

The distribution numbers The partition function Z , (2.24), has only two terms. It is
Z = exp(−ε0/kBkk T )+ exp(−ε1/kBkk T ), which can be conveniently written as

Z = exp(−ε0/kBkk T )[1+ exp(−ε/kBkk T )] (3.1)

where the energy ε is defined as the difference between the energy levels (ε1−ε0). We
may note that (3.1) may be written as Z = Z(0)× Z(th), the product of two factors.
The first factor (Z(0) = exp(−ε0/kBkk T ), the so-called zero-point term) depends only
on the ground-state energy ε0, whereas the second factor (Z(th), the thermal term)
depends only on the relative energy ε between the two levels.

25
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The thermal equilibrium distribution numbers (or occupation numbers) n0 and n1
may now be evaluated from (2.23) to give

n0 = N/[1+ exp(−ε/kBkk T )] = N/Z(th)

and

n1 = N exp(−ε/kBkk T )/[1+ exp(−ε/kBkk T )]
= N exp(−ε/kBkk T )/Z(th) (3.2)

These numbers are sketched in Fig. 3.1 as functions of T . We can note the following
points

1. The numbers n0,1 do not depend at all on the ground state energy ε0. The first
factor Z(0) of (3.1) does not enter into (3.2). Instead all the relevant information is
contained in Z(th). This should cause no surprise since all is contained in the simple
statement (2.26) of the Boltzmann distribution, namely n1/n0 = exp(−ε/kBkk T ),
together with n0 + n1 = N . Hence also:

2. The numbers n0,1 are functions only of ε/kBkk T . One can think of this as the ratio of
two ‘energy scales’. One scale ε represents the separation between the two energy
levels of the particles, and is determined by the applied conditions, e.g. of volume
V (or for our spin- 1

2 solid of applied magnetic field – see later). The second energy
scale is kBkk T , which should be thought of as a thermal energy scale. Equivalently,
the variable may be written as θ/T , the ratio of two temperatures, where θ = ε/kBkk
is a temperature characteristic of the energy-level spacing. This idea of temperature
or energy scales turns out to be valuable in many other situations also.

3. At low temperatures (meaning T � θ , or equivalently kBkk T � ε), equation (3.2)
gives n0 = N , n1 = 0. To employ useful picture language, all the particles are

0 3�

Upper state, n1

Lower state, n0

N/2NN

N

n0, n1

Fig. 3.1 Occupation numbers for the two states of a spin- 1
2 solid in thermal equilibrium at temperature

T . The characteristic temperature θ depends only on the energy difference between the two states. The
particles are all in the lower state when T � θ , but the occupation of the two states becomes equal when
T � θ .
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frozen out into the lowest energy (ground) state, and no particle is excited into the
higher state.

4. On the other hand at high temperatures (meaning T � θ or kBkk T � ε) we have
n0 = n1 = N/2. There are equal numbers in the two states, i.e. the difference in
energy between them has become an irrelevance. The probability of any particle
being in either of the two states is the same, just like in the penny-tossing problem
of Appendix B.

Internal energy U An expression for U can be written down at once as

U = n0ε0 + n1ε1

= Nε0 + n1ε (3.3)

with n1 given by (3.2). This function is sketched in Fig. 3.2. The first term in (3.3)
is the ‘zero-point’ energy, U (0), the energy T = 0. The second term is the ‘thermal
energy’, U (th), which depends on the energy level spacing ε and kBkk T only.

One should note that this expression may also be obtained directly from the partition
function (3.1) using (2.27). The Z(0) factor leads to U (0) and the Z(th) factor to
the U (th). It is seen from Fig. 3.2 that the transition from low to high temperature
behaviour again occurs around the characteristic temperature θ .

Heat capacity C The heat capacity C (strictly CV , or in general the heat capacity
at constant energy levels) is obtained by differentiating U with respect to T . The
zero-point term goes out, and one obtains

C = NkBkk
(θ/T )2 exp(−θ/T )

[1+ exp(−θ/T )]2 (3.4)

The result, plotted in Fig. 3.3, shows a substantial maximum (of order NkBkk , the nat-
ural unit for C) at a temperature near to θ . C vanishes rapidly (as exp(−ε/kBkk T )/T 2)

T
2� 3�

U

U(0)UU

U(0) +UU NeNN /2

0 �

Fig. 3.2 The variation of internal energy with temperature for a spin- 1
2 solid. U (0) is the zero-point energy.
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T
2� 3�

C

0.44 NkBkk

0 �

Fig. 3.3 The variation of heat capacity with temperature for a spin- 1
2 solid, showing the peak of the

Schottky anomaly (see section 3.1.2).

at low temperatures. It also goes to zero, albeit rather more gently as 1/T 2, at
high temperatures. (Prove this last statement? Seen by expanding the exponentials
in (3.4).)

Entropy S Finally we obtain the entropy S. Again this is a thermal property only,
independent of the zero-point term. With section 2.5 before us we have three possible
derivations. Method 1 can be used (together with Stirling’s approximation) to give the
answer from the distribution numbers (3.2) without recourse to calculus. Alternatively
(method 2) one can obtain S from an integration of C up from the absolute zero (since
S = 0 there), i.e. S = ∫0∫∫ (C/T )dT . This is possible but not recommended. Instead let
us use method 3. From (2.28) we write down

F = −NkBkk T ln Z

= Nε0 − NkBkk T ln[1+ exp(−ε/kBkk T )] (3.5)

substituting (3.1) for Z . Again note the zero-point and thermal terms in (3.5).
The entropy is obtained by one differentiation, since S = −(∂F/∂T )V ,N , the
differentiation being at constant energy levels and number. The result

S = NkBkk

{
ln[1+ exp(−θ/T )] + (θ/T ) exp(−θ/T )

[1+ exp(−θ/T )]
}

(3.6)

is illustrated in Fig. 3.4.
The high and low temperature values of S are worth noting. When T � θ , S is again

frozen out exponentially towards the value 0 which it must attain eventually (the third
law!). As T → 0 all the particles enter the ground state, and the assembly becomes
completely ordered (i.e. � = 1). At high temperatures, however, the particles are
randomized between the two states, so that � = 2N , and S reaches the expected value
NkBkk ln 2 (again like the penny-tossing problem). The approach to the high T limit
again goes as 1/T 2.
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Fig. 3.4 The variation of entropy with temperature for a spin- 1
2 solid. Note the transition from perfect

order (S = 0) towards total disorder (S = NkBkk ln 2).

3.1.2 Magnetic solids

Actually the two-state situation is quite a common one. It occurs because of the
existence of spin states in atoms. If a single atom has an angular momentum quantum
number of 1

2 , then when it experiences a magnetic field B, the atomic energy levels
split into two. One level goes up by μB and the other goes down by μB, where μ

is the z-component of the magnetic moment associated with the angular momentum.
This is the Zeeman effect (much loved by spectroscopists, since this splitting of 2μB
can be observed by a variety of techniques). In the lowest (ground) state one can
imagine the atomic moment to be aligned parallel to the field, whereas in the upper
(unstable) state it is antiparallel.

There are two origins of these magnetic moments in solids. One is from the electrons
in the atom, and the other from the nucleus. An electronic effect can come both from
the orbital motion and also from the intrinsic spin of the electron. The precise value
of μ depends on the details of the atomic origin of the moment, and need not concern
us in this discussion, except to note that in order of magnitude it will equal the Bohr
magneton μB(= e�/2m = 0.93×10−23 J T−1). For simplicity we shall in future refer
to the angular momentum as ‘spin’, regardless of its actual orbital or intrinsic origin.
The second cause is nuclear spin. Here even more the magnitude of μ depends on the
specific nucleus, but the much smaller order of magnitude is the nuclear magneton
μN (= e�/2MPMM = 5.05× 10−27J T−1).

We now consider the thermal properties of a solid whose atoms have spin 1
2 . To

whatever properties the solid would exhibit without the 2μB splitting, we must add
a spin contribution. And in many situations this contribution is precisely described
by the two-state model of the previous section. In order for our model to apply, all
we require is that the localized spins are weakly interacting and identical. This is a
good approximation if (but only if) the spins are sufficiently far apart that the B-field
experienced by each spin arises almost entirely from an externally applied field, rather
than from the influence of its neighbours. In the usual terminology this means that
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the substance is paramagnetic (alignment of permanent moments in an applied field)
rather than ferromagnetic or antiferromagnetic (spontaneous alignment of permanent
moments). Another profitable way of stating the requirement is that the energy levels
ε0 and ε1 do not themselves depend on the occupation numbers n0 and n1, but only on
the applied field. This is a good approximation for most nuclear spin systems, since
μN is small. It applies only to a limited range of electronic spin systems, notably
diluted paramagnetic salts such as cerium magnesium nitrate (CMN) which contains
only a few spins (Ce3+ions) separated by a lot of non-magnetic padding (all the other
atoms, including the water of crystallization).

For this type of ideal paramagnetic substance the hard work is already done. (A
treatment of ferromagnetism appears later, in Chapter 11.) We may use the results of
section 3.1.1 to determine the contribution of the spins to the thermal properties of the
solid. The energy difference ε between the two states is equal to 2μB, and hence the
characteristic temperature θ equals 2μB/kBkk . The number N is the number of spin- 1

2
particles in the solid (i.e. much less than the number of atoms in the case of CMN).
Note the following:

1. The thermal properties of the spins, dependent only on θ/T , are thus for a given
system universal functions of B/T . We shall use this result for S in particular in
the next section.

2. Typical values of θ in strong magnetic fields are a few degrees K for an electronic
spin system, but a few mK for a nuclear spin system. As we shall see later in the
book, there are few other thermal contributions at such low temperatures, so that
the spins in fact form the major thermal bath in the solid.

3. We are restricting our discussion to a spin- 1
2 solid, one which has just two spin

states. The treatment for a higher spin follows very similar lines, with qualitatively
identical results. The major difference is that, since a spin I has (2I + 1) possible
states, the high temperature entropy is NkBkk ln(2I + 1) rather than NkBkk ln 2. The
general form of all the functions is similar, with again a characteristic temperature
θ which relates to the Zeeman splitting.

4. The heat capacity (Fig. 3.3) is worthy of note. Heat capacities of this sort are called
Schottky anomalies. The word ‘anomalies’ is used because of the potential upset
to an unsuspecting experimenter. As the range of measurement is reduced below
room temperature, the large lattice contribution to a typical solid heat capacity
reduces rapidly (often as T 3) towards zero. Imagine the consternation when a
further reduction of T sees an increasing T−2 contribution starting to come in!
However, this is precisely what happens as spins in the system become ordered as
θ is reached.

3.1.3 Cooling by adiabatic demagnetization

The paramagnetic solid can form the basis of a method of cooling, and one which is of
great importance in physics, since it is the only workable method in the sub-millikelvin
region.
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Fig. 3.5 Cooling by adiabatic magnetization. The two S − T curves give the behaviour in a high mag-
netic field, B1, and a low field, B2, AB represents the precooling process (removal of entropy at a high
temperature), and BC the adiabatic demagnetization to the final temperature T2TT .

The theory of the method is easily followed from an S − T diagram as shown
in Fig. 3.5. The figure shows two entropy curves, one in the highest available field
(B1), and one in a low field (B2). As noted above, S is a function only of B/T ,
so the only difference between the two curves is the scaling along the T -axis. The
cooling method uses two distinct steps. Firstly the solid is magnetized at the lowest
available precooling temperature, T1. This is illustrated in Fig. 3.5 by the step AB,
which represents an isothermal magnetization. In the second step, the system is
then thermally isolated and the magnetic field gradually reduced, giving an adiabatic
reversible (i.e. isentropic) process. In other words the system goes from B to C on
the diagram, and its temperature reduces from T1 to T2TT . (Actually the spin- 1

2 solid
is a very suitable working substance for a refrigerator – the requirements are that S
should vary with T and with another control parameter. Here the parameter is the
applied magnetic field; in a more common fluid refrigerator it is the pressure.)

It is interesting to consider the two processes microscopically. In the isothermal
magnetization leg (AB), the spins tend to align in the strong magnetic field since μB is
comparable to kBkk T . In this process, the population of the lower state (energy − μB,
i.e. with μ parallel to B) grows at the expense of the upper state (energy + μB).
The population becomes (somewhat) ordered, and the entropy decreases. During this
process heat of magnetization is evolved from the system, and in fact the precooling
refrigerator has to be very active to maintain the temperature at T1. In the second
adiabatic step (BC), the situation is different. The spins are no longer in contact with
a heat bath, so the occupation numbers cannot change. As discussed in Chapter 2, S
constant means t({njn }) constant which means {njn } constant. Hence at C the occupation
numbers n0,1 are just the same as they were at B. However, the energy level spacing
has reduced (from 2μB1 to 2μB2) and so the temperature must have also decreased
in the same ratio, in order to keep μB/kBkk T constant. Therefore the cooling obeys the
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simple law

T2TT = T1(B2/B1) (3.7)

This is a nice example of the importance of entropy. In the first leg we reduce the
entropy of the solid at a high temperature by an amount �S, say, by extracting a
quantity T1�S of heat. The adiabatic leg then transfers the entropy reduction to a lower
temperature, and the spins can absorb heat of at least T2TT �S from their surroundings
before warming up again to the starting point. (More accurately the amount of cooling
available from the spins equals the area between the entropy curve and the S-axis
between points C and A, i.e.

∫ A
C

∫∫
T dS).

Some experimental details We shall refer to two implementations of the cooling
method. One is the use of CMN to cool to about 2 mK, and the second is the use of
Cu nuclei to cool into the μK region.

The necessary starting conditions are easy to work out. To obtain a significant
entropy reduction �S under the starting conditions, one requires μB1 to be of the
same order of magnitude as kBkk T1. In the case of electronic moments (CMN), this
requirement is comfortably attained with a precooling temperature T1 of around 1 K
and an applied field B1 of 1 T. For nuclear moments (Cu) the starting conditions are
more stringent by a factor of over 1000. They are marginally met in modern techniques
using almost the highest available magnetic field – typically a 7 T superconducting
magnet, and a precooling refrigerator operating at around 10 mK. Even so only a few
per cent of the copper spin entropy is removed.

The essential ingredients are indicated in Fig. 3.6. For CMN the precooling stage is
usually a pumped helium cryostat (reaching about 1 K with 4He, or 0.3 K with 3He).

Precooling stage
(temperature T1TT )

Superconducting
solenoid
(Maximum magnetic
field B1)

Thermal link

Coolant

Heat switch

Vacuum
insulation

4He bath

Fig. 3.6 A schematic apparatus for cooling by adiabatic demagnetization.
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For nuclear spins it will be a ‘dilution refrigerator’, a device capable of reaching
3–10 mK whose working substance is a 3He–4He mixture which phase separates
at temperatures below 0.7 K. The magnet nowadays is usually a superconducting
solenoid operated in the main helium bath for both experiments.

The CMN coolant is often in the form of a powdered slurry around a bunch of fine
copper wires for thermal contact. The active particles for nuclear cooling are the 63Cu
and 65Cu nuclei in copper metal (both of these nuclei having spin 3

2 ). The copper can
be in the form of wires, plates or powder.

The final element in the experiment is the heat switch and thermal link. We require
an arrangement which will give excellent thermal contact in the precooling stage
(A → B) but which can give near perfect isolation in the adiabatic cooling stage
(B → C). Mechanical systems give too much frictional heating, and use of low
pressure helium gas as a heat exchange medium has serious drawbacks (e.g. it is
difficult to remove for the second stage). The modern solution is to use a thermal
link of high-conductivity metal (silver or copper) broken by a superconducting heat
switch. This consists of a pure metal (aluminium or tin) which is a superconductor.
When a (fairly small) magnetic field is applied to the switch, the superconductivity
is destroyed and the metal is a good conductor of heat, as wanted in the precooling
leg. However, when this field is removed and the switch becomes superconducting,
it becomes a very poor conductor of heat – the superconducting electrons move in
an ordered way, so that although they carry charge without resistance they have no
entropy to carry! A superconducting heat switch can have a conductance ratio of 105

or higher at 10 mK.
Suppose we wish to cool liquid 3He into the μK temperature region, a worthwhile

task since it becomes a ‘superfluid’below 1–2 mK. Clearly we can use the arrangement
of Fig. 3.6 to cool some Cu spins. The major technical problem remaining is to achieve
adequate thermal contact between the Cu spins and the sample of liquid 3He. And
this turns out to be the most severe problem of all. The trick is to cut down extraneous
heat inputs (to the pW level) with antivibration measures and with careful electrical
screening, and also to maximize the area of contact between the copper metal and the
liquid with ultrafine sintered silver powder. In this way it is possible, at the time of
writing, to achieve helium temperatures of below 90 μK.

What limits the final temperature? This is a question worth asking. The problem
can be stated simply. If I take (3.7) seriously, then is it not possible to make the final
temperature T2TT as small as I wish, simply by reducing B2 to zero? In fact can the spins
not be cooled to the absolute zero?

The answer is ‘no, they cannot’, one of many ways of stating the third law of
thermodynamics. And the reason lies in the meaning of (3.7). That equation arose
from the fact that the occupation numbers must be unchanged in an adiabatic process,
i.e. that 2μB/kBkk T must remain at a fixed value. The numerator 2μB is the energy level
spacing ε, and it is this quantity which cannot reach zero. The two spin states can never
have the same energy (‘the ground state of a system can never be degenerate’ might
be another way of stating the third law). Instead there will always be some residual
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interactions left, even if these are only magnetic dipole–dipole forces between the
N spins. As remarked earlier, although our treatment neglects interactions between
particles some interactions are essential, otherwise thermal equilibrium could never be
reached: hence ‘weakly interacting’. We may turn off the externally applied magnetic
field (B0 say), but some residual interactions must remain. If we characterize these
by an effective field (Bint), then the B entering equations such as (3.7) should be the
appropriate sum of B0 and Bint . Bearing in mind the random direction of Bint , the
correct expression is

B = (B2
0 + B2

int)
1/2 (3.8)

The energy levels obtained from (3.8) are plotted in Fig. 3.7.
The upshot of all this on the lowest final temperature is:

1. The absolute zero is unattainable; the temperature reached in zero final applied
field is T1(Bint/B1), a non-zero number.

2. Another way of expressing this result is to observe that the spins will order in zero
applied field at around a temperature TintTT = μBint/kBkk . Referring back to Fig. 3.5,
the entropy does not stay at NkBkk ln 2 as T is lowered past this value, but falls to
zero to achieve S = 0 at T = 0 (yet another statement of the third law).

3. Since the cooling method is useful only around μB/kBkk T ∼ 1, the lowest attainable
practical temperature is around TintTT . For CMN this is about 1 mK, a very low value
for an electronic spin system; hence the importance of this particular salt. For Cu
spins in the pure metal, TintTT is less than 0.1 μK, one of the reasons for its choice.

3.1.4 Magnetization and thermometry

Before leaving the topic of the spin- 1
2 solid we discuss its magnetic properties. These

may be readily derived from the Boltzmann distribution, and they give a convenient
method for measuring the low temperatures reached by adiabatic demagnetization.

Applied field B0

Bint

2�B�� int 0

e = –�B��

e  = +�B��e

Fig. 3.7 The energies of a spin- 1
2 solid as a function of applied magnetic field B0.
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Without labouring the point, it is no accident that the working substance of a refrigera-
tor is also a possible candidate for thermometry – the refrigerant must have S a strong
function of T , i.e. it must be thermally active (‘doing something’) in that temperature
range!

Magnetization We characterize the magnetic properties by the magnetic moment
M of the whole assembly of N spins. Interactions will be neglected, at any rate until
we discuss ferromagnetism much later in the book, so that B may be taken as the
externally applied field. In the lower state, each spin has a component μ aligned
to the B field, whereas each spin in the upper state has a component – μ. And the
numbers of spins in the two states in thermal equilibrium at temperature T are given
by the Boltzmann distribution (3.2). Hence we have

M = n0(μ)+ n1(−μ)

= Nμ
[exp(μB/kBkk T )− exp(−μB/kBkk T )]
[exp(μB/kBkk T )+ exp(−μB/kBkk T )]

= Nμ tanh(μB/kBkk T ) (3.9)

This expression is plotted in Fig. 3.8, and one can note:

1. At high enough B, or low enough T , the magnetization saturates at the value Nμ,
an obvious result since then all the N spins have aligned with the field.

2. For a solid with a higher spin (like the spin- 3
2 Cu nuclei) the shape of the curve is

superficially similar, although it is not a simple tanh function.
3. In the weakly paramagnetic limit, i.e. μB/kBkk T � 1, at low fields or high

temperatures, then the curve is essentially linear and we have:

M = Nμ(μB/kBkk T ) (3.10)

1 2

M

Curie's law region

Saturation limitN�NN

�B/k�� Bkk T

Fig. 3.8 The magnetization of a spin- 1
2 solid as a (universal) function of μB/kBkk T .
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This result may readily be verified by expanding the exponentials in (3.9), bearing
in mind that the exponents are small. Hence in this limit the magnetic susceptibility,
essentially M /B, is proportional to 1/T . This is Curie’s law.

Therefore we have a direct 1/T thermometer. For an electronic paramagnet like CMN,
the magnetization is usually measured directly from the total magnetization of the
solid. The usual method is to measure the mutual inductance between two coils,
wound over the CMN, giving a constant reading (which can be subtracted) and a
component proportional to 1/T . This may be used as a thermometer from 10 K or
higher to around 1 mK, where interactions take over and spoil the simple story. Below
about 20 mK, however, a nuclear system (often Pt nuclei) becomes useful. However,
the value of μ is so small that the direct method is impractical – one would measure
the effect of minute magnetic impurities with electronic spins. Therefore a resonance
method is used (pulsed NMR) which singles out the particular energy level splitting
of interest by means of radio frequency photons of the correct frequency. The strength
of the NMR signal is directly proportional to 1/T .

3.2 LOCALIZED HARMONIC OSCILLATORS

A second example which can be solved with little computational difficulty is that
of an assembly of N localized harmonic oscillators. Suppose the oscillators are
each free to move in one dimension only and that they each have the same clas-
sical frequency ν. They are therefore identical localized particles, and the results
of Chapter 2 may be used to describe the equilibrium properties of the assembly at
temperature T .

First we need the result from quantum mechanics for the states of one particle.
For a simple harmonic oscillator there is an infinite number of possible states (j(( =
0, 1, 2, 3, . . .) whose energies are given by

εjε =
(

j + 1

2

)
hv (3.11)

(Most books on quantum mechanics, e.g. Chapter 4 of Davies and Betts’ book,
Quantum Mechanics, in this series, include a discussion of the states of a harmonic
oscillator, if you are not familiar with the problem.)

3.2.1 The thermal properties

There is an infinite number of states given by (3.11), and therefore an infinite number
of terms in the partition function Z . Nevertheless the even spacing of the energy levels
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enables Z to be summed explicitly as a geometric progression. We have

Z =
∑

j

exp

[
−
(

j

((
+ 1

2

)
hv/kBkk T

]
from (2.24) and (3.11)

=
∑

j

exp

[
−
(

j

((
+ 1

2

)
θ/T

]
defining θ from hν = kBkk θ

= exp(−θ/2T ) ·
∑

j

exp(−j− θ/T ) separating the common factor

= exp(−θ/2T ) · [1− exp(−θ/T )]−1 doing the sum (see below!)

= Z(0) · Z(th) say, compare (3.1) (3.12)

The evaluation of the sum in the Z(th) factor above is straightforward. If we
write y = exp(−hν/kBkk T ), then the required sum is (1 + y + y2 + y3 + · · · ),
which is readily summed to infinity to give (1 − y)−1. (Check it by multiplying
both sides by 1− y if you are unsure). The separation in (3.12) into a zero-point term
Z(0) and a thermal term Z(th) has a similar significance to our earlier factorization
of (3.1).

Now that Z is evaluated in terms of T and the oscillators’ scale temperature θ , there
is no problem in working out expressions for the thermal quantities. For example, U
is obtained by taking logarithms of (3.12) and differentiating as in (2.27). The result

U = 1

2
Nhv + Nhv

exp(θ/T )− 1
(3.13)

is plotted in Fig. 3.9. The first term is the zero-point energy, derived from Z(0), and
the second term is the thermal energy arising from Z(th). At high temperatures, as the
figure demonstrates, the internal energy becomes

U = NkBkk T (3.14)

to a rather high degree of accuracy. (Expand the exponential in (3.13) to test this!)
We return below to this simple but important expression.

The heat capacity is obtained by differentiating (3.13)

C = dU

dT
= NkBkk

(θ/T )2 exp(θ/T )

[exp(θ/T )− 1]2 (3.15)

This is plotted in Fig. 3.10, and as expected from (3.14) one may observe that C = NkBkk
at high temperatures (T > θ ).
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Fig. 3.9 The variation of internal energy with temperature for an assembly of harmonic oscillators. The
characteristic temperature θ depends on the frequency of the oscillators (see text). Note the high and low
temperature limits.
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Fig. 3.10 The variation of heat capacity with temperature for an assembly of harmonic oscillators.

The entropy S is also readily derived, the easiest route again being to evaluate F ,
(2.28), and to differentiate F with respect to T . The result is

S = NkBkk

[
ln

(
exp(θ/T )

exp(θ/T )− 1

)
+ (θ/T )

(exp(θ/T )− 1)

]
(3.16)

The reader may wish to check that the low temperature limit is S = 0 (no sur-
prise), and that at high temperatures the expression becomes S = NkBkk ln(T/θ) =
NkBkk ln(kBkk T/hν).
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3.2.2 The extreme quantum and the classical limits

The assembly of localized oscillators forms a good example of the use of kBkk T as the
thermal energy scale.

Firstly consider the oscillators at an extremely low temperature, i.e. T � θ or
kBkk T � hν. The oscillators are frozen into the ground state, in that virtually none is
thermally excited at any one time. We have U = U (0), C = 0, S = 0. This situation
should be thought of as the ‘extreme quantum limit’. The discrete (i.e. quantum)
nature of the states given by (3.11) is totally dominating the properties.

However, at the opposite extreme of temperature, i.e. T � θ or kBkk T � hν, we
reach a ‘classical limit’. In this limit the simple expressions for U and C involve
only kBkk T and not hν. Planck’s constant, i.e. the scale of the energy level split-
ting, is irrelevant now. Oscillators of any frequency have the same average energy
kBkk T . This dependence of U on kBkk T alone is associated with the old classical ‘law
of equipartition of energy’, which states that each so-called degree of freedom
of a system contributes 1

2 kBkk T to the internal energy. In this case each oscillator
displays two degrees of freedom (one for its kinetic energy and one for its poten-
tial energy), and the old law gives the result U = NkBkk T for the N oscillators.
But the question left unanswered by the classical law alone is: When is a degree
of freedom excited and when is it frozen out? The answer is in the energy (or
temperature) scales! We shall return to these ideas in our discussions of gases in
Chapters 6 and 7.

Before leaving this topic, let us examine the entropy S. One can see from (3.16)
that even in the classical limit, the expression for S involves h, Planck’s constant.
Entropy is fundamentally a quantum effect. From the classical region alone one can
deduce that S = S0+NkBkk ln T , but there is no way of finding the constant S0 without
integrating the thermal properties upwards from T = 0, i.e. through the quantum
region. This problem lies at the heart of a number of the historical paradoxes and
controversies of classical statistical mechanics in the pre-quantum age.

This quantum nature of S is well illustrated from a microscopic interpretation of
(3.16). If one has an assembly of particles, each of which may be in G states with
equal probability, then S is readily evaluated. (G = 2 is the spin- 1

2 solid at high
temperatures, for example, and we used G = 4 for Cu nuclei having spin 3

2 .) Since
� = GN for this situation, we may write S = kBkk ln � = NkBkk ln G. If we compare this
expression with the high temperature limit of (3.16), we see that the two give the same
answer if G = kBkk T/hν, the ratio of the two energy scales. This is a pleasingly plausible
result. It means that the entropy of the oscillators is the same at high temperatures
as that of a hypothetical equal-occupation system in which G states are occupied. As
kBkk T rises, G continues to rise as higher levels (there are an infinite number in all!)
come into play. Hence the ln T term. But the actual value of G depends on the ratio
of kBkk T to hν. It involves the quantum energy-level scale of the oscillators, so that G
and S are inevitably quantum properties.
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3.2.3 Applications

1. Vibrations of solids The assembly of identical harmonic oscillators was used by
Einstein in the early days of quantum theory as a model for the thermal lattice
vibrations of a simple atomic solid. He derived the result for the heat capacity
(Fig. 3.10) as a universal function of (T/θ ) with θ the so-called Einstein tem-
perature characteristic of the solid. If we take a mole of solid, with NAN atoms,
then, since each atom can vibrate in three dimensions, we should represent it by
N = 3NAN one-dimensional oscillators.

The Einstein model has good and bad points. The successes are:
1. It gives the correct high-temperature (classical) limit, namely C = NkBkk =

3NAN kBkk per mole. From the viewpoint of the previous section, this success
arises simply from the correct evaluation of the number of degrees of freedom
of the solid.

2. It gives the correct extreme quantum limit, namely C = 0 at T = 0, a mystery
in classical physics.

3. It is indeed found experimentally that the heat capacity per mole is a universal
function of (T/θ ) for all simple solids, i.e. adjustment of a single parameter θ

makes all results similar.
However, the bad news is that the form of (3.15) is grossly incorrect in the inter-

mediate temperature regime. In particular the experimental lattice heat capacity
is not frozen out so rapidly as the theory predicts at low temperatures, but rather
is proportional to T 3 in crystalline solids. The reason for the poor showing of the
Einstein model is that by no stretch of imagination does a solid consist of local-
ized oscillators which are weakly coupled. If one atom of the solid is moved, a
disturbance is rapidly transmitted to the whole solid; and in fact the key to a more
correct treatment is to model the vibrations as a gas of ultra-high frequency sound
waves (phonons) in the whole solid, a topic to which we return in Chapter 9.

2. Vibrations of gas molecules The thermal vibrations of the molecules in a diatomic
gas will be discussed in Chapter 7. In this case, rather unexpectedly, the Einstein
model applies very well. Certainly the vibrations of one molecule are now weakly
coupled from the vibrations of another molecule in a gas. However, our statistical
treatment so far is appropriate to localized particles only, whereas gas molecules
are certainly non-localized and in consequence indistinguishable. Not surprisingly,
it is to a discussion of gases which we now turn.

3.3 SUMMARY

This chapter discusses the application of the Boltzmann distribution to derive the
thermal properties of two types of substance, a spin- 1

2 solid and an assembly of
harmonic oscillators. We consider the somewhat idealized case in which the substance
is modelled as an assembly of weakly-interacting localized particles, for which simple
analytical solutions can be made.
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1. For both substances, the one-particle energy states are well described by quantum
mechanics.

2. A spin- 1
2 particle has just two quantum energy levels, dependent on any applied

magnetic field (Zeeman effect).
3. A harmonic oscillator has an infinite number of equally-spaced energy states.
4. The partition function Z(T ) is readily found in both cases. It can be expressed

as a zero-point factor (which depends on the energy zero but not on temperature)
multiplied by a thermal factor (which is independent of the energy zero but does
depend on temperature).

5. The thermal properties are dependent on the ratio of two energy scales. One derives
from the one-particle energy structure, the other is kBkk T , the ‘thermal energy scale’.

6. The entropy rises from zero at low temperature to approximately NkBkk ln G at high
temperature, where G is the number of one-particle states accessed at the high
temperature. For the spin- 1

2 solid G = 2, independent of temperature; whereas for
the oscillators G is proportional to T .

7. Cooling by adiabatic demagnetisation of a paramagnetic material is readily
understood from the properties of a spin- 1

2 solid.
8. Harmonic oscillators provide a model (the Einstein model) for understanding some

aspects of the thermal properties of solids, even though the atoms of a solid are
hardly ‘weakly-interacting’. We shall return to this question later in Chapter 9.
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Gases: the density of states

In the last two chapters we have applied the statistical method as outlined in section 1.5
to an assembly of distinguishable (localized) particles. We now embark upon the
application of the same method to gases. This involves two new ideas.

The first concerns the one-particle states (step I of section 1.5). A gas particle is
confined to a large macroscopic box of volume V , whereas a localized particle is
confined essentially to an atomic cell of volume (V /N ). As a direct result, the energy
levels of a gas particle will be extremely close together, with astronomical numbers
of them being occupied at any reasonable temperature. This is in marked contrast
with the localized case, in which the energy levels are comparatively far apart and
the occupation of only a few need to be considered. Actually it turns out that one can
make a virtue of the necessity to consider very large numbers of states. This topic is
the subject of the present chapter.

The second idea is how to deal with the indistinguishability of gas particles. This
is vital to the counting of microstates (step III of section 1.5). The ideas are essen-
tially quantum mechanical, explaining from our modern viewpoint why a correct
microscopic treatment of gases was a matter of such controversy and difficulty in
Boltzmann’s day. The counting of microstates and the derivation of the thermal
equilibrium distribution for a gas will be discussed in the following chapter.

4.1 FITTING WAVES INTO BOXES

We are going to be able to discuss many types of gaseous assemblies in the next few
chapters, from hydrogen gas to helium liquid, from conduction electrons to black-
body radiation. However, there is a welcome economy about the physics of such
diverse systems. In each case, the state of a gas particle can be discussed in terms
of a wavefunction. And the basic properties of such wavefunctions are dominated by
pure geometry only, as we will now explain.

Consider a particle in one of its possible states described by a wavefunction
ψ(x, y, z). The time-dependence of the wavefunction need not be explicitly included
here, since in thermal physics we only need the stationary states (i.e. the normal
modes or the eigenstates) of the particle. What do we know about such states when
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the particle is confined within an otherwise empty box of volume V ? For conve-
nience, let us assume that the box is a cube of side a (so V = a3). Furthermore we
assume that ‘confined’ means that it must satisfy the boundary condition ψ = 0 over
the surface of the box. Now we come to the ‘economy’ referred to above: we know
that the wavefunction ψ is a simple sinusoidal oscillation inside the box. This simple
statement is a correct summary of the solution of Schrödinger’s equation for a particle
of mass m, or of the wave equation for a sound or electromagnetic wave. Therefore
the only way to achieve a possible wavefunction is to ensure that a precisely integral
number of half-waves fit into the box in all three principal directions. Hence the title of
this section! The problem is the three-dimensional analogue of the one-dimensional
standing-wave normal modes of the vibrations of a string.

To be specific we choose the origin of co-ordinates to be at one corner of the box.
The wavefunction is then given by a standing wave of the form

ψ ∼ sin(n1πx/a) · sin(n2πy/a) · sin(n3πz/a) (4.1)

where the positive integers n1,2,3 (= 1, 2, 3, 4 . . .) simply give the number of half-
waves fitting into the cubical box (side a) in the x, y and z directions respectively.
(The use of sine functions guarantees the vanishing of ψ on the three faces of the
cube containing the origin; the integral values of the three ns ensures the vanishing
of ψ on the other three faces.) Incidentally, in terms of our earlier notation the state
specification by the three numbers (n1, n2, n3) is entirely equivalent to the previous
state label ‘j‘ ’.

It is useful to write (4.1) in terms of the components of a ‘wave vector’ k as

ψ ∼ sin(kxk x) · sin(kykk y) · sin(kzk z) (4.2)

where

k = (kxk , kykk , kzk ) = (π/a)(n1, n2, n3)

The possible states for the wave are specified by giving the three integers n1,2,3, i.e. by
specifying a particular point k in ‘k-space’. This is a valuable geometrical idea. What
it means is that all the possible ‘k-states’ can be represented (on a single picture) by
a cubic array of points in the positive octant of k-space, the spacing being (π/a).

Now because of the macroscopic size a of the box, this spacing is very small in all
realistic cases. Indeed we shall find later that in most gases the states are so numerous
that our N particles are spread over very many more than N states – in fact most
occupation numbers are 0. Under these conditions it is clear that we shall not wish to
consider the states individually. That would be to specify the state of the assembly in
far too much detail. Rather we shall choose to group the states, and to specify only
the mean properties of each group. And the use of k-space gives an immediate way
of doing the grouping (or graining as it is often called).

For instance let us suppose we wish to count the number of states in a group
whose k lies with x-component between kxk and kxk + δkxk , with y-component between
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kykk and kykk + δkykk and with z-component between kzk and kzk + δkzk . Call this number
g(kxk , kykk , kzk )δkxk δkykk δkzk . Since the states are evenly spread in k-space with the spacing
(π/a), the required number is

g(kxk , kykk , kzk )δkxk δkykk δkzk = (a/π)3δkxk δkykk δkzk (4.3)

The function g so defined is a ‘density of states’ in k. Its constant value simply sets
out that the states are uniformly spread in k-space. However, this is a significant and
useful idea. The number of states in any group can be evaluated from the volume in
k-space occupied by the group, together with (4.3).

For example, to discuss the equilibrium properties of gases we shall make extensive
use of another density of states function g(k), which relates to the (scalar) magnitude
of k only, irrespective of its direction. Its definition is that g(k)δk is the number of
k-states with values of (scalar) k between k and k+ δk . Its form may be derived from
(4.3) from an integration over angles. Since the density of states in k is constant, the
answer is simply

g(k)δk = (a/π)3 · appropriate volume in k-space

= (a/π)3 · (4πk2δk/8)

= V /(2π)3 · 4πk2δk (4.4)

In this derivation the factor 4πk2δk arises as the volume of a spherical shell of radius
k and thickness δk. The 1

8 factor comes since we only require the 1
8 of the shell for

which kxk , kykk and kzk are all positive (i.e. the positive octant).
Equation (4.4) is the most important result of this section. Before discussing how

it is used in statistical physics, we may note several points.

1. The dependence on the box volume V in (4.4) is always correct. Our outline proof
related to a cube of side a. However, the result is true for a box of any shape. It is
easy to verify that it works for a cuboid – try it! – but it is not at all easy to do the
mathematics for an arbitrary shape of box. However, a physicist knows that only
the volume (and not the shape) of a container of gas is found to influence its bulk
thermodynamic properties, so perhaps one should not be surprised at this result.

2. Rather more interestingly, the result (4.4) remains valid if we define differently
what we mean by a box. Above we adopted standing wave-boundary conditions,
i.e. ψ = 0 at the box edge. However, this boundary condition is not always
appropriate, just because it gives standing waves as its normal modes. In a realistic
gas there is some scattering between particles, usually strong enough that the
particles are scattered many times in a passage across the box. Therefore it is not
always helpful to picture the particles ‘rattling about’ in a stationary standing-wave
state. This is particularly true in discussing transport properties or flow properties
of the gas. Rather one wishes a definition of a box which gives travelling waves
for the normal modes, and this is achieved mathematically by adopting‘periodic
boundary conditions’ for a cuboidal box.
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In this method, the periodic condition is that both ψ and its gradient should
match up on opposite faces of the cube. (One way of picturing this is that if the
whole of space were filled with identical boxes, the wavefunction would be smooth
and would be exactly replicated in each box.) The normal modes are then travelling
waves of the form

ψ ∼ exp(ikxk x + ikykk y + ikzk z)

or

ψ ∼ exp(ik·r)

The values of k differ from the earlier ones in two respects, and indeed the
microscopic picture is quite different in detail. The first difference is that the
spacing of the k-values is doubled, since now the boundary condition requires
fitting an integral number of full (and not half) waves into the box. Hence the
spacing between allowed k-values becomes (2π/a), and (4.3) is no longer valid –
another factor of ( 1

8 ) is needed on the right-hand side. The second difference is
that the restriction on k to the positive octant is lifted. A negative k-value gives
a different travelling wave state from positive k; they represent states with the
same wavelength but travelling in opposite directions. This difference means that
the integration between (4.3) and (4.4) should cover all eight octants of k-space.
Therefore the two differences compensate for each other in working out g(k)δk
and the result (4.4) survives unchanged.

3. The next comment concerns graining. The states are not evenly spread in k-space
on the finest level – they are discrete quantum states. Therefore we cannot in prin-
ciple let the range δk in (4.4) tend to zero. The group of states we are considering
must always be a large one for the concept of the (average) density of states to make
sense. Nevertheless, in every practical case except one (the Bose–Einstein con-
densation to be discussed in Chapter 9) we shall find that the differences between
adjacent groups can still be so minutely small, that calculus can be used, i.e. we
can for computation replace the finite range δk by the infinitesimal dk.

4. The final comment is about dimensionality. Equation (4.4) is a three-dimensional
result, based on the volume of a spherical shell of radius k. Entirely analogous
results can be derived for particles constrained within one- or two-dimensional
‘boxes’, a topic of much importance to modern nanoscience. For example consider
the states of a particle constrained in a two-dimensional sheet. The confinement
happens because the width of the box normal to the sheet is made so small that
the wavefunction in that direction is fixed to be lowest standing wave state (one
half wave across the sheet), with the next state (two half waves) out of thermal
energy range. The wavefunctions within the sheet can again be treated as extended
travelling waves. The particles in a sheet of area A have a density of states in k of

g(k)δk = A/(2π)2 · 2πkδk
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The corresponding one-dimensional result for a line (a ‘quantum wire’) of length
L is rather similar to (4.3) since no integration is needed

g(k)δk = L/(2π)δk

The reader might care to derive these results.

4.2 OTHER INFORMATION FOR STATISTICAL PHYSICS

In the previous section we have described the geometry of fitting waves into boxes, a
common feature for all types of gaseous particle. However, before we know enough
about the states to proceed with statistical physics, there are two other ideas which
need to be stirred in. Although the final answers will be different for different gases,
the same two questions need to be asked in each particular case.

4.2.1 Quantum states are k-states plus

The first question relates to what constitutes a quantum state for a particle. The general
answer is that the full state specification (labelled simply by j in earlier chapters) must
include a complete statement of what can in principle be specified about the particle.
The k-state of the particle (as given by the three numbers n1,2,3 for our cubical box)
is a full specification only of the translational motion of the centre of mass of the
particle, as characterized by ψ(x, y, z).

But usually there are other identifiable things one can say about the particle, besides
its centre of mass motion. Firstly, one may need to consider internal motion of the
particle, arising from vibration or rotation of a molecular particle for example. We
shall return to this type of ‘internal degree of freedom’ in Chapter 7. Secondly, even
for a simple particle, one must specify the spin of the particle, or the polarization of
the corresponding wave, essentially the same idea. For example an electron with a
particular spatial wavefunction and its spin-up is in a different quantum state from
an electron with the same spatial wavefunction but its spin-down (hence the periodic
table, for instance!). Similarly for an electro-magnetic wave one needs to know not
only its wave vector k but also its polarization (e.g. left- or right-handed).

The idea of spin may easily be included in (4.4). We redefine g(k)δk to be the
number of quantum states (and not merely k-states) with magnitude of k between k
and k + δk. The equation then becomes

g(k)δk = V /(2π)3 · 4πk2δk ·G (4.5)

where the new factor G is a polarization or spin factor, usually 1 or 2 or another small
integer, dependent on the type of substance under consideration. In future all density
of states functions like g(k) will refer to quantum states and will include this spin
factor.
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4.2.2 The dispersion relation

The second vital idea is that to make any progress with statistical physics one must
not only be able to count up the quantum states. One must also know their energies,
εjε in earlier notation. The point is simply that all equilibrium thermal properties are
governed only by energy; the two constraints on an allowed distribution are those of
energy and number.

In order to determine the energy εjε , there are two considerations. The first of these
is the ‘plus’ of the previous section. If there are internal spatial degrees of freedom,
these will affect the energy (see Chapter 7). In addition, sometimes the energy is
spin-dependent, for example in the case of an electron in a magnetic field, and then
this must be included and it will have important effects. But the second and more
general consideration is that in every case the energy depends on k. We use ε(k),
or simply ε, in the rest of this chapter to represent the energy contribution from the
translational motion, i.e. from the k-state. The ε − k relation is often referred to as
the dispersion relation. It contains precisely the same physical content as the ω − k
dispersion relation in wave theory (since ε = �ω) and the ε − p energy-momentum
relation in particle mechanics (since p = �k).

It is usually a convenience in statistical physics to combine the geometry of k-
space (equation (4.5)) with the ε − k relation to give a ‘density of states in energy’,
often called simply the density of states. This quantity is defined so that g(ε)δε is the
number of states with energies between ε and ε+ δε. It is derived from (4.5) by using
the dispersion relation to transform both the k2 factor and the range δk . This point is
worth stressing. It is always worth writing a density of states function with its range
explicitly shown, as for example on both sides of (4.3), (4.4) and (4.5). Although
the same symbol g is used for g(k) and for g(ε), these two functions have different
dimensions and units. It is the functions multiplied by their ranges, i.e. g(k)δk and
g(ε)δε, which have the same dimensions – they are pure numbers. An example of
this transformation is given in the next section.

4.3 AN EXAMPLE – HELIUM GAS

As a specific example of the ideas of this chapter, let us consider helium (4He) gas
contained in a 10-cm cube at a temperature of 300 K.

The states are given by the solution of the time-independent Schrödinger equation
for a particle of mass M in a field-free region

(−�
2/2M )∇2ψ = εψ (4.6)

with boundary conditions as discussed in section 4.1. The solutions are precisely
those of (4.1) and (4.2). Substitution of these solutions back into (4.6) gives for the
energies of the particle

ε = �
2k2/2M (4.7)
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i.e.

ε = (h2/8Ma2)(n2
1 + n2

2 + n2
3) (4.8)

The energy (h2/8Ma2) = �εjε , say, gives a scale for the energy level spacing for a
helium atom in the gas. It works out at 8 × 10−40 J, a very small energy compared
with kBkk T which equals 4× 10−21 J at 300 K. Clearly kBkk T � �εjε , and from what we
know already about energy scales this implies that a very large number of states will
be energetically available for occupation in the thermal equilibrium state. Hence the
whole approach of this chapter.

Finally we derive the density of states. Helium is a monatomic gas, so (4.5) gives
the density of states in k . In this instance, since 4He has zero spin, the factor G = 1.
Hence g(k) is known. The appropriate dispersion relation (from the Schrödinger
equation) is (4.7), so the density of states in ε can be determined, treating k and
therefore ε as continuous variables in view of the large numbers of states involved.

The calculation goes as follows. Starting from (4.7), ε = �
2k2/2M , differentiation

gives

δε = �
2kδk/M

and inversion gives

k = (2M ε/�)1/2

Equation (4.5) with G = 1 is

g(k)δk = V /(2π)3 · 4πk2δk

Substituting for k and for kδk we obtain

g(ε)δε = V /(2π)3 · 4π(2M ε/�
2)1/2(M δε/�

2)

= V 2π(2M /h2)3/2ε1/2δε (4.9)

This derivation nicely demonstrates the transformation from k to ε and the final result
(4.9) will be a useful one in our later discussions of gases.

4.4 SUMMARY

This chapter lays the groundwork for later discussion of gases, by discussing the
one-particle states.

1. Since a gas particle is free to roam over a whole macroscopic box, its possible
states are very closely spaced.

2. The geometrical ideas of ‘fitting waves into boxes’ apply to any gaseous system.
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3. States are uniformly distributed in k-space, that is the density of states in k-space
is constant, depending only on the box volume V .

4. Therefore a grouping of states, needed to define a sensible distribution, is
conveniently related to volume in k-space.

5. Similar ideas are used to describe gases in situations of restricted dimensions
(quantum sheets or wires).

6. Quantum states are specified by their k-space properties, but also can have addi-
tional specifications because of spin or polarisation, introducing a further factor
(G in (4.5)).

7. The density of states in energy plays an important role in thermal properties, and
is worked out from the k-space ideas together with the appropriate dispersion
(energy-momentum) relation .



5

Gases: the distributions

In this chapter the statistical method outlined in section 1.5 is used to derive the
thermal equilibrium distribution for a gas. The results will be applied to a wide
variety of physical situations in the next four chapters.

The method follows the usual four steps. Step I concerns the one-particle states.
These were discussed in the previous chapter, and in fact no further specific discussion
is called for until we come to particular applications. The one vital feature to recall here
is that the states are very numerous. Hence we shall discuss gases in terms of a grouped
distribution as explained in section 5.1. This discussion of possible distributions is
step II of the argument. Step III involves counting microstates, i.e. quantum states for
the N -particle assembly. In section 5.2 we briefly review the quantum mechanics of
systems containing more than one identical particles. The counting of microstates is
then outlined in section 5.3 and finally (step IV) we derive the thermal (most probable)
distribution in section 5.4.

5.1 DISTRIBUTION IN GROUPS

As discussed in the last chapter, the number of relevant one-particle states in a gas
is enormous, often very much greater than the number N of gas particles. Under
such conditions, the definition of a distribution in states contains far too much detail
for comfort. Instead we use effectively the distribution in levels, {ni} as defined in
section 1.4.

The point is that it does no violence to the physics to group the states. In the form
of the distribution used for computation the ith group is taken to contain gi states of
average energy εi. The only difference from the true specification of the states is that
in the grouped distribution all gi states are considered to have the same energy εi,
rather than their correct individual values. This grouped distribution is illustrated in
Fig. 5.1. Let us note several points before proceeding.

1. The grouping is one of convenience, not of necessity. We are choosing to use
large numbers of states gi taken together and also large numbers of particles ni

occupying these states. This will enable us below to use the mathematics of large
numbers (e.g. Stirling’s approximation) in discussing ni and gi in order to work
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Grouped
distribution

True
distribution

ith level, energy �i 
containing gi states

gi states

Fig. 5.1 Distribution in groups. The true distribution, containing very many states indeed, can be replaced
by the grouped distribution for the purpose of calculation.

out the distribution. But as physicists we can rest assured that more sophisticated
approaches give the same mathematical results even if the groups are not assumed
large (or if the grouping is not carried out at all); however, why not accept a
short-cut if one is offered?

2. The grouping used in the distribution is arbitrary, but not capricious! The rule is
that the number of states remains the same in both sides of Fig. 5.1. Or, more
precisely, the density of states (over a sufficiently coarse energy graining) remains
unchanged. If we choose the energy levels εi, then the full microscopic details of
the true physical problem determine the values gi.

3. A test for whether the grouping makes physical sense is to consider the average
number of particles per state, often called the distribution function or colloquially
the filling factor. This is defined as

fiff = ni/gi

Effectively, this filling factor fiff tells us the fractional occupation of a state of energy
εi. In other words, within the density of states approximation, it can be thought
of purely as a function f (ε) of the energy ε. The test just referred to is a simple
one. If the grouping has not violated the original problem, we expect that fiff will
be a well-defined function of εi whose value does not depend on the details of the
grouping. In particular, it should not depend on the value of gi.

4. Finally, if we return to the example of helium gas (section 4.3), we can see that this
approach makes some numerical sense. We noted previously that the energy level
spacing between the true states (�εjε ) was about 10−19 times kBkk T . Therefore, it is
quite possible to use groups of, say, 1010 states each (so that gi � 1 in anybody’s
language), whilst maintaining an energy level spacing �εi which is still minute
(about 10−9 to 1) compared to the thermal energy scale kBkk T .
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5.2 IDENTICAL PARTICLES – FERMIONS AND BOSONS

The next step (step III) in the statistical method is to count the number of microstates
corresponding to a particular distribution. A microstate of course relates to a quantum
state of all N particles, and here must come, therefore, the vital recognition that
identical gas particles are fundamentally indistinguishable from each other. They are,
therefore, effectively competing for the same one-particle states. We can never define
which particle is in a particular state, the microstate is completely specified merely
by stating how many particles are in each state. This counting problem will be tackled
in the next section, but first there is another important question to be addressed. In
quantum mechanics there are two different types of identical particle, which obey
different rules as to how many particles can be allowed in each state. The particle
types are called fermions and bosons.

Consider a system of just two identical indistinguishable particles. It is described
in quantum mechanics by a two-particle wavefunction ψ(1, 2), in which the label 1
is used to represent all the co-ordinates (i.e. space and spin co-ordinates) of particle
1 and the label 2 represents the co-ordinates of the other particle. For ψ(l, 2) to be a
valid wavefunction, two conditions must be satisfied. One is obviously that it should
be a valid solution of Schrödinger’s equation. But the second condition is that it
should satisfy the correct symmetry requirement for interchange of the two labels.
The symmetry required, that of ‘interchange parity’, can be outlined as follows.

If the labels of the two particles are interchanged, then any physical observable
cannot change (since the particles are identical). This implies that

ψ(1, 2) = exp(iδ)ψ(2, 1)

since a physical observable always involves the product ψ∗ψ . The wavefunctions are
related by the phase factor exp(iδ). But if we make two interchanges, then we come
to a mathematical identity, i.e.

ψ(1, 2) = exp(iδ) ψ(2, 1) = exp(2iδ) ψ(1, 2)

Hence exp(2iδ) = 1, and therefore the interchange factor exp(iδ) must equal +1 or
−1, one of the two square roots of +1.

Particles which interchange co-ordinates with the +1 factor are called ‘bosons’,
and those with the −1 factor are ‘fermions’. We shall use the symbol S to describe
the symmetric wavefunction of bosons, and A for the antisymmetric function of
fermions. It can be shown (not here!), or it can be taken as an experimental result,
that all particles with integral spin (0, 1, 2, etc.) are bosons; whereas odd-half integral
spin particles (spin 1

2 , 3
2 , etc.) are fermions. Therefore, for example, electrons and

3He (both having spin 1
2) are fermions; photons (spin 1) and 4He (spin 0) are bosons.

Next, let us consider the case where the particles are weakly interacting, the relevant
case for our statistical physics. This means that a solution to Schrödinger’s equation for
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the two particles can be written as the product of two one-particle wavefunctions, i.e.

ψ(1, 2) = ψa(1) · ψb(2) (5.1)

where the labels a and b are two values of the state label j for the one-particle states.
However, as a wavefunction (5.1) suffers from the defect that it has no interchange
parity, it is neither A nor S. Nevertheless it can be combined with its interchanged
partner (an alternative solution to the Schrödinger equation with the same properties)
to yield two wavefunctions, one S and one A. These are

ψS(1, 2) = (1/
√

2)[ψa(1)ψb(2)+ ψa(2)ψb(1)] (5.2)

ψAψψ (1, 2) = (1/
√

2)[ψa(1)ψb(2)− ψa(2)ψb(1)] (5.3)

The reader may readily check that these functions possess the correct parity, namely
ψS(1, 2) = +ψS(2, 1) and ψAψψ (1, 2) = −ψAψψ (2, 1). The (1/

√
2) factors are for

normalization purposes only.
Equations (5.2) and (5.3) bring out a fundamental difference between bosons and

fermions. Consider the situation in which the labels a and b are identical, i.e. in which
the two particles are both competing for the same state. For bosons, for which (5.2)
applies, there is no problem. (In fact (5.2) gives an enhanced wavefunction compared
to (5.1).) On the other hand fermions are quite different. The wavefunction given by
(5.3) vanishes identically when we set a = b. This is the Pauli exclusion principle,
which recognizes that ‘no two identical fermions can occupy the same state’. I have
heard bosons referred to as ‘friendly particles’and fermions as ‘unfriendly’. Although
bosons enjoy multiple occupancy of states, in a fermion society all states are either
unoccupied or singly occupied!

Finally we may readily generalize all the above results to an assembly containing
N rather than merely two identical particles. The interchange argument is still valid
between any pair of particles. Actually this makes it obvious that the choice of +1
or −1 must be a generic choice. When the first interchange considered is assigned
a parity, an inconsistency will arise if all other interchanges are not given the same
parity. All electrons are fermions, and all 4He atoms are bosons.

For our assembly of N weakly interacting particles, the generalizations of (5.1),
(5.2) and (5.3) are obvious but a little tedious to write down. Equation (5.1) becomes
an extended product of N one-particle terms. For bosons, the expression for ψS is
similar to (5.2), except that it contains N ! terms (every permutation of the particle
co-ordinate labels) all combined with a + sign. The normalization factor becomes
(1/
√

N
√√ !). Similarly for fermions, the generalization of (5.3) is the one antisymmetric

arrangement of the N ! terms; this will have systematically alternating signs, and may
be written neatly as a determinant in which rows give the state label and columns
the particle co-ordinate. But the vital feature is that the exclusion principle as stated
above still operates – if there are two particles in the same state ψAψψ is identically zero.
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5.3 COUNTING MICROSTATES FOR GASES

Now we are equipped to attack step III of the statistical method, that of counting
up the number of microstates consistent with a given valid distribution. Since we
postulate that all such microstates are equally probable, this step is the essential
prerequisite to finding the most probable distribution, i.e. that which best describes
thermal equilibrium, but that final step (step IV) follows in the next section.

The counting problem may be set up as follows. The indistinguishable nature of
the particles is accounted for by the inclusion of all permutations of the particle co-
ordinates in the generalizations of (5.2) and (5.3). The microstate (effectively the
appropriate wavefunction either ψS or ψAψψ ) can therefore be labelled just by the one-
particle state labels a, b, etc. As pointed out earlier, this is simply a recognition that
we cannot know which particles are in which states; even in principle we can only
know which states are occupied. Therefore the counting of microstates is to specify
the occupation of each one-particle state.

The distribution whose number of microstates is to be counted is the grouped
distribution defined in section 5.1. The required number t({ni}) can be written as
the product of contributions from each group of states, but the form of these factors
will differ for bosons and fermions. The treatments of fermions (with the exclusion
principle) and of bosons (without) are quite different in principle, which goes two-
thirds of the way to explaining why this section has three sub-sections. The reason
for the third will emerge below.

5.3.1 Fermions

As we have seen in section 5.2, the exclusion principle operates for fermions. There-
fore, the one-particle states can only have occupation numbers of 0 or 1. Incidentally,
this implies that in the ith group, the number of particles ni cannot exceed the number
of states gi.

The counting is now straightforward. The group of gi states is divisible into two
subgroups: ni of the states are to contain one particle, and therefore the other (gi−ni)

must be unoccupied. This is the ‘binomial theorem’ counting problem of Appendix
A, problem 2. The number of different ways the states can be so divided is

gi!
ni!(gi − ni)!

This is the contribution to the number of microstates from the ith group. The total
number of microstates corresponding to an allowable distribution {ni} is therefore
given by

tFDtt ({ni}) =
∏

i

gi!
ni!(gi − ni)! (5.4)
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The symbol FD is short for Fermi–Dirac, since these two physicists were responsible
for the first discussion of the statistics of what we now call fermions.

5.3.2 Bosons

The statistics for bosons is called Bose–Einstein (BE) statistics, also named after its
inventors. Counting the boson microstates is a little more tricky than for fermions
since now any number of particles are allowed to occupy any one-particle state.

A direct, if slightly abstract, way of calculating the contribution from the ith group
of the distribution is as follows. In the group there are gi states containing ni identical
particles with no restrictions on occupation numbers. A typical microstate can be
represented as in Fig. 5.2 by (gi−1) lines and ni crosses. The lines represent divisions
between the gi states, and the crosses represent an occupying particle. New microstates
representing the same distribution, i.e. the same value of ni for the group, can be
obtained by shuffling the lines and crosses on the picture. In fact the contribution to
the number of microstates is precisely a further simple binomial problem: how many
ways can the (ni + gi − 1) symbols be arranged into ni crosses and (gi − 1) lines?
The answer is the binomial coefficient (see again Appendix A)

(ni + gi − 1)!
ni!(gi − 1)!

This is the correct answer to the problem. But in fact, bearing in mind that in statistical
physics we are always dealing with large numbers gi of states, the −1 addition is
negligible. It is adequate to use gi rather than (gi− 1), and we shall do this forthwith.
(Actually, if the −1 is retained here, then in the next section the mathematics would
give a distribution ni proportional to (gi − 1) rather than to gi violating the grouping
requirement of section 5.1. The −1 would have then to be omitted for consistency,
so we omit it from the outset!)

× × × × × × × × ×× × × × × ×

group i

gi states

ni particles ni crosses

(gi – 1) lines

Fig. 5.2 Counting bosons. In each group the gi states are represented by (gi − 1) lines and the ni particles
by ni crosses. In the illustration a micro-state is represented for the case gi = 8, ni = 9.
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Hence our (slightly approximate) final result for the number of microstates to an
allowed distribution for a boson gas is

tBEtt ({ni}) =
∏

i

(ni + gi)!
ni!gi! (5.5)

where again the product ranges over all groups i.

5.3.3 Dilute gases

For gases, there are two, and only two, possibilities. The gaseous particles are either
bosons (+1, symmetric) or fermions (−1, antisymmetric). There is no half-way house.
However, it is profitable to consider a third form of statistics quite explicitly, namely
that of a dilute gas.

The word ‘dilute’ here has a specific meaning. It is to suppose that for all groups i,
the states are very sparsely occupied, i.e.

ni � gi for all i

We shall see later that this condition holds for real gases in the limit of low density
and high temperature, and that it corresponds to a classical limit to either the FD or
the BE form of quantum statistics.

In this dilute limit, we can readily see that both forms of statistics give almost the
same answer for t({ni}). It is a result we should expect, since when ni � gi even
for bosons we would anticipate that almost all the states are unoccupied, and just a
few have a single occupation. The existence or otherwise of the exclusion principle
is irrelevant if the system is not even tempted towards multiple occupation!

To consider the fermion case first, each factor in (5.4) can be written as

[gi(gi − 1)(gi − 2) . . . (gi − ni + 1)]/ni!

where both numerator and denominator have been divided by (gi−ni)!. Note that the
numerator of this expression is the product of ni factors, all of which in our present
limit are almost equal to (but a bit less than) gi. Therefore, we have

tFDtt ≈
∏

i

gni
i

ni!

In the boson case, (5.5) can be treated similarly in the dilute limit. Dividing top and
bottom by gi! one obtains for the typical term

[(gi + 1)(gi + 2) . . . (gi + ni)]/ni!
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Again the numerator is the product of ni factors each approximately equal to (but a
little larger than) gi. Hence for the dilute boson gas

tBEtt ≈
∏

i

gni
i

ni!
Therefore in the dilute limit tFDtt and tBEtt tend to the same value, one from below and
one from above. This ‘classical’ limit is called the Maxwell–Boltzmann (MB) case,
discussed by these famous scientists before quantum mechanics was conceived. And
we write the answer to our third counting problem as

tMBtt =
∏

i

gni
i

ni! (5.6)

5.4 THE THREE DISTRIBUTIONS

It now remains to derive the three equilibrium distributions for the three counting
methods of section 5.3. The techniques are precisely those set up in section 1.5 and
already worked through for localized particles in Chapter 2. The aim is to find the most
probable distribution consistent with the macrostate by maximizing the expression
for t({ni}), just as in section 2.1.5.

5.4.1 Fermi–Dirac statistics

We require to maximize tFDtt , or more conveniently ln tFDtt , subject to the usual
macrostate conditions ∑

i

ni = N (5.7)

and ∑
i

niεi = U (5.8)

As before, the method is to simplify ln t using Stirling’s approximation (Appendix
B), and then to find the conditional maximum using the Lagrange method. An outline
derivation follows.

Taking logarithms of (5.4) gives

ln tFDtt =
∑

i

{gi ln gi − ni ln ni − (gi − ni) ln(gi − ni)}

The Lagrange method writes down for the maximum condition

d(ln t)+ αd(N )+ βd(U ) = 0 (5.9)
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Substituting ln t = ln tFDtt from above together with (5.7) and (5.8) for N and U gives
after differentiation ∑

i

{ln[(gi − ni)/ni] + α + βεi}dni = 0

The Lagrange method enables one to remove the summation sign for the specific, but
as yet undetermined, values of the multipliers α and β to obtain for the most probable
distribution

ln[(gi − n∗i )n∗i ] + α + βεi = 0

Rearranging this expression we find

n∗i = gi/[exp(−α − βεi + 1]
As anticipated the grouping of the states has no explicit influence on the equilibrium
occupation per state, and the result may be written in terms of a distribution function

fiff = n∗i /gi = 1/[exp(−α − βεi + 1] (5.10a)

The distribution function contains no detail about the states except their energies, and
so in concord with the whole density of states approximation it can be thought of as
effectively a continuous function of the one-particle energy εi or simply ε. Hence a
useful form of (5.10a) is

fFDff (ε) = 1/[exp(−α − βε)+ 1] (5.10b)

This is the Fermi–Dirac distribution function.

5.4.2 Bose–Einstein statistics

The derivation of the Bose–Einstein distribution for a boson gas follows analogous
lines.

Taking logarithms of (5.5) and using Stirling’s approximation gives

ln tBEtt =
∑

i

{(ni + gi) ln(ni + gi)− ni ln ni − gi ln gi}

Substituting this into (5.9) together with the restrictions (5.7) and (5.8) gives∑
i

{ln[(ni + gi)/ni] + α + βεi}dni = 0

The form of the equilibrium distribution is again obtained by setting each term of the
sum equal to zero

ln[(n∗i + gi)/n∗i ] + α + βεi = 0
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which rearranges to give

n∗i = gi/[exp(−α − βεi)− 1]

In terms of the distribution function this becomes

fiff = n∗i /gi = 1/[exp(−α − βεi)− 1] (5.11a)

or

fBEff (ε) = 1/[exp(−α − βε)− 1] (5.11b)

This is the Bose–Einstein distribution.

5.4.3 Maxwell–Boltzmann statistics

For the dilute (fermion or boson) gas, the procedure may be followed for the third
time, starting now with the expression (5.6) for the number tMBtt of microstates.

We obtain

ln tMBtt =
∑

i

{ni ln gi − ni ln ni + ni}

which using (5.9) with (5.8) and (5.7) gives

∑
i

{ln[gi/ni] + α + βεi}dni = 0

Removing the summation for the equilibrium distribution and rearranging now gives

n∗i = gi exp(α + βεi)

The final result for the Maxwell–Boltzmann distribution is therefore

fiff = n∗i /gi = exp(α + βεi) (5.12a)

or

fMBff (ε) = exp(α + βε) (5.12b)

One may note in passing that this distribution bears a marked similarity to the Boltz-
mann distribution for localized particles derived in Chapter 2. This greatly simplifies
the discussion of dilute gases, since we have unknowingly already covered much of
the ground, as we shall see in Chapter 6.
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5.4.4 α and β revisited

After the lengthy discussion concerning α and β in Chapter 2, brevity is now in order.
The parameter α again is related to the restriction (5.7) which spawned it. In the
MB case this involves simply a normalizing constant. In the full FD and BE cases,
the general idea is the same (α is adjusted until the distribution contains the correct
number N of particles) but the mathematics is not so simple!

For the parameter β, the arguments of section 2.3.1 remain valid. They did not
depend on the two assemblies in thermal contact having localized particles. Therefore
β must be a common parameter between any two assemblies in thermal equilibrium,
and following section 2.3.2 we continue to use the identity: β = −1/kBkk T .

The final outcome of this chapter is to write the results of our hard work all in a single
composite equation. The distribution function, defined by the average number of
particles per state of energy εi, is given for a gaseous assembly in thermal equilibrium
at temperature T by

fiff = 1
+1 (FD)

B exp(εi/kBkk T ) 0 (MB)

−1 (BE)

(5.13)

In (5.13) the choice of+1, 0 or−1 is governed by which of the three types of statistics
is relevant. The parameter B (equivalently α since B = exp(−α)) is adjusted to give
the correct number of gas particles. How the three distributions are used in practice
will emerge from the following four chapters.

5.5 SUMMARY

This chapter builds on previous ideas to derive the distribution functions for gases
in thermal equilibrium. We use the statistical approach first outlined in Chapter 1
together with the counting of states of Chapter 4

1. Grouping together gi of the numerous one-particle states is worthwhile (and does
no violence to the physics) since the simplifying approximations of large numbers
can then be used.

2. The quantum mechanics of identical particles spawns two classes, bosons and
fermions.

3. Half-integral spin particles are fermions; zero or integral spin particles are bosons.
4. Occupation of states for fermions is restricted by the Exclusion Principle – no two

fermions can occupy the same state. There is no such restriction for the (friendly!)
bosons.

5. Counting microstates in each group reduces to a simple binomial problem
(Appendix A).

6. When occupation of states is small (a ‘dilute gas’), fermion gases and boson gases
both tend to the same limit, the Maxwell–Boltzmann or classical limit.
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7. Use of Stirling’s approximation and Lagrange multipliers, as used earlier, gives
the Fermi–Dirac, Bose–Einstein and Maxwell–Boltzmann distributions, with
parameters α and β.

8. α is determined by the particle number, and β relates to temperature as before.
9. The final result for the three distributions (FD, BE and MB) can be given in a

single expression (5.13).
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Maxwell–Boltzmann gases

As a first application of the groundwork of the two previous chapters, we consider
the simplest situation. This is a gas for which the Maxwell–Boltzmann (dilute) limit
is valid. Furthermore we shall consider only monatomic gases in the present chapter,
leaving the complications (and the interest!) of diatomic gases until Chapter 7. First
we need to decide the practical range of validity of the MB limit. Next we can derive
the MB distribution of speeds in the gas. Finally we may work out the thermodynamic
properties of the gas and compare these to results from the ideal gas laws.

6.1 THE VALIDITY OF THE MAXWELL–BOLTZMANN LIMIT

The MB distribution ((5.12) and (5.13)) may be written as

fiff = A exp(−εi/kBkk T ) (6.1)

with the constant A = exp(α) = 1/B. Our statistical method so far (and until
Chapter 14) applies only to perfect gases, in the sense of gases whose particles are
weakly interacting. But in addition the MB distribution applies only to a gas suffi-
ciently dilute that all the occupation numbers ni are much less than the number of
states gi, i.e. that all fiff � 1. Taking the ground state energy as the energy zero (or
close to it), the dilute condition therefore means that the constant A in (6.1) should
be� 1.

Clearly in order to explore further we need to calculate A. This is done using its
associated condition (5.7):

N =
∑

i

ni

=
∑

i

gifii iff

= A
∑

i

gi exp(−εi/kBkk T )

= AZ (6.2)

63
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where the partition function Z is defined as the sum over all one-particle states of
the Boltzmann factors exp(−εi/kBkk T ), just as in the Boltzmann statistics of localized
particles (section 2.4). Hence the problems of calculating A and Z are identical. To
make progress we now need the details of gi, and that was the topic of Chapter 4.

To be specific, consider a monatomic, zero-spin gas such as 4He. The states of a
gas particle are then precisely those of ‘fitting waves into boxes’, (4.4) or (4.5) with
G = 1. We have

g(k)δk = V /(2π)3 · 4πk2δk (6.3)

as the number of states between k and k + δk , the wavevector k going from
0 to∞.

Within the density of states approximation, the partition function is then calculated
as an integral

Z =
∫ ∞

0

∫∫
V /(2π)3 · 4πk2 exp(−ε(k)/kBkk T )dk (6.4)

The integral may be evaluated in (at least) two ways. One is to transform the density
of states from k to energy ε, i.e. to evaluate

Z =
∫ ∞

0

∫∫
g(ε) exp(−ε/kBkk T )dε

with g(ε) precisely that worked out in section 4.3 (see (4.9)). The other entirely
equivalent route is to use the dispersion relation ε(k) = �

2k2/2M , (4.7), to transform
the energy in (6.4), leaving a tractable integral over k . Using the latter method, we
obtain

Z = V /(2π)3 · 4π
∫ ∞

0

∫∫
k2 exp(−bk2)dk (6.5)

with b = �
2/(2MkBkk T ) = h2/(8π2MkBkk T ). The integral in (6.5) is pre-

cisely equal to the standard integral I2II discussed in Appendix C, so that the
expression becomes

Z = V /(2π)3 · 4π · (I2II /I0II ) · I0II

= V /(2π)3 · 4π · (1/2b) · (π/4b)1/2

= V (2πMkBkk T/h2)3/2 (6.6)

Equation (6.6) is a central result for the MB gas, and we shall use it later in the
chapter to calculate the thermodynamic functions of the gas. Meanwhile we return to
the question of the validity of MB statistics. Having calculated Z , we have effectively
calculated the constant A = N/Z (equation (6.2)). For MB statistics to be valid we
require A � 1.
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It is worth putting in the numbers for the worst possible case! Consider 4He at 1
atmosphere pressure and at a temperature of 5 K, at which it is still a gas (the boiling
point is 4.2 K). Substituting the numbers (check it using the necessary constants from
Appendix D?) gives

A = (N/V ) · (h2/2πMkBkk T )3/2 (6.6a)

= 0.09

for this case.
This is a useful calculation. What it shows is that even for 4He (and similarly for

3He which boils at 3.2 K) the value of A is sufficiently small to justify the use of MB
statistics as a first approximation (and as we see later in section 6.3, MB statistics lead
to the perfect gas laws). A is often called the degeneracy parameter, A � 1 being the
classical or ‘non-degenerate’ limit.

For helium gas near to its boiling point, the value A = 0.09 suggests that degeneracy
will be a small but significant cause of deviation from the perfect gas laws. It is not
too straightforward to identify experimentally, since just above the boiling point
one unsurprisingly finds that corrections due to non-ideality (interactions between
atoms, finite size of atoms) also cause significant deviations. However, the degeneracy
corrections are particularly interesting; since 4He is a boson and 3He is a fermion,
the deviations may be expected to be of opposite signs. And so it is found.

For all other real chemical gases, and for helium at more reasonable temperatures,
the value of A is even smaller, since the mass M and temperature T both enter as
inverse powers. For example, air at room temperature and pressure has A ≈ 10−5.
The nearest competitor to helium is hydrogen gas, but this boils around 20 K. On the
other hand, in the free electron gas model of a metal, one uses an electron gas at the
metallic density. Here A � 1 since the mass is so small, so that the gas is degenerate
and FD statistics must be used (see Chapter 8).

To conclude the section, let us note that A and Z are truly quantum quantities. They
depend on Planck’s constant h, and on the spin factor G (=1 for 4He). But when the
numbers are substituted, we find that the dilute MB limit is entirely justified for real
gases. Hence, on that basis, the rest of the chapter is worth the effort!

6.2 THE MAXWELL–BOLTZMANN DISTRIBUTION OF SPEEDS

Without really trying, we have in fact derived the distribution of speeds of gas
molecules in an ideal gas, the distribution which plays an important part in the kinetic
theory of gases.

In kinetic theory, one often requires the number of molecules which have (scalar)
velocities between v and v + δv. This is given directly by the MB distribution – it
is as easy as ni = gi × fiff . The number we require is conveniently written as n(v)δv,
defining the function n(v) as a density of particles in speed v. Hence we have

n(v)δv = g(v)δv · A exp(−ε(v)/kBkk T ) (6.7)
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in which g(v)δv is defined as the number of states in the range of interest, i.e. with
speeds between v and v + δv.

The number of states is obtained directly from the ‘fitting waves into boxes’ result,
(6.3), with the simple linear transformation: momentum = �k = Mv, i.e. k = (M /�)v
(remembering that the range δk must be transformed to δv as well as the k2 term to
v2!). The energy ε(v) equals Mv2/2; and the constant A is N/Z , with Z given by
(6.6). Hence (6.7) is reduced to be a function of v only

n(v)δv = Cv2 exp(−Mv2/2kBkk T )δv (6.8)

with

C = 4πN (M /2πkBkk T )3/2 (6.8a)

This is the required result, obtained originally by Maxwell. It is an entirely classical
result, as can be seen by the fact that h appears nowhere in it. In our derivation, the
h−3 factor in Z (a detailed quantum idea, as discussed above) cancelled with an h3

from the transformation from k to v. Another way of obtaining the constant C makes
this point clear. If (6.8) is to describe the properties of N particles (gas molecules),
then it must satisfy the normalization requirement

N =
∑

i

ni =
∫ ∞

0

∫∫
n(v)dv

Integration of (6.8), having replaced the range δv by dv, may be achieved using the
integral I2II (Appendix C). It will be found that the value of C which satisfies this
normalization condition is again given by (6.8a).

More comprehensive discussions of the properties and uses of the speed distribution
are found in many books on kinetic theory. Some of its properties are illustrated in
Fig. 6.1. The three different but representative speeds indicated on the graph are all
of order (kBkk T/M )1/2 = vT , say. They are as follows:

1. vmax (= √2vT ), the most probable speed corresponding to the maximum of the
curve.

2. v̄ (= √
(8/π)vT ), the mean speed of the molecules. This is again calcu-

lated using the integrals of Appendix C with b = M /2kBkk T . We write v̄ =∫∞
0

∫∫
vn(v)dv/

∫∞
0

∫∫
n(v)dv = I3II /I2II , which gives the stated result.

3. vrms (= √3vT ), the root mean square speed. This is calculated similarly (albeit
with even less difficulty since it involves the recurrence relation of Appendix C
only) since the mean square speed v2

rms = I4II /I2II .

The evaluation of the mean square speed is of particular significance to the thermal
properties, since it proves that the average (kinetic) energy per molecule is given by

ε̄ = Mv2
rms/2 = 3kBkk T/2 (6.9)
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Fig. 6.1 The Maxwell–Boltzmann distribution of speeds in a gas. The representative speeds vmax, v̄ and
vrms are defined in the text.

Also since the gas is isotropic and has no net velocity the three component velocities
must satisfy

Mv2
xv /2 = Mv2

y/2 = Mv2
z /2 = M (v2

xv + v2
y + v2

z )/6

= Mv2
rms/6 = kBkk T/2

This is another example of the classical law of equipartition of energy referred to
earlier in section 3.2. Each degree of freedom of the system, i.e. the translational
motion of each molecule in each of the three dimensions of space, contributes 1

2 kBkk T
to the internal energy of the system. We shall see this result again in the following
section and in Chapter 7.

Finally, before leaving the topic, we may note that other more detailed statistical
information can be compiled and used in a similar way. Again the key is ni = gi × fiff ,
i.e. number of particles in a group = number of states in the group × filling factor.
Suppose for example one wants the number of particles with a velocity close to
a particular value v. We may define the usual density functions for n and g such
that n(vxv , vy, vz)dvxv dvyv dvz is the number of particles and g(vxv , vy, vz)dvxv dvydvz the
number of states with velocity in the element dvxv dvydvz at velocity v = (vxv , vy, vz).
Fitting waves into boxes in this case gives the g function to be a constant; the states
are evenly spread in k-space, and hence in v-space also. And the Boltzmann factor in
fiff is simply exp(−Mv2/2kBkk T ) with v2 = v2

xv + v2
y + v2

z . Therefore the result is

n(vxv , vy, vz)dvxv dvyv dvz

= const× exp(−Mv2/2kBkk T )dvxv dvydvz (6.10)

with the value of the normalization constant left as a problem (Appendix E).
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6.3 THE CONNECTION TO THERMODYNAMICS

This is an important section. We can now calculate the properties of a gas of weakly
interacting spinless particles in the limit of low density. These are precisely the con-
ditions for an ideal gas, one which obeys the equation of state PV = RT with T
being the thermodynamic temperature. We shall find the comforting result that our
gas also obeys this equation of state, although our T was defined statistically from β.
Hence we shall fully justify the statistical definitions of temperature and of entropy
(see section 2.3).

The calculation methods for Boltzmann statistics can be used again here, so refer-
ence should be made back to section 2.5. The only caution is that the expressions for
t∗ are similar but not identical for the two cases. For localized particles (2.3) has a
factor of N !, whereas the corresponding (5.6) for a gas of indistinguishable particles
does not.

6.3.1 Internal energy and CVCC

Since we have gone to the trouble of evaluating Z for a monatomic spinless gas (see
(6.6)), the quickest way to U and CV is to use Method 2 of section 2.5. The derivation
of (2.27) depended only on the definition of Z , which is the same for gases as for
localized particles. Hence

U = N d(ln Z)/dβ (2.27)

= NkBkk T 2d(ln Z)/dT (6.11)

using β = −1/kBkk T . Since Z ∝ T 3/2 (equation (6.6)), (6.11) at once gives

U = 3
2 NkBkk T (6.12)

This is the result expected from the kinetic theory treatment of (6.9), since U = N ε̄.
The internal energy U for our perfect gas is a function of T only – it does not depend
on V ; and it is proved to have the value given by the old equipartition law. The
expression for CV follows at once

CV = dU/dT = 3
2 NkBkk (6.13)

The heat capacity is a constant in the MB limit – a warning for lovers of the third
law of thermodynamics that this limit cannot survive down to the absolute zero of
temperature.

6.3.2 Entropy

To find the entropy, we use Method 1 of section 2.5, namely a direct evaluation of S
from its statistical definition S = kBkk ln �. For the MB gas, the calculation proceeds
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as follows:

S/kBkk = ln � definition

= ln t∗ usual approximation

= ln
(∏

gni
i /ni!

)
using tMBtt , (5.6)

=
∑

(ni ln gi − ni ln ni + ni) Stirling’s approximation

=
∑

ni(ln gi/ni + 1) rearranging

=
∑

ni(ln Z − ln N + εi/kBkk T + 1) MB result for ni/gi, i.e. (6.1)

with A = N/Z

= N (ln Z − ln N + 1)+ U/kBkk T identifying U

Hence the result for any MB gas (in this proof, no assumptions are made about any
specific monatomic gas etc.) is

S = NkBkk (ln Z − ln N + 1)+ U/T (6.14)

For the monatomic, spinless gas under particular consideration in this chapter, we
have evaluated Z , (6.6), and U , (6.12). Hence in this case we have

S = NkBkk (ln V − ln N + 3
2 ln T )+ S0 (6.15)

with the ‘entropy constant’ S0 given by

S0 = NkBkk [ 3
2 ln(2πMkBkk /h2)+ 5

2 ] (6.15a)

Equation (6.15) (the Sackur–Tetrode equation) is an interesting result. It is classical
in the sense that it cannot be correct down to the absolute zero; ln T →−∞ whereas
the physical S has a lower limit of zero at T = 0. Nevertheless it contains Planck’s
constant in the entropy constant S0. Furthermore this constant can be checked by
experiment as follows. We measure the specific and the latent heats of a specific
substance from (essentially) T = 0 up to a temperature at which the substance is an
ideal gas. This enables us to calculate S calorimetrically, using the fact that S = 0 at
T = 0, from an expression of the type

Scal =
∫

0

∫∫
(C/T )dT + L1/T1 + L2/T2TT

the subscript 1 referring to the solid–liquid transition and 2 to the liquid–gas transition.
In this way the value (6.15a) of the constant S0 has been accurately verified.
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6.3.3 Free energy and pressure

Now let us turn to the free energy F , and Method 3 of section 2.5, the ‘royal route’.
Without reference as yet to any specific gas, the hard work was done in the previous
section in the derivation of (6.14). One can see that a very simple expression for F
emerges, namely

F ≡ U − TS = −NkBkk T (ln Z − ln N + 1) (6.16a)

Using Stirling’s approximation in reverse, this may be neatly written

F = −NkBkk T ln Z + kBkk T ln N ! (6.16b)

The answer is the same as (2.28) for localized particles but with the addition of the
N ! term. Our arguments from (6.16) branch along three rather distinct lines.

1. Pressure. First we can readily use F(T , V , N ) to calculate the pressure as follows:

P = −(∂F/∂V )T , N

since

dF = −SdT − PdV + μdN

Hence

P = NkBkk T (∂ ln Z/∂V )T , N

using (6.16).
For the monatomic MB ideal gas, since Z ∝ V (equation (6.6)), this becomes

P = NkBkk T/V (6.17)

The result (6.17) remains true for polyatomic MB gases, since we shall see in
Chapter 7 that Z ∝ V for these also; the box volume only enters Z via the
translational motion of the molecules. Since this is identical to the ideal gas law,
PV = RT , this justifies completely our statistical definitions of temperature and
entropy. By calculating P and comparing with the ideal gas law we have verified

β = −1/kBkk T (2.20)

and

S = kBkk ln � (1.5)

with the constant kBkk = R/N , the gas constant per molecule, i.e. Boltzmann’s
constant.
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2. Extensivity. Next, a few words about that extra N ! in (6.16b). For our treatments
of gases or of localized particles to make sense, we require that the extensivity is
correct. If we double the amount of the substance, we expect functions like U , S
and F also to double, so long as the doubling is done at constant T and at constant
density N/V .

Now for a solid, the equation F = −NkBkk T ln Z , (2.23), satisfies this require-
ment. The energy levels εjε depend only on the specific volume, V /N . Hence
Z = ∑ exp(−εjε /kBkk T ) is unchanged at given T and N/V . Therefore F ∝ N as
required.

However, for a gas the extra N ! term is needed. Since all the gas particles are
competing for the same space, we have Z ∝ V , but independent of N , (6.6). It
is now Z/N which is unchanged when N is altered at constant density. Therefore
(6.16): F = −NkBkk T (ln Z/N + 1) has the correct properties. The bracket remains
unchanged and again F ∝ N .

3. The Gibbs paradox. This was a classical problem of indistinguishability, perhaps a
paradox no longer. Consider a box of fixed volume V and temperature T containing
a mixture of two ideal gases A and B. We adopt a notation in which the subscript A
refer to the properties which gasAwould have in the absence of gas B; and similarly
for subscript B. If the two gases are different then they behave independently, they
occupy different states. Hence � = �A ×�B, and S = SA + SB, F = FAF + FBFF ,
P = PA + PB, etc. The two gases behave as if the other were not present. Even
an isotopic mixture, say of 3He and 4He, behaves in this way.

However, the situation is different if the two gasesAand B are identical. It is true
that P = 2PA, but S �=�� 2SA, and F �=�� 2FAF . The molecules are now competing for
states, so the statistical properties of the second gas are modified by the existence
of the first. In fact we can see from (6.14) that S = 2SA − NkBkk ln 2 (arising from
the N ln N term, i.e. from the N !) where N is the total number of A molecules.
The degree of disorder is lessened by the competition.

6.4 SUMMARY

This chapter derives the properties of an ideal monatomic gas in the dilute limit.

1. The dilute limit is found to be a valid approximation for all real chemical gases.
2. The partition function Z , summing Boltzmann factors (exp(−εi/kBkk T )) over all

states, again plays a useful role.
3. MB statistics leads directly to the speed distribution of gas molecules, first derived

by Maxwell.
4. The MB gas is shown to have the equation of state PV = RT .
5. Our statistical temperature (based on β = −1/kBkk T ) is thus identical to the

thermodynamic Kelvin temperature.
6. The kinetic energy of the gas molecules in thermal equilibrium gives an illustration

of the classical principle of equipartition of energy.
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7. However, it is evident from expressions for S and C that classical ideas must fail
at low enough temperatures.

8. Surprisingly, calorimetric methods can determine Planck’s constant through the
entropy constant S0 (6.15).

9. MB statistics differs from Boltzmann statistics by having a (necessary) extra N !
term in the free energy expression (6.16b). This arises from the indistiguishability
of gaseous particles, a matter of controversy in Boltzmann’s day.
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Diatomic gases

This chapter is a slight diversion, and could well be omitted at a first reading. However,
the study of diatomic Maxwell–Boltzmann gases proves to be a rather interesting one.
It will reinforce the ideas of energy scales, introduced in Chapter 2, and illustrate
further the concept of degrees of freedom. Furthermore the rotation of molecular
hydrogen (H2) gas holds a few quantum surprises. Throughout the chapter we shall
assume, as is realistic, that MB statistics applies. The quantum surprises are not
concerned with ‘degeneracy’, i.e. whether FD or BE corrections need be made to the
statistics. Rather they are to do with the indistinguishability of the two H atoms which
make up the H2 molecule.

7.1 ENERGY CONTRIBUTIONS IN DIATOMIC GASES

As outlined in the previous chapter, if the partition function of our MB gas is evaluated
then all its thermal properties can be calculated. So far we have treated explicitly only
a monatomic gas such as helium. What now about a polyatomic gas?

The problem is quite tractable, with one basic assumption. This is that the various
forms of possessing energy are independent. To explain what this means, consider
the contributions to the energy of a polyatomic gas molecule. The molecule can
have energy due to translational motion, due to rotation, due to internal vibrations
and (exceptionally) due to electronic excitation. If these energy contributions are
independent, then it means, for example, that the state of vibration does not influence
the possible energies of translation. In other words the one-particle states can be
described simply as having energies

ε = εtrans + εrot + εvib + εelec (7.1)

so that each mode of possessing energy can be considered separately from the
others.

This is an approximation only, but it is a good one. Translation, i.e. motion of the
centre of mass, is accurately independent of the internal degrees of freedom of the
molecule, i.e. motion around the centre of mass and excited electronic states. One
might expect a small coupling between vibration and rotational states; for example,
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in a state of high rotational energy of a diatomic molecule the bond will stretch a little
from the inertia of the atoms, and this will influence the bond strength and hence the
vibrational frequency of the molecule. However, such effects are small in practice
and may be (gratefully) neglected.

From the point of statistical physics, this independence has a great simplifying
influence. It means that the partition function Z factorizes.

The partition function is defined (equation (6.2)) as the sum over all states of the
Boltzmann factors of every state. Writing β for −1/kBkk T , and using (7.1) we obtain

Z =
∑

all states

exp[β(εtrans + εrot + εvib + εelec)]

=
∑
trans

exp[β(εtrans)] ×
∑
rot

exp[β(εrot)]

×
∑
vib

exp[β(εvib)] ×
∑
elec

exp[β(εelec)] (7.2)

= ZtransZZ × ZrotZZ × ZvibZZ × ZelecZZ (7.3)

The simplicity of (7.2) is that each full state of the molecule, by the assumption of
independence, can be specified by its separate quantum numbers (i.e. state labels) for
translation, rotation, vibration and electronic excitation. Hence the partition function
factorizes as in (7.3) into independent component parts.

Since Z factorizes, ln Z has a number of additive terms. As a result there are inde-
pendent additive terms in the thermodynamic functions such as F (equation (6.16)), U
(equation (6.12)) and hence CV . It is particularly instructive to note how this works
out for the free energy F , since it becomes clear how to handle the ln N ! term of
(6.16b).

Substituting the form (7.3) for the diatomic gas into the general expression (6.16b)
for any MB gas, we obtain

F = −NkBkk T ln Z + kBkk T ln N !
= −NkBkk T ln ZtransZZ + kBkk T ln N ! − NkBkk T ln ZrotZZ

− NkBkk T ln ZvibZZ − NkBkk T ln ZelecZZ (7.4)

= FtransFF + FrotFF + FvibFF + FelecFF (7.5)

The free energy of the gas is decomposed as anticipated into various parts. The
translational part FtransFF is defined by the first two terms of (7.4), which includes ZtransZZ
together with the ln N ! term. Note that this is identical to the total free energy of a gas
of structureless (i.e. monatomic) molecules as worked out in Chapter 6. Hence F for
the diatomic gas is equal to F for the monatomic gas plus additive contributions from
the internal degrees of freedom, the final three terms of (7.4). The extra contribution of
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each internal degree of freedom is particularly simple. It gives merely a −NkBkk T ln Z
addition to F ; and this is identical to the free energy of a set of localized particles
(Chapter 2) with appropriate one-particle states. Therefore, we shall find that most of
the hard groundwork for this chapter is already done, so that we may concentrate on
the results.

7.2 HEAT CAPACITY OF A DIATOMIC GAS

To be specific, let us use the ideas of the previous section to calculate the heat capacity
CV of a typical diatomic gas.

7.2.1 Translational contribution

As already indicated, this term holds nothing new above the content of Chapter 6.
The translational motion of any molecule is described by the k-states of ‘fitting waves
into boxes’ fame. And this treatment leads to a partition function, (6.6)

ZtransZZ = V (2πMkBkk T/h2)3/2 (7.6)

with M being the mass of the molecule. Hence as before UtransUU = 3
2 NkBkk T and the

heat capacity contribution is given by

CV ,trans = 3

2
NkBkk

7.2.2 Electronic contribution

When we come to the internal contributions, (7.4) and (7.5) tell us that we can
forget about the molecules being specifically those of a gas. Rather we can treat the
contributions as identical to those from an assembly of distinguishable particles.

Allowance for thermal excitation into a higher electronic state of energy ε above
the ground state is identical to the treatment of the two-state system of section 3.1.
The result in the heat capacity is to add to CV a ‘Schottky anomaly’ term as given in
(3.4) and Fig. 3.3.

In practice this contribution to CV is negligible in almost all cases. This is because
typical values of ε are around 10 eV, so that we are in the extreme quantum limit
(kBkk T � ε) at any realistic temperature. Hence CV , elec ≈ 0. The only exceptional
everyday gases are NO and O2. In these ε happens to be particularly small and the
Schottky anomaly peaks are calculated to appear around 75 K for NO and 5000 K for
O2. However, with these exceptions it is justifiable to neglect the electronic term, and
we shall do so in the rest of this chapter.
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7.2.3 Vibrational contribution

Similarly, the contribution from vibrational motion has been calculated earlier in
this book. Each diatomic molecule is accurately represented by a one-dimensional
harmonic oscillator, and furthermore the molecules are very weakly interacting.
Therefore, the vibrations of our N gas molecules can be described as an assem-
bly of N identical and weakly interacting harmonic oscillators. This is the problem
discussed fully in section 3.2. The heat capacity contribution CV , vib is given precisely
by (3.15) and is illustrated in Fig. 3.10.

The heat capacity CV , vib is calculated to rise from zero to NkBkk as the tempera-
ture is raised, the change occurring around the scale temperature θ . As discussed in
section 3.2, kBkk θ is the energy level spacing of an oscillator, equal to hν where ν is the
classical frequency. Its value, therefore, will depend on the bond strength between
the two atoms of the molecule and on their masses. For typical common gases θ turns
out to have a value in the 2000–6000 K region (roughly 2000 K for O2, 3000 K for
N2 and 6000 K for H2 where the masses are lighter). At room temperature, therefore,
vibration remains substantially unexcited so that CV , vib ≈ 0 for all diatomic gases.
At elevated temperatures the onset of vibration is seen, and the heat capacity rises.
However, in practice, it often happens that, before CV , vib becomes very large, the
diatomic gas dissociates into 2N monatomic gas molecules, the vibrational energy
having overcome the bonding energy.

7.2.4 Rotational contribution

Having effectively disposed of electronic excitation and vibration, both theoretically
and experimentally, we now turn to the rotational contribution. This will be found a
more substantial topic!

The rotation of a linear molecule is modelled, bearing in mind the strictures of
section 7.1, by the motion of a rigid rotator. The rotator has a fixed moment of inertia
I around an axis perpendicular to its own axis; spinning motion around its own axis is
neglected. The solution for the quantum states of the rotator will be quoted here, but
they should look familiar to a student who has studied any angular momentum problem
in quantum mechanics. Basically the requirement for the wavefunction to be single
valued upon a 2π rotation leads to quantization of an angular momentum component
in units of �. The allowed values of (angular momentum)2 become l(l + 1)�2, with
l = 0, 1, 2, . . .. And hence the allowed energy levels are given by

εl = l(l + 1)�2/2I

≡ l(l + 1)kBkk � (7.7a)

where the temperature � so defined represents a characteristic scale temperature for
rotation. These levels are degenerate, there being

gl = (2l + 1) (7.7b)
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states to level l, corresponding intuitively to different possible directions for the
angular momentum.

Armed with these results we can at once write down the partition function for
rotation

ZrotZZ =
∑

l=0,1...

(2l + 1) exp[−l(l + 1)�/T ] (7.8)

Hence the problem is in principle solved, even if the sum (7.8) must be evaluated
numerically rather than in terms of known functions.

Moreover, for all gases except hydrogen, there is a great simplification. When the
numbers for the moments of inertia of a gas such as O2 or N2 are substituted into
(7.7a), we find that the characteristic temperature � is about 2 K (2.1 K for O2, 2.9 K
for N2 but 85 K for H2). Since these other gases have liquefied (indeed solidified)
at such low temperatures, it is always true in the gaseous state that T � �. Very
many rotational states are therefore excited, and the sum (7.8) may be replaced by
an integral in this ‘classical’ limit. We write y = l(l + 1) and treat y as a continuous
variable, so that dy = (2l + 1)dl. Hence in this approximation

ZrotZZ =
∫ ∞

0

∫∫
exp(−y�/T )dy

= (−T/�)[exp(−y�/T )]∞0
= T/� (7.9)

This simple result at once tells us the thermodynamic properties of these diatomic
gases. The thermal part of the total partition function Z (equation (7.3)) is obtained by
multiplying ZtransZZ (equation (6.6)) by ZrotZZ (equation (7.9)). As discussed in Chapter 3,
the ground state contributions from vibration and electronic excitation give rise to
zero-point terms only. Since Z ∝ V (from the translational contribution only), it
remains true that PV = NkBkk T as discussed in section 6.3.3. But the additional factor
of T in the partition function from rotation gives an additional NkBkk to CV . And the
total heat capacity is

CV = CV , trans + CV , rot

=
(

3

2
+ 1

)
NkBkk

= 5

2
NkBkk (7.10)

a result which follows from Z ∝ T 5/2, as the reader may verify (compare
section 6.3.1). Hence also the ratio CPC /CV = 7

5 for the diatomic gas, a ratio in
good agreement with experiment.
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7.3 THE HEAT CAPACITY OF HYDROGEN

As an example of the above results, we consider in greater detail the heat capacity of
hydrogen. From what we have learned so far in this chapter, we anticipate the heat
capacity of H2 to resemble the sketch shown in Fig. 7.1. And in broad terms this is
correct.

At temperatures just above the boiling point of H2, the measured value of CV is
3
2 NkBkk . At these temperatures, the molecules do not rotate! The moment of inertia of
H2 is so small that the l = 1 rotational state is further than kBkk T above the ground
(l = 0) rotational state. In pictorial terms this means that the molecules remain in a
fixed orientation as they move in the gas; collisions do not impart enough energy to
start rotation. To return to the ideas of Chapter 3, the degree of freedom is frozen out
since we are in the extreme quantum limit, i.e. kBkk T � �ε, where �ε is the energy
level spacing.

Incidentally, we may note in passing that it is even more valid to neglect rotation
in a monatomic gas (or axial rotation in the diatomic case). Although the relevant
moment of inertia is not zero, it is extremely small since most of the atomic mass is
in the nucleus. Hence the first rotational excited state becomes unattainably high, and
rotation is frozen out at all temperatures.

At low temperatures, then, only the translational degrees of freedom of the gas are
excited, and for the MB gas (equation (6.9)) each molecule contributes 3

2 kBkk T to the
total energy from its translation in three dimensions.

By the time room temperature is reached, the rotational motion has become fully
excited. Another way of looking at the problem is to note that the rotation of an axially
symmetric molecule provides a further two degrees of freedom, two since two angles
are needed to specify the direction of the molecule. And at room temperature the
classical limit, kBkk T � �ε, is valid. Hence each molecule now contributes from its
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Vibrational
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Vibration

T (non-linear scale)
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CV 
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Fig. 7.1 The variation of heat capacity CV with temperature for a diatomic gas, showing schematically
the contributions of translation, rotation and vibration.
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five degrees of freedom a total of 5
2 kBkk T to U , and therefore CV = 5

2 NkBkk , in agreement
with (7.10).

At room temperature vibration is in the extreme quantum limit (kBkk T � �ε) since
the characteristic temperature of vibration (around 6000 K) is so high. However, at
elevated temperatures, one expects the heat capacity to rise towards 7

2 NkBkk as vibration
becomes excited. This is observed, although the gas dissociates before the classical
limit is reached. (The detailed comparison with experiment is also complicated by
significant coupling between vibrational and rotational states.)

7.3.1 The onset of rotation

Although the treatment so far gives a satisfactory outline of the properties of hydrogen,
the details of the onset of rotation around 50–200 K are not well described. If we use
the rotational partition function of (7.8) to calculate CV , rot, we obtain curve A of
Fig. 7.2. This is at variance with the experimental results for H2, which are more like
curve C.

Why the discrepancy? Actually an experimenter can help here. Nature is kind in
that there are several sorts of ‘hydrogen’. Using isotopic separation, it is possible to
deduce CV for the gases H2, HD and D2. Even allowing for the different values of �

(H2 85 K, HD 64 K, D2 43 K) arising from the different moments of inertia, the curves
for CV differ markedly. And in fact our theoretical curve A is in good agreement with
experiment for HD.

There is a great difference between a heteronuclear and a homonuclear molecule.
It is a matter of the identity of the two nuclei. If the nuclei are different, and therefore
distinguishable, then what we have done so far is correct. Hence the agreement for HD.

At first sight the modification to Z for identical nuclei might seem to be a simple
one, merely to allow for the fact that a rotation of π rather than 2π leads to identity.

A

B

C

1

2

0
T

CV,rotVV

NkBkk

� 2� 3�

Fig. 7.2 The rotational heat capacity of a diatomic gas. The three curves A, B and C are explained in
the text.
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However, the truth is more interesting than that, and the result is different for H2 and
for D2. Let us concentrate upon the common gas H2. The nuclei are just protons having
spin 1

2 . The nuclei are thus identical fermions, and they must therefore be described
by an antisymmetric wavefunction. In other words the wavefunction must change
sign if the co-ordinates of the two protons are interchanged. The following discussion
bears similarity to our earlier treatment of bosons and fermions in section 5.2.

The total wavefunction can be decomposed into the product of a ‘space part’ and a
‘spin part’. The space part describes the rotation, and it is found that the l = 0, 2, 4 . . .

states have even interchange parity whereas the l = 1, 3 . . . states are odd. In the
notation of Chapter 5, the even l states are S (even, symmetric) whereas the odd l
states are A (odd, antisymmetric).

Consider first the even l rotational states. Since these are S, the only way to obtain
a total wavefunction which is A is for the spin part to be A. And this means that the
two spins must be opposite. There is just one such spin state corresponding to the
total spin S = 0. Hence the even l rotational states must be associated with the spin
singlet configuration only, and hence they have spin weighting 1. These states are
often called ‘para-hydrogen’.

On the other hand odd l states are A, the total wavefunction for H2 is to be A, and
therefore the associated spin part must now be S. This indicates the parallel spin states
(S = 1), in which there are three possible alignments. Hence the odd l rotational states
are linked with the spin triplet states, and they have a weighting of 3. The states are
called ‘ortho-hydrogen’.

The implication is clear. Assuming that our H2 is in thermal equilibrium, the
partition function of (7.8) (although correct for HD) is in error. Rather than summing
equally over the ortho- and para-states, we should have

ZrotZZ =
∑
even

(2l + 1) exp[−l(l + 1)�/T ]

+ 3
∑
odd

(2l + 1) exp[−l(l + 1)�/T ] (7.11)

where the even sum goes over l = 0, 2, 4 . . . and the odd sum over l = 1, 3 . . .

When (7.11) is used to compute CV , the result is curve B of Fig. 7.2, in even greater
disagreement with experiment. However, the final twist to the story is uncovered
when the experiment is done either very slowly, or better still in the presence of
a catalyst such as activated charcoal. Then it is indeed found that curve B fits the
experiment.

The reason for the poor fit to the experiment without the catalyst is that ‘ortho–para
conversion’ is very slow. Changing l by ±1 on collision requires a collision process
which changes the total spin, and this implies the presence of a third body (i.e. a
surface) to take away the spin. There is no such problem for collisions in which l
changes by ±2. Now the way the experiments are done in practice is to prepare and
store the H2 gas at room temperature, i.e. when T � �. In this limit, the odd and even
sums in equation (7.11) are equal (compare the discussion leading to equation (7.9)).
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Hence the ratio of ortho- to para-hydrogen molecules when the gas equilibrates at
high temperature is 3:1. When the hydrogen is then cooled, and experiments are
performed with no ortho–para conversion, then the result is like a 3:1 mixture of two
dissimilar gases, and we find that

CV = 0.75 CV , ortho + 0.25 CV , para (7.12)

where the ortho and para heat capacities are calculated respectively only from the odd
and even terms of the partition function. This result gives curve C, at last in agreement
with the usual experiment.

Two final points. Ortho–para conversion is a technical problem in H2 in its use
in refrigeration. If it is left to equilibrate at low temperatures, then much heat will
be released as the l = 1 states gradually relax to l = 0. In addition all the thermal
properties, even the boiling point, change with the ortho:para ratio. Hydrogen is best
avoided in cryogenics! The second point is that similar effects occur in the gas D2,
although the details are quite different from H2 since the deuteron is a boson (S
wavefunction) rather than a fermion. We leave this topic as an exercise.

7.4 SUMMARY

In this chapter we stop to examine the thermal properties of diatomic gases, and see
that this brings together results from several earlier chapters.

1. A diatomic gas molecule can be considered to have independent energy contribu-
tions from translation (as a monatomic molecule), rotation, vibration and electronic
excitation.

2. The contribution to the thermal properties (notably to F and CV ) from translational
motion is identical to that of a monatomic gas.

3. The other contributions are identical to those derived from Boltzmann statistics of
similar localized particles.

4. The partition function, summing Boltzmann factors (exp(−εi/kBkk T )) over all
states, again plays a useful role.

5. This topic gives a good example of energy scales and the excitation of degrees of
freedom (equipartition of energy at high T , quantum ‘freezing out’ at low T ).

6. In practice, electronic excitation and vibration play a minor role for almost all
gases.

7. Two-dimensional rotation is fully excited in most diatomic gases, to give CVCC =
5
2 NkBkk .

8. The onset of rotation is seen in H2, but it holds additional quantum surprises
because the two atoms in the rotating molecule are identical and therefore indis-
tinguishable. Nuclear spin affects the weighting (and sometimes the accessibility)
of the odd and even rotational states, and hence the thermal properties.
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Fermi–Dirac gases

We return now to the main stream of the book, and to the basic statistical properties
of ideal gases as introduced in Chapter 5. Of the three types of statistics we have so
far discussed only the classical limit, corresponding to Maxwell–Boltzmann gases.
In the next two chapters so-called ‘quantum statistics’ is discussed, that is statistics
where the antisymmetric (Fermi–Dirac) or the symmetric (Bose–Einstein) nature of
the wavefunction plays a significant role.

The importance of the FD or BE nature is most readily seen when we consider
the state of the gas at T = 0. At the other extreme, we have already noted that
MB statistics is a high-temperature approximation, corresponding to the degeneracy
parameter A (defined by (6.6a)) being �1. As T approaches zero, and therefore A
becomes infinitely large, the quantum limit is obvious. For BE statistics, in which
any number of particles can occupy a state, the T = 0 state is for all N particles to
occupy the ground state. This gives a situation of lowest energy and of zero entropy,
i.e. of perfect order. In contrast to the ‘friendly’ bosons, the ‘unfriendly’ fermions
operate an exclusion principle. Therefore the T = 0 state for FD statistics is with the
N particles neatly and separately packed into the N states of lowest energy, giving a
large zero-point energy, but again zero entropy (because of the lack of ambiguity in
the arrangement).

The condition A � 1 for validity of the MB approximation contains other indi-
cations about when quantum statistics should be used. First, the value of T needed
to make A = 1 gives a ‘scale temperature’ below which quantum effects will dom-
inate, giving estimates of the characteristic temperatures (or equivalent energies) to
be introduced in the next two chapters. Second, if we consider kBkk T as a thermal
energy scale, we can work out a thermal momentum scale and hence (using p = h/λ)
a ‘thermal de Broglie wavelength’, λ, to characterise the quantum properties of a
typical gas molecule. A little rearrangement shows that A � 1 then translates into
λ � (V /N )1/3, which is the average distance between gas particles. So we can see
that quantum effects become important when the de Broglie wavelengths of nearby
particles overlap, a pretty idea.

In this chapter we now discuss the properties of FD ideal gases. The BE case is
treated in Chapter 9.
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8.1 PROPERTIES OF AN IDEAL FERMI–DIRAC GAS

As we have seen, FD statistics is needed, (i) when we are dealing with a gas of weakly
interacting particles having spin 1

2 (or 3
2 , 5

2 . . .), and (ii) when the gas has a degeneracy
parameter A >1. Since

A = (N/V )(h2/2πMkBT )3/2 (8.1) and (6.6a)

one finds in practice that FD statistics is needed only in a few cases of high density
N/V , of low temperature T or of low mass M . Important applications are:

1. Conduction electrons in metals at all reasonable temperatures, and also in
semiconductors with a high enough carrier density N/V .

2. Liquid 3He at low temperatures.
3. Dense-matter problems in astrophysics, such as in neutron and white dwarf stars.

Since each of these involves spin- 1
2 particles, we shall explicitly consider spin- 1

2
fermions only in this chapter. The generalization is straightforward.

8.1.1 The Fermi–Dirac distribution

The distribution function was derived in Chapter 5. The result ((5.10) and (5.13)) is
usually written as

fFDff (ε) = 1/{exp[(ε − μ)/kBkk T ] + 1} (8.2)

For the rest of this chapter, the subscript FD will be omitted in the interests of clarity. In
(8.2), we have made the identification of the ‘Fermi energy’, μ. This is simply another
way of characterizing the parameters α (equation (5.10)) or B (equation (5.13)) as
B = exp(−α) = exp(−μ/kBkk T ). The symbol μ is appropriate since it turns out that
this quantity is precisely the same as the chemical potential of the gas.

The form of (8.2) is shown in Fig. 8.1, where it is plotted at three different tem-
peratures. It is not hard to understand. The distribution function f (ε) is defined as
the number of particles per state of energy ε in thermal equilibrium. Equation (8.2)
bears the mark of the exclusion principle, since it guarantees that f ≤ 1 from the
+1 in the denominator. So curve 1 in the figure, corresponding to a low temperature,
shows as expected that f = 1 for states with ε < μ but f = 0 for ε > μ. There
is a change-over region of energy width about kBkk T around μ in which f changes
from 1 to 0. As T is raised somewhat (curve 2), this change-over region gets wider,
although the extremes of the distribution are virtually unaltered. When T is raised
further (curve 3) the whole form of the distribution is affected, tending towards the
simple exponential MB distribution in the high T limit.
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Fig. 8.1 The Fermi–Dirac distribution function at three different temperatures. Curve 1, kBkk T = 0.02μ.
Curve 2, kBkk T = 0.1μ, Curve 3, kBkk T = 0.5μ.

8.1.2 The Fermi energy

To use the FD distribution (8.2), we need to know the Fermi energy μ. This parameter
(being related to α) is fixed by the number condition N = ∑ ni, as explained in
section 5.4.4. The value of μ will depend on the macrostate conditions (N , V , T ),
and in particular it will be a function of T . We start by calculating its value at T =
0. There are two obvious ways to proceed, and it is worth being aware of both
of them.

Method 1. Use the density of states g(ε). The definition and the form of g(ε) should
be well-known by this stage. The states are described by fitting waves into boxes, as
in Chapter 4, to give the states in k . A transformation using the dispersion relation is
then used to give the density of states in ε. The procedure is almost identical to that
given in section 4.3 for helium gas, leading to the result (4.9). The only modifications
to (4.9) are, (i) that the mass M should refer not to He but to the relevant particle
mass, and (ii) that a spin factor G = 2 for the spin- 1

2 fermions should multiply the
result. Hence

g(ε)δε = V 4π(2M /h2)3/2ε1/2δε (8.3)

The determination of μ(0), the Fermi energy at T = 0, follows from the fixed
number N of particles in the macrostate. In the density of states approximation we
have (directly from the definitions of g(ε) and of the filling factor f (ε))

N =
∫ ∞

0

∫∫
g(ε)f)) (ε)dε (8.4)
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At the absolute zero, the Fermi function f (ε) takes the simple form noted earlier, that
f = 1 for ε < μ(0) but f = 0 for ε > μ(0). Hence (8.4) becomes

N =
∫ μ(0)

0

∫∫
g(ε)dε

which using (8.3) for g(ε) may be immediately evaluated to give

μ(0) = (�2/2M )(3π2N/V )2/3 (8.5)

Method 2. Someone who really understands the fitting waves into boxes ideas can
use a pretty shortcut here. The states in k-space which are filled at T = 0 can be
represented as in Fig. 8.2. The low energy states with energy less than μ(0) are all
filled, and since ε = h2k2/2M these filled states correspond to those with k less
than some value (called the Fermi wavevector kFkk ) corresponding to μ(0). States with
k > kFkk are unfilled. The sphere of radius kFkk , representing the sharp boundary between
filled and unfilled states, is called the Fermi surface.

•

The second approach to the determination of μ(0) is to recognize that this Fermi
surface must contain just the correct number N of states. Hence we must have

N = V /(2π)3 × 4πk3
Fkk /3× 2 (8.6)

where the first factor is the basic density of k-states in k-space, the second is the
appropriate volume in k-space (that contained by the Fermi surface), and the final 2
is the spin factor for spin 1

2 . From (8.6) it follows that

kFkk = (3π2N/V )1/3

and therefore μ(0) = �
2k2

Fkk /2M is precisely as given above in (8.5).

kykk

kxkk

Fig. 8.2 The Fermi surface. Illustrating the occupation of states in k-space at T = 0; the sphere has radius
kFkk (• = occupied; = unoccupied).



Properties of an ideal Fermi–Dirac gas 87

Three remarks about the Fermi energy follow.

1. We can now quantify the need for FD statistics in the systems mentioned earlier, by
substituting into (8.5). It is useful in so doing to calculate the ‘Fermi temperature
TFTT ’, defined by:

μ(0) = kBkk TFTT

For example, if we are interested in electrons, (8.5) can be written

TFTT = 4.1× 10−15(N/V )2/3

For electrons at metallic densities (say 6 × 1023 electrons in a molar volume of
9 × 10−6 m3) this gives a Fermi temperature of about 70 000 K. Therefore, at
ambient temperatures we are always in the limit T � TFTT , so that the system is
dominated by FD statistics (see again Fig. 8.1). For electrons in a semiconductor,
the Fermi temperature will be lower and there are some situations in which MB
statistics are adequate. Finally we may note that the dense-free electrons existing
in a typical white-dwarf star have Fermi temperatures of around 109–1010 K. Since
the internal temperature of such a star is (only!) a mere 107 K, this is again a highly
degenerate fermion gas. We return to this topic in Chapter 15.

2. The calculation of μ(0) can be directly related to the degeneracy parameter A
of (8.1). In fact substituting (8.5), together with the definition above of TFTT , we
obtain

A = (8/3
√

π)(
√√

TFTT /T )3/2 ≈ 1.50(TFTT /T )3/2

This result explicitly demonstrates that the degeneracy condition A > 1 is effec-
tively equivalent to T < TFTT . And correspondingly the classical limit A � 1 is the
same as T � TFTT .

3. There is a temperature variation to μ. In fact in the classical region μ diverges
to minus infinity as −T ln T , a result derivable from the methods of Chapter 6.
However, in the degenerate region (T � TFTT ) the variation is small, and can often be
neglected. It is still determined by (8.4), the number restriction. The temperature
enters only through the Fermi function f (ε). But in the degenerate region (see
again curves 1 and 2 of Fig. 8.1), the variation of f (ε) is only a subtle blurring in
an energy range of order kBkk T around μ. In fact if g(ε) were a constant independent
of ε, there would be virtually no variation of μ with T in the degenerate region. As
T is raised, the filling of states above the Fermi energy would be compensated by
the emptying of those below. It is only when g(ε) varies with ε that a small shift in
μ occurs, to allow for the imbalance in numbers of states above and below μ. For
a two-dimensional electron gas (exercise!), g(ε) is a constant and μ(T ) = μ(0)
to a high degree of accuracy. For the usual three-dimensional gas we have a rising
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function g(ε) ∝ ε1/2 and μ falls slightly. Using the results of Appendix C it can
be shown that for this case

μ(T ) = μ(0)[1− (π2/12)(kBkk T/μ)2 . . .]

Since the variation is small, we shall in future not distinguish between μ and μ(0),
unless confusion would arise. Note that the symbol εF for the Fermi energy will
be used in place of μ in sections 8.2 and 8.3.

8.1.3 The thermodynamic functions

It remains to calculate the thermodynamic functions, U , CV , P and so on. We shall
do this explicitly in the degenerate limit only, and shall sketch graphs to indicate how
the functions connect to the classical MB limit. Numerical methods are needed to
compute the shape of such graphs.

Internal energy U. The internal energy can be evaluated from the distribution
function f (ε), simply using the direct expression

U =
∑

i

niεi

In the present context this becomes

U =
∫ ∞

0

∫∫
εg(ε)f)) (ε)dε (8.7)

At T = 0, f (ε) is the simple step function, so that the integral is readily evaluated as

U (0) =
∫ μ

0

∫∫
εg(ε)dε

Substituting g(ε) = Cε1/2 for the fermion gas, this gives

U (0) = 2

5
Cμ5/2

= 3

5
Nμ (8.8)

The result (8.8) follows without the need to remember C when it is recalled from the
previous section that N = 2

3 Cμ3/2 from the corresponding integral (8.4). This value
of U (0) represents a very large zero-point energy, an average of 0.6 μ per particle. It
is a direct expression of the exclusion principle, that the particles are forced to occupy
high energy states even at T = 0. (Fermions display tower-block mentality!)
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Above T = 0, whilst yet in the degenerate limit T � TFTT , the integral (8.7) can be
evaluated using the method outlined in Appendix C. The result is

U = U (0)+ U (th)

= 3

5
Nμ+ (π2/6)(kBkk T )2g(μ)+ · · · (8.9)

As expected, U remains dominated by the zero-point term U (0), the second thermal
term U (th) being small. This is a reasonable result. In hand-waving terms it follows
from the subtle blurring of f (ε) with rising T . At T = 0 we have seen that all
states with energies below μ are full, whereas all those above are empty. At a low
temperature T , from (8.2) or Fig. 8.1, it is evident that f changes from 1 to 0 over an
energy span of order kBkk T around the Fermi energy, the occupation numbers of states
outside this span being unchanged. Hence only a number of order g(μ)× kBkk T of the
fermions have their energies changed, and the change in energy of these is of order
kBkk T . Therefore one would expect U (th)∼ (kBkk T )2g(μ), as in (8.9).

Equation (8.9) is shown with the explicit factor g(μ), since this displays the correct
physics, as just explained. It is precisely this ‘density of states at the Fermi level’which
enters many of the thermodynamic and the transport properties of a fermion gas. And
(8.9) continues to give the right answer even when we are not talking about an ideal
gas in three dimensions, and the density of states is not of the form (8.3).

Nevertheless, it is also interesting to return to the standard ideal gas. Substituting
into (8.9) the appropriate density of states, (8.3), together with the expression (8.5)
for the Fermi energy, we obtain for the thermal internal energy

U (th) = (π2/2)NkBT × (kBkk T/μ) (8.10)

This is a useful way of writing the ideal gas result. We see that the thermal energy
(omitting a numerical factor) is essentially the MB result multiplied by the ‘Fermi
factor’ (kBkk T/μ). And this factor is (a) small and (b) temperature dependent.

Heat capacity CV . The hard work is now done. The heat capacity CV follows
immediately, since

CV = dU/dT

= dU (th)/dT

= (π2/3)k2
Bkk Tg(μ) (8.11)

in the degenerate limit, obtained by differentiating (8.9). Hence at low temperatures
one has a linear, and small, heat capacity. For the ideal gas (as in equation (8.10)) its
magnitude is again of order the classical value NkBkk multiplied by the Fermi factor
(kBkk T/μ). The restriction of thermal excitation enforced by the FD statistics ensures
that the heat capacity is a small effect.
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Pressure P. The pressure is also readily deduced from U . In fact it remains true that
for a gas of massive particles P = 2

3 U/V independent of statistics. Hence PV and U
are proportional. This relation follows from basic statistical ideas

P =−(∂U/∂V )S basic thermodynamics

=−(∂U/∂V ){ni}fixed S depends on {ni} only

=−
∑

ni(∂ε/∂V ) compare section 2.3.2 – only the energy levels

depend on V

= 2

3

∑
niεiV see below

= 2

3
U/V as stated!

The volume dependence of the energy levels depends on the dispersion relation alone.
For our gas of particles of mass M , we know that ε(k) ∝ k2. But k , a dimension in
k-space, is proportional to the reciprocal of the box size a, i.e. k ∝ V−1/3. Hence
ε ∝ V−2/3. Each energy level depends on V with this same power law, so that we
can replace ∂ε/∂V by (− 2

3 )ε/V .
Therefore P follows the energy density U/V . The Fermi gas therefore is seen to

exert a very large zero-point pressure P(0) = 2
3 U (0)/V . This plays an important role

in considerations of stability in white-dwarf stars, where the pressure (of order 1017

atm) inhibits further collapse under the influence of gravitational forces. In the case
of metals, electrostatic binding forces are large and the electrons are contained in the
metal by the so-called work function of the metal, an energy which must be greater
than μ for the electrons not to leak out.

Entropy S. The temperature dependence of S is readily obtained from CV . We obtain
a linear dependence on T (just as for C) in the degenerate region, S tending to zero as
it should at the absolute zero. This passes towards the ln T variation in the classical

T T

TFTT TFTT

CV

(a) (b)3 
2

NkBkk TU =U

P =P NkBkk T

3 
2

NkBkk

U,UU  P

U(0),UU P(0)

Fig. 8.3 The variation with temperature of the thermodynamic functions for an ideal FD gas. Note the low-
temperature (quantum) and high-temperature (classical) limits. (a) Internal energy and pressure. (b) Heat
capacity.
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region. A full calculation of S or of F is fairly complicated, and will not be attempted
here. (There is no partition function Z to help on the way). The best route is to use
S = kBkk ln �, together with the known form of f (ε).

Figure 8.3 illustrates the schematic behaviour of the thermodynamic functions,
U , P and CV .

8.2 APPLICATION TO METALS

Since this is a major topic of any book on the physics of solids, this section will be
brief. The free-electron model is surprisingly successful in describing both trans-
port and equilibrium properties of the conduction electrons. The surprise is that
the very large electrostatic interactions, both between pairs of electrons and also
between an electron and the lattice ions, can for many purposes be neglected, or
at any rate be treated as small. The outcome is that the conduction electrons can
be modelled as an ideal FD gas, but the density of states is somewhat modified to
take account of these interactions. See section 14.1 for a fuller discussion of these
interactions.

Thus the heat capacity of a metal has a contribution from the conduction electrons
which is precisely of the form (8.11). Since TFTT is so large (typically 70 000 K, as
we have seen) this term is very small at room temperature compared with NkB. And
the lattice contribution to the heat capacity of a solid (Chapters 3 and 9) is itself
of order 3NkB. Therefore, as a consequence of FD statistics, the heat capacity of a
metal is very similar to that of a non-metal – a result confirmed by experiment. At
low temperatures, the lattice contribution is frozen out as T 3 in a crystalline solid
(Chapter 9). Hence the linear electronic term becomes readily measurable at around
1 K. Its magnitude is well understood from equation (8.11). A transition metal has a
large density of states (the d -electron states) at the Fermi energy compared to a ‘good’
metal like copper. So the electronic heat capacity of copper is much smaller than that
of, say, platinum.

The contribution to the magnetic susceptibility of the conduction electrons is also
strongly influenced by FD statistics. In section 3.1.4 we discussed the magnetization
of a spin- 1

2 solid obeying Boltzmann statistics. In weak fields, the result was

M = Nμ2B/kBkk T (8.12) and (3.10)

(In this section we revert to the use of μ for magnetic moment; we shall use the
alternative symbol εF for the Fermi energy.) When we come to consider the magnetic
contribution from aligning the conduction electron spins in an applied field B, the
situation is different. Most of the spins are unable to align because there are no
available empty states.

The problem is illustrated in Fig. 8.4, relevant to T = 0. The only spins which
realign in the field are those in the shaded states, numbering μB× 1

2 g(εF) the factor of
1
2 arising since only half the states are in the spin-down band. Each of these electrons
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Fig. 8.4 Calculating the magnetization of a spin- 1
2 FD gas at T = 0. The left-hand half of the figure gives

the density of states for spin-down fermions, whereas the right-hand half is for spin-up fermions. The full
curve shows the densities of states when B = 0, the dashed curves when a field B is applied. Only a small
number of the spins close to the Fermi energy (indicated by the shaded region) are able to realign when B
is applied.

has its spin reversed (i.e. changed by 2μ), giving a total magnetization of

M = μ2Bg(εF) (8.13)

This expression is independent of T in the degenerate region, since the argument of
Fig. 8.4 is unaffected by the slight blurring of the Fermi surface. Equation (8.13) is
again a characteristic FD result. Since g(εF) = 3N/2εF for the ideal gas, we see that
the magnetization is reduced from the Boltzmann value, (8.12), by the usual Fermi
factor (kBkk T/εF). Again the small magnitude and the lack of T -dependence of the
magnetization are well confirmed by experiment, as is the dependence on g(εF) in
particular metals.

8.3 APPLICATION TO HELIUM-3

Helium-3 is a spin- 1
2 atom, having a nuclear spin of 1

2 . Therefore 3He gas is a fermion
gas. However, as explained in Chapter 6, it never exists with a density high enough
for FD statistics to be more than a small correction to the MB treatment. But that is
not the end of the 3He story, since it turns out that FD statistics can usefully be applied
to liquid 3He.

Again this idea should come as a surprise! There are very strong interactions
between molecules in a liquid, and the atoms in liquid 3He are no exception. One of
the achievements of Landau was to develop the theory of a Fermi liquid, and to show
that for many purposes it can be treated as a weakly interacting gas. However, the
particles of the gas are not 3He atoms, but are 3He ‘quasiparticles’, entities which can
be visualized as bare 3He atoms dressed with the interactions of other nearby atoms.
After all, if one atom in the liquid is moved, then a whole lot of other atoms must
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Fig. 8.5 The phase diagram for 3He (not drawn to scale).

move in order for the liquid to re-establish uniform density. The Landau model ends
up with a gas with the same number N of particles as atoms, but with the effective
mass of each particle being larger than the bare mass. In liquid 3He this effective
mass is about 3–6 times the atomic mass of 3He, depending on the applied pressure
and hence on the density.

This simple picture of liquid 3He is well supported by the measured thermodynamic
properties. The heat capacity follows the general shape of Fig. 8.3, in particular being
linear at low temperatures. But the value of TFTT deduced from experiment requires,
as suggested by Landau, a large effective mass. We give a fuller discussion of this
topic in Chapter 14 (section 14.2). Similarly the nuclear spin magnetization is found
to follow the form suggested in section 8.2 for spin magnetization of a fermion gas.

These ideas also help to explain the highly unusual phase diagram of 3He, shown in
Fig. 8.5. There are two points worthy of note, both relevant to statistical physics. The
first is that 3He remains liquid, at modest pressures, right to the absolute zero. In this
the helium isotopes are unique. The explanation is that the binding energy of the solid
is so weak that it can be overcome even by its zero-point vibrations, making the solid
unstable until it is stiffened up by compression. This ‘quantum manifestation’ occurs
in both 3He and 4He, showing that it has nothing to do with fermions or bosons. The
second feature of interest occurs only in 3He, namely the region of negative slope of
the solid-liquid equilibrium line below 0.3 K. It is, therefore, specifically relevant to
the fermion system.

An important result of thermodynamics is that such a slope can be related to entropy
and volume changes using the Clausius–Clapeyron equation (see e.g. Thermal
Physics by Finn, section 9.4). This states that the slope of the equilibrium line

dP/dT = �S/�V

where �S and �V are, respectively, the entropy and the volume changes which
occur when the phase change takes place. Usually when a substance melts, its volume
increases (�V positive) and its entropy increases (�S positive). Therefore dP/dT
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is usually positive. A negative dP/dT can occur in two situations. Occasionally it
happens that the solid contracts on melting, ice to water being the commonest example.
In the case of 3He, however, the volume change is normal. The peculiarity of 3He
arises entirely from an unusual entropy variation. Below 0.3 K the solid entropy is
bigger than the liquid, in other words the solid is more disordered than the liquid!

This arises because the entropy of 3He at these low temperatures is due principally
to its spin disorder. In zero magnetic field, the spins in the solid behave precisely
as a spin- 1

2 solid, as discussed in section 3.1. They are totally disordered, giving an
entropy of NkB ln 2 at all temperatures above a few mK. The spins order by their own
interactions at around 2 mK. The entropy is illustrated schematically in Fig. 8.6. On
the other hand the Fermi factor keeps the liquid entropy low. As in our discussion of
the heat capacity, only a small number (of order kBkk Tg(εF)) of the spins are free to
change their state. The exclusion principle ensures that the others are frozen in, and
at T = 0 zero entropy is achieved by all states below the Fermi level being definitely
full and those above it being definitely empty: hence Fig. 8.6. The liquid (FD gas)
entropy is not of course limited to NkB ln 2, so that at a high enough temperature, it
crosses the solid curve and continues upward.

Finally we can note that this phenomenon is more than a theorist’s re-creation. It
forms the basis of ‘Pomeranchuk cooling’, a practical method for achieving temper-
atures as low as 2 mK. If liquid 3He is precooled to a temperature somewhat below
0.3 K, and is then converted to solid by compression, refrigeration is produced. For
instance if the conversion to solid were isothermal (T constant), Fig. 8.6 illustrates
that a large amount of entropy would be extracted from the heat reservoir. On the
other hand if the compression to form solid were adiabatic (S constant), the same
S–T diagram shows that the temperature of the 3He would reduce. With reference to
the phase diagram (Fig. 8.5), the liquid–solid mixture would pass up the anomalous
(negative slope) co-existence curve as the pressure increases, until all the helium has
solidified. The entropy scale on Fig. 8.6 is quite large, so that this is an effective
cooling method.

Solid

Liquid

2 mK 0.32 K
T

S

NkBkk ln 2

Fig. 8.6 Entropy–temperature curves for liquid and solid 3He. In the anomalous (= unusual) region below
0.32 K the solid is more disordered than the liquid.
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8.4 SUMMARY

This chapter discusses the properties of an ideal Fermi–Dirac gas.

1. Quantum statistics rather than MB statistics can be appropriate for gases at high
density, low temperature and light particle mass.

2. The exclusion principle dominates FD statistics, since the maximum occupation
number of a one-particle state is 1. States are full or empty.

3. At T = 0 there is a sharp Fermi energy, defined so that all lower energy states are
full, and all higher energy states are empty.

4. This energy can be represented by a ‘Fermi surface’ in k-space
5. At higher temperatures, the Fermi surface becomes blurred, with states within kBkk T

of the surface having intermediate occupation on average.
6. Many thermodynamic properties of the gas are related to those of the MB gas,

reduced by a factor kBkk T/εF.
7. Conduction electrons in metals provide a good example of FD properties, even

though the density of states is not that of an ideal free gas.
8. Liquid helium-3 is (surprisingly) another candidate, for reasons which will be

explored further in Chapter 14.
9. The phase diagram of helium-3 shows that the solid is more disordered than the

liquid, a demonstration that the lack of flexibility in the FD gas inhibits spin
disorder.
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Bose–Einstein gases

This chapter discusses the properties of an ideal Bose–Einstein (BE) gas, which
without any interactions nevertheless shows a remarkable phase transition, the ‘Bose–
Einstein condensation’. This property is relevant to liquid 4He and to the behaviour
of groups of ‘cold atoms’. But another important application of BE statistics is to the
‘phoney’ boson gases, photons and phonons.

9.1 PROPERTIES OF AN IDEAL BOSE–EINSTEIN GAS

9.1.1 The Bose–Einstein distribution

In Chapter 5 ((5.11) and (5.13)) we derived the form of the distribution function, i.e.
the number of particles per state of energy ε in thermal equilibrium. For a gas of ideal
bosons the distribution is

fBEff (ε) = 1/[B exp(ε/kBkk T )− 1] (9.1)

For clarity the subscript BE will be omitted in the rest of this chapter. The parameter B
is to be determined from the number condition

∑
ni = N , which caused its appearance

in the first place (see again Chapter 5). We shall discuss this number condition in
terms of B for the boson gas, but it is entirely equivalent to the use of α or μ from the
identities

B = exp(−α) = exp(−μ/kBkk T )

Before coming to the determination of B, the main task of this section, we can observe
some of its properties just from inspection of the distribution (9.1). To be specific, let
us measure the one-particle energies ε using the ground state as the zero of energy, i.e.
ε0 = 0. Now to make physical sense, we know that for all ε the distribution f (ε) must
be positive. Because of the boson−1 in the denominator, this requires B > 1. If B were
negative, then at least the ground-state occupation would be negative! Furthermore,
if one were to suppose B = 1, then the ground-state occupation would be infinite,

97
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a possibility in a ‘friendly’ boson system since there is no exclusion principle. Hence
we must have B > 1 to describe the finite number N of gas particles.

The value of B will be found to vary with density and temperature, as did μ in
the discussion of FD statistics or α in the case of MB statistics. We can recognize
from (9.1) that a simplification to the MB limit will occur when B � 1. Under these
circumstances the −1 in the denominator will become insignificant for all values of
ε, even for the ground state. Hence (9.1) could be replaced by the simple fMBff (ε) =
(1/B) exp(−ε/kBkk T ).

The obvious approach to determining B, and the one used with success in the MB
and FD cases, is to use the density of states approximation, and to replace the sum
over all states by an integration over k or ε. So we enumerate the states by the usual
function

g(k)dk = V/(2π3) · 4πk2dk · G (9.2) and (4.5)

We shall for simplicity consider spin-0 bosons for which the spin factor G = 1.
Making the substitution into (9.1) of ε = �

2k2/2M , as is appropriate for a gas of
particles of mass M , we obtain

N =
∑

i

ni

=
∑

i

gifii iff

=
∫ ∞

0

∫∫
g(k) f (k)dk

= V /(2π)3 · 4π
∫ ∞

0

∫∫
k2dk/[B exp(�2k2/2MkBkk T )− 1]

or, after a little work,

N = Z · F(B) (9.3)

In (9.3) the factor Z is the same as the MB partition function for the gas (hence the
notation), i.e. Z = V (2πMkBkk T/h2)3/2. The function F(B) is defined by what is left
in the equation, which by the substitution y2 = �

2k2/2MkBkk T is seen to be

F(B) = (4/
√

π)
√√ ∫ ∞

0

∫∫
y2dy/[B exp(y2)− 1] (9.4)

Equation (9.3) can equally well be written as F(B) = A, where A is the usual degen-
eracy parameter (defined as N/Z). A is given by the (N , V , T ) macrostate conditions,
so that B can be determined from a table of values of F(B) against B, a numerical
task since (9.4) cannot be readily inverted. So is the problem solved?

To take the good news first, this solution certainly makes sense at high T or at low
density N/V , i.e. in the MB limit A � 1. In these circumstances, B is large, the−1 in
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the denominator of equation (9.4) is negligible, and the function F(B) reduces simply
to 1/B. (This may be checked using the I2II integral of Appendix C.) This reproduces
the correct MB normalization, 1/B = N/Z (Chapter 6). Furthermore, as A rises
towards unity, nothing obvious goes wrong, and the above treatment gives plausible
and calculable deviations from MB behaviour. However, as the gas becomes highly
degenerate (A(( > 1), a nonsense appears, as we shall now demonstrate.

9.1.2 The Bose–Einstein condensation

If we lower the temperature far enough, then an apparent contradiction occurs. The
difficulty is that, although we know that the minimum value possible for B is B = 1,
the function F(B) remains finite as B → 1. In fact it takes the value F(1) = 2.612 . . . .
Hence if A > 2.612, then equation (9.3) has no acceptable solution. This condition
corresponds to T < TBTT , where TBTT , the Bose temperature, is defined by A(TBTT ) =
2.612, i.e. by

TBTT = (h2/2πMkBkk )(N/2.612V )2/3 (9.5)

So, although our treatment makes sense when T > TBTT , nevertheless when T < TBTT
we apparently are not able to accommodate enough particles. The integral (9.3) is
less than N even if B = 1.

The source of this difficulty lies in the total reliance on the density of states approxi-
mation. In particular, the approximation gives zero weight to the ground state at k = 0,
which is effectively removed by the k2 factor inside the integrand of (9.3). That is
entirely valid if g(k) and f (k) are slowly varying functions of k . But we have already
seen that in the region of B ≈ 1, this is anything but the case. In fact f (0) diverges as
B → 1.

A simplified (but essentially correct) solution to the problem is as follows. We
group the states into two classes: (i) a ground-state group, consisting of the lowest few
states – it makes no real difference exactly how many are taken. Assume g0 such states
at ε = 0, (ii) the remaining states of energy ε > 0. Since f (ε)will be a smooth function
over all ε �=�� 0, this group may be described by the density of states approximation.
Suppose that in thermal equilibrium there are n0 bosons in the ground-state group,
and N (th) in the higher states. Then the number condition (9.3) is replaced by

N = n0 + N (th) (9.6)

in which the ground-state occupation is

n0 = g0/(B− 1) (9.7)

and in which the higher state occupations continue to be given by the same integral
as in (9.3) (the lower limit of the integral is in principle changed from 0 to a small
finite number, but this has no effect since, as noted above, the integrand vanishes at
k = 0).



100 Bose–Einstein gases

Equation (9.6) has radically different solutions above and below TBTT . Above this
temperature, the second term (corresponding to the vast majority of available states)
can contain all the particles. We have B > 1 and hence n0 ≈ 0 from equation (9.7).
Equation (9.6) becomes N = N (th), with N (th) given precisely by (9.3). Nothing has
changed from the previous section.

Below TBTT , however, the first term in (9.6) comes into play. We have B ≈ 1, so
that the second term becomes N (th) = Z × 2.612 = N (T/TBTT )3/2, using the definition
(9.5). The first term is given by the difference between N and N (th), i.e.

n0 = N [1− (T/TBTT )3/2] (9.8)

This accommodation can be made with the merest perceptible change in B, B being
of a magnitude 1+O(1/N ) throughout the low temperature region. Graphs of n0 and
of B are given in Figs. 9.1 and 9.2.

The properties of the ‘condensate’, the ground-state particles, are rather interesting.
At T = 0, as expected, we have n0 = N and all the particles are in the ground state.
However, even at any non-zero temperature below TBTT we have a significant fraction

T

N

n0
n0 = N [1 – (T/TT TBTT )3/2]

TBTT
n0 ~ 0

Fig. 9.1 The ground-state occupation n0 for an ideal BE gas as a function of temperature. The ground
state is not heavily occupied above the condensation temperature TBTT , but below TBTT it contains a significant
fraction of the N bosons.

T

B

TBTT

1

~ T 3/2 in
classical limit

Fig. 9.2 The variation with T of the normalization parameter B for an ideal BE gas. At and below TBTT , B
becomes hooked up at a value (just greater than) unity.
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Fig. 9.3 The variation with temperature of the thermodynamic functions for an ideal BE gas. Compare
Fig. 8.3 for the contrasting behaviour of an ideal FD gas. (a) Internal energy and pressure. (b) Heat capacity.

(given by (9.7)) already dumped into the ground state. And these particles do not
contribute to the internal energy, heat capacity, entropy, etc. The condensate fraction
is already in its absolute-zero state.

The thermodynamic functions obtained from the occupation of the states are
illustrated in Fig. 9.3(a) and (b). The characteristic BE result for any function is:

1. A simple power-law behaviour at T < TBTT , arising from the T 3/2 dependence of
N (th) together with the (effective) constancy of B. The variation of U is T 5/2,
and so correspondingly is the variation of P (since P = 2U/3V as shown in
section 8.1.3). The heat capacity CV , varies at T 3/2 up to a maximum value of
about 1.9 NkBkk at TBTT .

2. A phase transition at TBTT , albeit a gentle one. In common parlance it is only
a third-order transition, since the discontinuity is merely in dC/dT , a third-
order derivative of the free energy; the second-order C and the first-order S are
continuous.

3. A gradual tendency to the classical result when T � TBTT , from the opposite side
from the FD gas (compare Fig. 8.3).

Viewed from the perspective of high temperatures, the onset at TBTT of the filling of
the ground state is a sudden (and perhaps unexpected) phenomenon, like all phase
transitions. It is referred to as the Bose–Einstein condensation. In entropy terms, it is
an ordering in k-space (i.e. in momentum space) rather than the usual type of phase
transition to a solid, which is an ordering in real space.

9.2 APPLICATION TO HELIUM-4

The atom 4He is a spin-0 boson. So just as we saw that FD statistics were relevant to
3He, so we should expect BE statistics to apply to 4He. Again, BE statistics are in the
extreme only a small correction for 4He gas, but their relevance is to the liquid.
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Liquid 4He remains fluid to the lowest temperatures at pressures below about
25 atm, for reasons discussed in section 8.3. Its phase diagram is sketched in Fig. 9.4.
The outstanding feature is the existence of a liquid–liquid phase transition at around
2 K from an ordinary liquid (HeI) at high temperature to an extraordinary ‘superfluid’
phase (HeII) at low temperatures. The transition is evidenced by a heat capacity
anomaly at the transition temperature, commonly called the lambda-point because
of the resemblance of the C − T curve to the Greek letter λ. The curve is shown in
Fig. 9.5, with the corresponding S−T curve in Fig. 9.6. The nature of the singularity
is ‘logarithmic’, in that although CPC is infinite, its integral across the transition is
finite so there is no latent heat associated with the transition. The entropy curve is
continuous, but it does have a vertical tangent at the transition. The explanation of the
very flat solid–liquid line on the phase diagram can again (as in 3He) be understood
from the Clausius–Clapeyron equation. Below the lambda-point, both liquid (because
of superfluid ordering) and solid (4He has zero spin, unlike 3He) are highly ordered
and have virtually zero entropy. Hence the entropy difference between the phases is
almost zero so that the phase equilibrium line has almost zero slope.

Solid

Liquid 
He I

Liquid 
He II

1 2 3 4 5

P (atm)P 25

Gas

� – line

0

T(K)TT

Fig. 9.4 The phase diagram of 4He.

T
T�TT

C

Fig. 9.5 The heat capacity of liquid 4He as a function of T , showing the lambda anomaly.
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S

T

T�TT

Fig. 9.6 The variation of entropy with temperature for liquid 4He, showing a vertical tangent at TλT .

All this bears some relation to the BE gas, although the actual transition in 4He
is more sudden than that of the ideal gas. It is believed that the difference can be
attributed to the strong interactions between 4He atoms in the liquid (see Chapter 14,
section 14.3, for a fuller discussion). Furthermore, the transition takes place at a
temperature of the correct order of magnitude, the value of TBTT for an ideal gas of
bosons with the bare 4He mass and the density of liquid 4He being about 3.1 K.

Even more reminiscent of the BE gas is the nature of the superfluid HeII. Its
properties are well described by a ‘two-fluid model’, in which the liquid is thought
of as a mixture of two interpenetrating fluids. One of these, the normal fluid, has the
properties of a conventional fluid, very like the thermal N (th) fraction of the BE gas,
(9.6). Whereas the other fluid, the superfluid, behaves like the condensate fraction
n0, in that it carries no entropy and displays no friction.

An excellent example of the two-fluid properties arises when the viscosity of liq-
uid HeII is measured. The answer is found to depend dramatically on the type of
experimental method.

1. If viscosity is measured by the drag on a rotating disc or a vibrating wire, then a
reasonable value is found, similar to that for HeI, although reducing somewhat as
T is lowered well below TλT .

2. If, however, the measurement is made by allowing the helium to flow through
tubes, one finds the astonishing answer zero for the viscosity. The fluid can flow
with alarming ease (up to some critical velocity) through the thinnest channels;
hence the term ‘superfluid’. It can even syphon itself over the edge of a container
through superflow in the surface film.

The explanation in terms of the two fluids is clear. The drag methods will pick out
the most viscous fluid, and that is the normal fluid. The gradual reduction below TλT
arises from the gradual reduction of the normal fluid concentration (cf. N (th)) as T is
lowered. On the other hand the flow experiments pick out the smallest viscosity. Only
the superfluid flows through a fine tube, and this has zero viscosity since it carries
no entropy. A demonstration that it is the (effectively T = 0) superfluid only which
flows is to observe that the flow produces a temperature difference between the ends
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of the flow tube. The source reservoir warms up as it is depleted of superfluid whereas
the receiving reservoir cools down as the superfluid enters.

9.3 PHONEY BOSONS

A boson is a particle of spin 0, 1, 2, . . . by definition. Our discussion so far in the
chapter has been based on an ideal gas of ‘real’ particles of mass M . However, there
is another case, which is that the bosons could be particles with no rest mass. The
obvious example is a photon gas. An evacuated box is never ‘empty’, in that it will
contain electromagnetic radiation in thermal equilibrium with the walls of the box.
Such thermal equilibrium radiation is called black-body radiation, and it may best
be considered as a BE gas, an ideal gas of photons. The second analogous example
is that the lattice vibrations of a solid can be modelled similarly as a gas of sound
waves, or ‘phonons’, in a box which is the boundary of the solid.

The new feature of both of these gases is that the particles of the gas are massless.
This has the importance that the number of the gas particles is not fixed. The particles
may be, and are, destroyed and created continually. There is no conservation of N in
the macrostate and the system is defined not by (N , V , T ) but simply by (V , T ). The
empty box will come to equilibrium with a certain average number and energy of
photons (or phonons) which are dependent only on the temperature and the volume
of the box. So when we derive the thermal equilibrium distribution for the gas, there
is a change. The usual number restriction

∑
ni = N , (5.7), does not enter, and the

derivation of the distribution (section 5.4.2) is to be followed through without it. The
answer is almost self-evident.

Since there is no N restriction, there is no α (so also no B, and no chemical
potential μ). But the rest of the derivation is as before, and we obtain the ‘modified
BE’ distribution

f (ε) = 1/[exp(−βε)− 1] (9.9)

with as usual β = −1/kBkk T . We shall now apply this result to photons and phonons.

9.3.1 Photons and black-body radiation

This is an important topic. The radiation may be characterized by its ‘spectral density’,
u(ν), defined such that u(ν)δν is the energy of the radiation with frequencies between
ν and ν + δν. This spectral density was studied experimentally and theoretically
in the last century and was the spur for Planck in the early 1900s to first postulate
quantization, an idea then taken up by Einstein. The Planck radiation law, of great
historical and practical importance, can be readily derived using the ideas of this
chapter, as we shall now see.

The modified BE distribution (9.9) tells us the number of photons per state of
energy ε in thermal equilibrium at temperature T . In order to calculate the spectral
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density, we also need to know, (i) how many states there are in the frequency range of
interest, and (ii) how the frequency ν of a photon relates to its energy ε. The second
question is immediately answered by ε = hν. The first is yet another straightforward
example of fitting waves into boxes.

The density of photon states in k is given by (4.5), with the polarization factor
G = 2. Photons, since they are spin-1, massless bosons, have two polarization states;
in classical terms electromagnetic waves are transverse, giving left- or right-hand
polarizations, but there is no longitudinal wave. Hence

g(k)δk = V /(2π)3 · 4πk2δk · 2 (9.10)

We wish to translate (9.10) to a density of states in frequency ν, corresponding to the
required spectral energy density. This is readily and accurately achieved for photons
in vacuum, since ν = ck/2π , where c is the speed of light. Making the change of
variables, (9.10) becomes

g(ν)δν = V · 8πν2δν/c3 (9.11)

The answer now follows at once. The energy in a range is the number of states in that
range × the number of photons per state × the energy per photon. That is

u(ν)δν = g(ν)δν × f (ν)× ε(ν)

= V · 8πν2δν/c3 × 1/[exp(hν/kBkk T )− 1] × hν

= V · 8πhν3δv

c3
· 1

[exp(hν/kBkk T )− 1] (9.12)

Equation (9.12) is the celebrated Planck radiation formula. It is drawn in Fig. 9.7 for
three different temperatures. We can make several comments.

1. This is not how Planck derived it! Photons had not been invented in 1900. His
argument was based on a localized oscillator model, in which each of the g(ν)δν

oscillator modes had an average thermal energy not of kBkk T , the classical incorrect
result, but of hν/[exp(hν/kBkk T ) − 1] as derived in Chapter 3 (essentially (3.13)
ignoring zero-point energy). The modern derivation is much to be preferred.

2. The Planck law is in excellent agreement with experiment. One of the features
concerns the maximum in u(ν). Experiment (effectively Wien’s law) shows that
νmax is proportional to T . This is evident from (9.12), since the maximum will
occur at a fixed value of the dimensionless variable y = hν/kBkk T . In fact ymax is a
little less than 3 (see Exercise 9.5).

3. Another experimental property is that the total energy in the radiation is propor-
tional to T 4. This T 4 law follows from an integration of the Planck law (9.12) over
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T = 1.25T T0TT

T =T T0TT

T = 0.8T T0TT
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Fig. 9.7 The spectral distribution of energy in black-body radiation. The Planck formula (9.12) for the
energy density as a function of frequency is shown at three different temperatures.

all possible frequencies. We have for the (internal) energy per unit volume

U/V = (8πh/c3)

∫ ∞
0

∫∫
ν3dν/[exp(hν/kBkk T )− 1]

= (8πh/c3)(kBkk T/h)4
∫ ∞

0

∫∫
y3dy/[exp(y)− 1] (9.13)

The definite integral in (9.13) has the (‘well-known’) value of π4/15. The energy
U is represented by the areas under the curves in Fig. 9.7, which display the rapid
variation of U and T .

4. Once U/V is known, two other properties follow. One is the energy flux radiated
from a black body, a very accessible experimental quantity. It is defined as the
energy per second leaving a small hole of unit area in the wall of the box, assuming
no inward flux. (If the temperatures of the box and of its surroundings are the same,
then of course there will be no net flux – usually a difference between flux in and
flux out is the directly measurable quantity.) Since all the photons are moving with
the same speed c, the number crossing unit area in unit time is 1

4(N/V )c, where
N/V is the (average) number density of photons. The factor 1

4 comes from the
appropriate angular integration, as in the corresponding standard problem in gas
kinetic theory. Hence the energy crossing unit area in unit time is 1

4 (U/V )c ≡ σT 4.
This result is the Stefan–Boltzmann law, and the value of σ deduced from (9.13)
is in excellent agreement with experiment.

5. The second property is the pressure, the ‘radiation pressure’. We have already seen
(section 8.1.3) that for a gas of massive particles, PV = 2U/3, this relationship
following from the dispersion relation ε ∝ k2 ∝ V−2/3. For the photon gas, the
dispersion relation is different, namely ε = hν = ck/2π . Hence ε ∝ k ∝ V−1/3
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in this case, and therefore (following the argument of section 8.1.3) P = U/3V .
The radiation pressure is simply one-third of the energy per unit volume.

6. Finally let us consider the range of validity of the T 4 law. No high-temperature limit
is evident, since photon states exist well above the highest conceivable thermally
excited frequencies. No problem exists here (unlike the phonon case discussed
below). At low temperatures, however, we should see the breakdown of the density
of states approximation. The T 4 law is based on the replacement of a sum over
photon states by an integral over a smooth density of states. This will clearly
become invalid in a box of linear dimension a when kBkk T < �ε, the energy level
spacing, i.e. for kBkk T < ch/a. This corresponds roughly to T < 1 K for a box of
side 1 cm, but T = 1 K is just too low a temperature for radiation to be important
in practice anyway.

9.3.2 Phonons and lattice vibrations

The same ideas may be applied to a discussion of the thermal lattice vibrations of
a simple atomic solid. We have already noted in Chapter 3 the inappropriateness of
the localized oscillator model, since the motion of one atom in the solid is strongly
coupled to that of another. The weakly coupled vibrational modes are sound waves,
and hence it is appealing to consider the vibrations of the lump of solid as the motion
of a gas of sound waves in a box. Hence the similarity to the previous section, where
a box of electromagnetic waves was discussed.

The weakly interacting gas particles, quantized sound waves, are called phonons.
And the total internal energy U of the phonon gas can be calculated in an analogous
way to equation (9.13). However, there are three important differences in comparison
with the photon gas:

1. Sound waves have G = 3, not G = 2. The three polarizations arise from three-
dimensional motion of the atoms in the solid. In the long wavelength limit, there
are two transverse polarization modes and one longitudinal mode. Hence (9.13)
should be multiplied by a factor 3/2.

2. The dispersion relation is altered. To a first approximation we can simply use
ε = hν = cSk/2π , where cS is a suitable average velocity of sound. This will
simply replace c by cS in (9.13). In practice, as any book on solid-state physics
will reveal, this is a passable approximation for long wavelength (low k) phonons,
although even there the velocities of transverse and longitudinal modes are very
different. However, the linear dispersion must fundamentally fail at large values
of k, a point related to the following.

3. There are only a limited number of phonon modes in the solid. The solid is not an
elastic continuum, but consists of N atoms, so that the wavefunction of a phonon
only has physical meaning (the atomic displacement) at these N atomic sites.
Hence there are only 3N possible modes. Compare the localized oscillator model,
which similarly considered 3N oscillators. As indicated above, the correct phonon
dispersion relation will fully take care of this problem. However, this means going
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back to (4.5) and using a computer to fold in the complicated dispersion relation.
An approximate fudge (the Debye model) is to maintain the linear dispersion
relation, but to cut off the density of states above a Debye cut-off frequency νD,
defined so that

3N =
∫ νD

0

∫∫
g(v)dν

Although not in detail correct, the Debye model contains most of the important
physics, and it gives the correct heat capacity of typical solids to, say, 10%. The
result for U is a modified version of (9.13)

U = V (12πh/c3
S)(kBkk T/h)4

∫ y(T )

0

∫∫
y3dy/[exp(y)− 1] (9.14)

where y(T ) = hνD/kBkk T . The heat capacity C, shown in Fig. 9.8, is obtained by
differentiating (9.14) with respect to T .

The introduction of the cut-off gives a scale temperature θ to the problem, defined
by kBkk θ = hνD. For most common solids θ has a value around room temperature
(lower for lead, higher for diamond!). At high temperatures, T � θ or y(T ) � 1,
the cut-off ensures that the classical limit is recovered, yielding U = 3NkBkk T and
C = 3NkBkk (see Exercise 9.6). On the other hand, at low temperatures, T � θ or
y(T )→∞, we recover the result analogous to black-body radiation. The integral in
(9.14) again becomes a constant, and we have U ∝ T 4 and correspondingly C ∝ T 3.
This is the so-called Debye T 3 law, and is in good agreement with the experimental
heat capacity of a crystalline solid at low temperatures.

Einstein

Debye

3NkBkk

C

T

�

Fig. 9.8 The variation with T of the lattice heat capacity of a solid in the Debye approximation. Full curve,
the Debye model (from (9.14)). Dotted curve, the Einstein model (Fig. 3.10), for comparison.
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9.4 A NOTE ABOUT COLD ATOMS

We have seen that quantum statistics are needed at high densities and low temper-
atures. In recent years, scientists have developed some entirely new methods for
cooling comparatively small (albeit macroscopic) numbers of gaseous atoms, usually
alkali metal atoms such as sodium or rubidium.

Space (and possibly the author’s expertise?) precludes a detailed discussion of
this exciting field, exciting enough to generate the 1998 Nobel prize for three of its
inventors. The techniques involve the clever use of laser beams to slow down a group
of the atoms. Typically six beams are directed to the group from all sides, operating
at a special tuned frequency such that atoms moving towards the beam are slowed,
but those moving towards it are not; this trick (charmingly called ‘optical molasses’)
depends on the energy level structure of the atoms and exploits the Doppler shift
of the moving atoms. Using such techniques, typically billions of atoms are slowed
down so that their translational kinetic energy corresponds to the microkelvin regime.

But the story doesn’t end there. The atoms can also be confined within a limited
volume using a magnetic field trap, a zero field ‘bottle’, exploiting the magnetic
moment of the atoms. Finally, the hotter atoms in the trap can be ‘evaporated’ by
lowering the edges of this trap, leaving an array of even colder atoms (corresponding
to several nanokelvin). And these atoms can be observed optically or by other means.

The bottom line is that under these unusual conditions, quantum coherence and,
in the case of bosonic atoms, Bose–Einstein condensation is observed. The simple
theory of this chapter fits the observed facts very well, since these groups of cold
atoms are sufficiently dilute that they are indeed examples of the weakly-interacting
particles on which our statistics is based.

9.5 SUMMARY

This chapter discusses the properties of an ideal Bose–Einstein gas together with
applications to systems of interest.

1. Quantum statistics rather than MB statistics are appropriate for gases at high
density and low temperature.

2. The friendly nature of bosons leads to a Bose–Einstein condensation under these
conditions. The condensation implies coherent behaviour of all the particles
involved.

3. The ideal BE gas below TBTT can be visualised on a two-fluid model of superfluid
and normal fluid.

4. This picture is useful in considering the properties of liquid 4He, which shows a
superfluid transition.

5. Interactions between atoms are strong in the liquid, so that the ideal gas model
does not apply in detail.

6. The ideal gas model does apply well to assemblies of cold bosonic atoms.
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7. Modified BE statistics describes the properties of assemblies of massless bosons,
for which there is no conservation of particle number.

8. This form of statistics gives an excellent understanding of ‘black-body radiation’
as photons in thermal equilibrium.

9. A similar treatment of sound waves (as weakly-interacting phonons) enables us to
understand and compute the thermal properties of crystalline solids.
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Entropy in other situations

As the chart in the front of the book shows, we have now completed our elementary
study of the thermal equilibrium properties of ideal solids and gases. However, it
would be a pity to stop here, since statistical physics has plenty more to say about
other types of system also. In this chapter we shall look again at entropy, and shall
discuss the statistics of a system in which the macrostate specifies T rather than U .
This generalization will help us to discuss vacancies in solids in this chapter, and
phase transitions in the next.

10.1 ENTROPY AND DISORDER

In Chapter 1, we took as a statistical definition of entropy the relation S = kBkk ln �

(equation (1.5)). Since many verifiable results have followed, we may by now have
much confidence in the approach. In this chapter we study some further consequences
of the relation.

10.1.1 Isotopic disorder

One simple form of disorder in a solid is isotopic disorder. For instance a block of
copper consists of a mixture of 63Cu and 65Cu isotopes. Therefore, if the isotopes
are randomly distributed on the lattice sites, there will be a large amount of disorder
associated with all the possible arrangements of the isotopes.

Consider a solid whose N atoms have a proportion PL of isotope L. In other words,
there are NLNN = PLN atoms of isotope L, and

∑
L NLNN = N , where the sum goes over

all the isotopes. The number of arrangements of isotopes on the N sites is given by
the well-trodden third problem of Appendix A. It is

� = N !/
∏

L

NLN ! (10.1)
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The calculation of S for this situation goes as follows:

S = kBkk ln � definition (1.5)

= kBkk

(
ln N ! −

∑
L

ln NLN !
)

from (10.1)

= kBkk

(
N ln N −

∑
L

NLN ln NLN

)
Stirling’s approx., also

∑
NLNN = N

=−kBkk

[∑
L

NLN (ln NLN − ln N )

]
putting N =∑NLNN

=−NkBkk
∑

L

PL ln PL (10.2)

The answer (10.2) is a nice simple one. For instance if we were to have a 50–50
mixture of two isotopes, it would give an ‘entropy of mixing’ of S = NkBkk ln 2, a not
unexpected result, analogous to tossing pennies (Appendix B).

Whether this entropy is observable is another matter. In fact our block of copper
does not separate out under gravity to have all the 65Cu at the bottom and all the
63Cu at the top, however cold it is made! Rather this disorder is frozen in, and a cold
piece of copper is in a metastable state which contains this fixed amount of disorder.
Therefore the entropy of isotopic disorder is usually omitted from consideration,
since it has no influence on the thermal properties. Metastable states of this sort do
not violate the third law of thermodynamics, since no entropy changes occur near the
absolute zero.

Actually partial isotopic separation does occur in just one case, that of liquid helium.
A liquid mixture of 3He and 4He is entirely random above 0.8 K. However, when
it is cooled below this temperature, a phase separation occurs to give a solution
of almost pure 3He floating on top of a dilute solution of about 6% 3He in 4He.
This phase separation is important to low-temperature physicists, not least because
the difference in thermal properties of the 3He between the two phases forms the
basis of a ‘dilution refrigerator’, the work-horse cooling method for reaching 5 mK
nowadays.

10.1.2 Localized particles

A similar calculation can be made for the entropy of an assembly of N localized par-
ticles in thermal equilibrium, the topic of Chapter 2. We have seen (equation (2.4))
that �, the total number of microstates, can be replaced by t∗, the number of
microstates associated with the most probable distribution. Hence the entropy is
given by S = kBkk ln t∗, with t∗ = N !/�n∗jn (equation (2.3)). The evaluation of S
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exactly parallels the derivation of (10.2), the result being

S = −NkBkk
∑

j

PjP ln PjP (10.3)

where PjP = njn /N (strictly n∗jn /N ) is defined to be the fraction of the N particles
in the state j. This important equation can be taken as an alternative statisti-
cal definition of entropy, and indeed it can be applied with greater generality
than (1.5).

10.1.3 Gases

The same approach, of expressing S directly in terms of the distribution, can be
adopted for gases, using the expressions for t∗ derived in Chapter 5. Again using Stir-
ling’s approximation together with a little rearrangement, one obtains the following
results:

For FD gases, from (5.4),

S = kBkk
∑

i

gi[−f− iff ln fiff − (1− fiff ) ln(1− fiff )] (10.4)

For BE gases, from (5.5),

S = kBkk
∑

i

gi[−f− iff ln fiff + (1+ fiff ) ln(1+ fiff )] (10.5)

For MB gases, from (5.6), or from the dilute (f(( iff � 1) limit of (10.4) or (10.5),

S = kBkk
∑

i

gi[−f− iff ln fiff ] + NkBkk (10.6)

In these equations, the sums are over all groups i of states; however, another way
of writing

∑
i gi is simply as a sum over all states. Therefore there is much simi-

larity between the first (common) term of these expressions and (10.3) for localized
particles. We may write (10.3) as

S = kBkk
∑

j

[−njn ln njn ] + NkBkk ln N

Recognizing that njn and fiff are both defined as the number of particles per state
(the filling factor), the similarity is explicit. In fact the only difference between
equation (10.3) for localized particles and (10.6) for MB gas particles is an addition
of kBkk ln N ! to the entropy, as we should expect from the different extensivity of the
two cases (section 6.3.3).
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The second terms in the FD and BE expressions are intriguing. Equation (10.4)
displays that in an FD gas, one not only considers the disorder of the particles filling
the states (the first term), but also of the empty states (the second term). Both terms
vanish if fiff = 0 or 1, as is the case for each state at T = 0. Intuition concerning (10.5)
is not so clearcut, except to note that some such term is a clear necessity to ensure
that S > 0 when we now allow fiff to be >1.

10.2 AN ASSEMBLY AT FIXED TEMPERATURE

The statistical method adopted earlier in the book has been based on an assembly
of particles in a macrostate of fixed number N , volume V and internal energy U .
Of course for a large assembly, the specification of any macrostate in practice deter-
mines all the other thermodynamic quantities, such as temperature T , pressure P and
chemical potential μ. So we have cheerfully applied our method to assemblies with a
macrostate specified by (N , V , T ), with little fear of anything going wrong. However,
when we look back at the statistical method and its relation to entropy in particular, we
shall be pointed towards a more general statistical approach, one that can be applied
to new types of assembly.

Our old method is based on the properties of an isolated system (mechanically
isolated since V is constant, thermally isolated since in addition U is constant, and
of fixed particle number N ). One thing we really know about an isolated system is
that any internal rearrangements it makes, any spontaneous changes, will always be
such as to increase the entropy of the system. That is the content of the second law
of thermodynamics. The entropy of the equilibrium state of the isolated system is a
maximum.

Now our statistical method can be viewed in exactly this way, as a theorist mak-
ing changes until he finds the state of maximum entropy! We have seen that the
equilibrium distribution is that with the largest number of microstates, i.e. with the
maximum t({njn }). Our statistical mechanician fiddles with the distribution numbers
until he finds the maximum t(= t∗). But since in the equilibrium state S = kBkk ln t∗,
this is just the same as the maximum entropy idea of the second law. The example of
section 1.6.2 is of direct relevance here. A system prepared with a non-equilibrium
distribution, (i) will increase its t by adjusting the distribution, and (ii) will increase its
entropy.

Having reminded ourselves of how the thermodynamic view (together with S =
kBkk ln �) is related to the statistical method for an isolated system, we now turn
to consider a system at fixed temperature. Consider an assembly described by an
(N , V , T ) macrostate.

The condition for thermodynamic equilibrium of the (N , V , T ) system is equally
secure. The free energy F must be a minimum in equilibrium. This condition (e.g.
Thermal Physics, by Finn, section 6.4) is again a statement of the second law. The
entropy of the universe (i.e. of the system together with a large heat bath at temper-
ature T ) must not decrease when heat flows in or out of the system to maintain its
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temperature. This can be readily shown to imply that the free energy of the system
must not increase, i.e. that it is a minimum in equilibrium.

This then suggests another approach to the statistical physics for an assembly in
a way (N , V , T ) macrostate. We should make (allowable) adjustments in the distri-
bution numbers {njn } until F is a minimum; and this minimum in F will describe the
thermodynamic state, with the corresponding {n∗jn } being the equilibrium distribution.
In practice, this method is straightforward for the sort of systems we have discussed
previously, since we can calculate F as a function of the distribution from

F = U − TS = U ({njn })− kBkk T ln t({njn }) (10.7)

An example follows in the next section. But in addition the new method enables some
new problems to be attacked.

10.2.1 Distinguishable particles revisited

The new statistical method based on minimizing F (equation (10.7)) may be illustrated
by re-deriving the Boltzmann distribution for the situation of Chapter 2. We have N
weakly interacting localized particles at a temperature T . The states of one particle
are as before labelled by j.

The free energy F is given as in (10.7) by

F = U − TS

=
∑

j

njn εjε − kBkk T ln t({njn }) (10.8)

We require to minimize F in this equation, subject now to only one condition, namely
that
∑

njn = N . (There is no energy condition now since U is not restricted.) The math-
ematical steps are similar to those in section 2.1. The number of microstates t({njn }),
given by (2.3), is substituted into (10.8). This expression for F is then differentiated,
using Stirling’s approximation as in (2.6), to give

dF =
∑

j

[εjε + kBkk T ln njn ] dnjn (10.9)

Using the Lagrange method to find the minimum, we set dF − αdN = 0, to take
account of the number condition

∑
njn = N . (We have chosen to write the multiplier

as −α simply in order to ensure below that α has its usual physical identification!)
Substituting dF from (10.9) and removing the summation sign, the whole point of
Lagrange’s method, we obtain for the equilibrium distribution

εjε + kBkk T ln n∗jn − α = 0

i.e.

n∗jn = exp(α − εjε /kBkk T ) (10.10)



116 Entropy in other situations

As we should expect, this is again the Boltzmann distribution. However, there is
an important difference from (2.12), in that now there is no β to be discussed. The
−1/kBkk T comes in from the outset, from the macrostate. The multiplier α has the same
meaning as earlier, and is determined by substituting back into the number condition∑

njn = N .

10.3 VACANCIES IN SOLIDS

We have just seen that the free energy method gives the correct answer to an already
familiar problem. That is comforting, but not very exciting. Of greater importance is
that we can now tackle new problems, one of which concerns the number of vacancies
which exist in equilibrium in a solid.

A vacancy occurs when an atom in the solid leaves its normal lattice position. The
atom must go somewhere else, as indicated in Fig. 10.1. Either the solid will expand
a little, the extra atom being accommodated on a normal lattice site (case 1). Or it
will sit, albeit rather uncomfortably, on an interstitial site (case 2). In the first case
the vacancy will usually be formed initially at the surface and is then able to move
through the solid by atomic diffusion. In the second case, both the vacancy and the
interstitial defect, once formed, can diffuse through the solid. In fact the existence
of vacancies is the mechanism by which atomic diffusion is able to take place, since
only one atom has to move in order for a vacancy and a neighbouring atom to change
places.

The question is: why do vacancies form, when clearly they require energy to do so?
The answer concerns entropy, and the minimization of F . Certainly U must increase
when a vacancy is formed. But at a high enough T , it is possible for this increase
to be more than matched by a decrease in (−TS), giving an overall lowering of F(=
U − TS). The vacancy (and its interstitial in case 2) are free to roam, and so give
considerable disorder to the solid. Note that the whole discussion here could not be
started without the free energy approach, since it is T and not U which is fixed.

To be specific let us develop a simplified model of case 1 vacancies (case 2 vacancies
reappear as Exercise 10.5). Consider a simple solid of N atoms, which contains n
vacancies at temperature T . The problem is to find how n varies with T . Suppose that

× × × × × × × × ×
× × × × × × × × ×
× × × × × × × × ×

× × × × × × × × ×

× × × ×
×

× × × ×

× × × × × × ×

1
2

Fig. 10.1 Two types of vacancies which can occur in solids. Case 1: surface type. Case 2: interstitial type.
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the formation energy of a vacancy is �, and that the vacancies are sufficiently dilute
that they are weakly interacting. The increase in U due to the vacancies is then n�.

The increase in entropy can be calculated in a manner similar to the isotopic disorder
of section 10.1.1. The solid with n vacancies has (N + n) lattice sites of which N
are full and n are empty. Neglecting small surface effects, the number of possible
arrangements is (N + n)!/(N !n!). The increase in entropy due to the disorder of the
vacancies is thus kBkk ln[(N +n)!/N !n!]. In practice the vibrational entropy of the solid
will also increase slightly for secondary reasons, but we shall ignore this.

Following (10.7), the free energy increase when n vacancies are present is

F(n) = U (n)− TS(n)

= n�− kBkk T ln[(N + n)!/N !n!]
= n�− kBkk T [(N + n) ln(N + n)− N ln N − n ln n]

Equilibrium is given by the minimum F , and there are no constraints on n. Hence the
required n (strictly n∗) satisfies dF/dn = 0, i.e.

0 = dF(n)/dn

= �− kBkk T ln[(N + n∗)/n∗]
Bearing in mind that n∗ � N (since melting has not occurred), we may replace
(N + n∗) by N , to give the final result for the vacancy concentration

n∗/N ≈ exp(−�/kBkk T ) (10.11)

It is interesting that the answer is again just a simple Boltzmann factor. For most
solids the value of formation energy � is about 1 eV, for example its value for copper
is 1.4 eV. Equation (10.11) would give a vacancy concentration in copper of only
about 1 in 1024 at room temperature (one vacancy per mole!), although in practice
thermodynamic equilibrium would not be reached. Vacancy movement, i.e. diffusion,
also requires an activation energy and disorder is frozen in at room temperature,
another example of a metastable state. However, as the copper is heated the number of
vacancies in equilibrium rises, and the time to reach equilibrium falls. By the melting
point (1083◦C), the number given by (10.11) is 1 in 105. For some substances, the
number is even greater before melting occurs, and the increase in entropy of the solid
can be observed directly as an additional heat capacity.
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Phase transitions

Changes of phase are of great interest, not least because of their surprise value. In this
chapter we examine how statistical physics can be used to help our understanding of
some phase transitions.

11.1 TYPES OF PHASE TRANSITION

As mentioned earlier under our comments about the helium liquids (sections 8.3 and
9.2) phase transitions are commonly classified into ‘orders’. In terms of the Gibbs
free energy G(G = U − TS + PV is the appropriate free energy since P and T are
fixed in the phase change), a first-order transition occurs where the G surfaces for the
two phases cross. The stable phase is the one with minimum G (compare the previous
chapter’s discussion of minimum F at fixed V and T ), so that there is a jump in the
first derivatives of G (i.e. S and V ) at the transition. Hence ‘first-order’. Furthermore
supercooling and superheating effects can occur in a first-order transition, since the
system can for a time be driven along the unstable (higher) branch of the G surface
(Fig. 11.1).

However, this is not to be the topic of this chapter. Rather we shall be discussing
second-order transitions. Here the changes in G at the transition are much more gentle.
As the temperature is lowered, the system as it were eases itself gradually into a new
phase which grows out of the first one. There is no superheating or supercooling; it
is just that the G surface has a singularity at the transition. The singularity in a true
second-order transition is such that S and V are continuous, but the second derivatives
of G jump. Hence there is no latent heat (= change in S), but there is a jump in C
(since dS/dT changes). Exact second-order transitions are rare in practice, the best
example being the transition to superconductivity of a metal in zero applied magnetic
field. However, there are common examples of phase transitions which are close to
second-order, namely the ‘lambda transitions’, like that in liquid 4He (section 9.2).
Other instances include transitions to ferromagnetism from paramagnetism, many
transitions to ferroelectricity and some structural phase transitions from one solid
phase to another.

119



120 Phase transitions

T (and P)

G

A B

2'

1'

1

2

Fig. 11.1 The Gibbs free energy G around a first-order phase transition. In region A (of T and P) phase 1 is
stable, whereas in region B phase 2 is stable.At the transition, jumps therefore occur in the first derivatives of
G. Supercooling occurs when curve 2′ is followed (an unstable situation) below the transition; superheating
corresponds to curve 1′.

A unifying concept for the understanding of all such transitions is that of an ‘order
parameter’. At high temperatures, the substance is disordered and the order parame-
ter is zero. As one lowers the temperature through the transition, the order parameter
suddenly starts to grow from zero, attaining its maximum value by the time the
absolute zero is reached, a state of perfect order. For liquid 4He and also for an
ideal boson gas (of cold atoms, say), the order parameter is the superfluid den-
sity. For superconductivity it is the so-called energy gap. For ferromagnetism it
is the spontaneous magnetization of the substance, i.e. the magnetization in zero
applied field. And in the ordering of a binary alloy system (such as beta-brass, CuZn)
with two types of lattice site, the order parameter characterizes which atoms are on
which site.

In the sense that the onset of order in these systems is sudden, the transitions
are often called ‘order–disorder transitions’. The sudden onset of order implies a
co-operative effect. In boson gases, the co-operation is forced by the (friendly) BE
statistics. But in the other cases, the co-operation arises from interactions between
the particles of the system. The importance of this chapter is that we can see how to
apply statistical methods to at least one situation where the particles are not weakly
interacting. In the next section, we shall take the transition from paramagnetism to
ferromagnetism in a spin- 1

2 solid as model example for these ideas.

11.2 FERROMAGNETISM OF A SPIN- 1
2 SOLID

In section 3.1, we discussed the properties of a spin- 1
2 solid, an ideal paramagnetic

material, in which the spins are weakly interacting. In particular ((3.9) and Fig. 3.8),
we worked out the magnetization M of the solid as the spins line up in a magnetic field
B. The result was that if B = 0, then M = 0; but if B � kBkk T/μ then M tends to the
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fully aligned value M = Nμ, the saturation magnetization. The spontaneous mag-
netization M (0) of the solid (defined as the magnetization in zero applied magnetic
field) is zero.

For the ideal paramagnetic solid, M (0) will remain zero however far the tem-
perature is lowered (see again section 3.1.3). However, what happens in any real
substance is that a phase transition occurs at some temperature TCTT , driven by interac-
tions between the spins, to an ordered state. The simplest type of order, but certainly
not the only type, is ferromagnetic ordering, in which the spins all tend to align in
the same direction, giving a non-zero M (0). (In all this chapter we ignore domain
formation; M (0) refers to the magnetization in a single domain, i.e. in a not too large
sample or in a not too large region of a large sample.) The degree of order in the
ferromagnetic state is characterized by an order parameter m defined by

m = M (0)/Nμ (11.1)

Our main task is to understand how m varies with temperature.
The new ingredient of this chapter is to include in the argument a treatment of

the interactions between spins. How is the energy of one spin influenced by the spin
state of all of the others? That simple question has a complicated answer, unless
approximations are made. One extreme approximation is an ‘Ising model’ in which
the spins are assumed only to interact with their nearest neighbours. From the present
viewpoint, that is still a complicated problem even in principle, although a start can
be made at it using methods to be discussed in the next chapter. The other extreme
approximation is to assume that all the other spins are of equal influence, however
distant they are. This is called a mean field approximation, and we shall see that it
gives a true second-order transition.

The mean field approximation is to assume that the one-particle states of each spin
are, as usual, +μB and −μB, but the value of B is changed. Instead of being equal
to B0, the applied magnetic field, the assumption is that we may write

B = B0 + λM (11.2)

where λ is a constant characteristic of the substance. This follows since M is the
magnetization of all the spins, so the term λM averages equally over all spins in the
solid. The case λ = 0 recovers the ideal paramagnet of Chapter 3. The ferromagnetic
situation corresponds to a large positive value of λ, a classic case of positive feedback
as we shall now see.

11.2.1 The spontaneous magnetization (method 1)

We can directly give an expression for the magnetization of the solid, using the
Boltzmann distribution with the energy levels implied by (11.2). Following (3.9) the



122 Phase transitions

answer is

M = Nμ tanh(μB/kBkk T )

= Nμ tanh[μ(B0 + λM )/kBkk T ] (11.3)

The spontaneous magnetization is obtained by setting the applied field B0 = 0
in (11.3), giving a transcendental equation for M (0). Replacing M (0) by the
dimensionless order parameter m, (11.1), we obtain

m = tanh(mT C/T ) (11.4)

where

TCTT = Nμ2λ/kBkk (11.5)

Equation (11.4) can be readily solved graphically (or numerically) as in Fig. 11.2.
Plotted as the x-variable on the graph is x = mTCTT /T , so that (11.4) becomes xT/TCTT =
tanh x. The solution is simply the intersection of the curve m = tanh x with the straight
line m = xT/TCTT . Since the slope of tanh x is unity close to x = 0, it is at once evident
that:

1. When T > TCTT , (11.4) has only one solution, namely m = 0. The spontaneous
magnetization is zero, and the system is disordered.

2. T = TCTT is seen to be a definite transition temperature, in that below TCTT other
solutions are possible. TCTT depends linearly on the mean field parameter λ. It is
often called (for the ferromagnetic transition) the Curie temperature.

3. When T < TCTT , the equation has three possible solutions. We shall see later that
the m = 0 is now an unstable equilibrium. The solutions with m �=�� 0 are the
stable ones. Hence the solid develops below TCTT a spontaneous magnetization with
a definite magnitude, but with an indefinite direction.

T > TcTT T = TcTT

x 

m

T < TcTT

+1

1

Fig. 11.2 Finding the spontaneous magnetization. The solution of (11.4) for m is given by the intersection
of the tanh curve with the straight line. Straight lines are drawn for these different temperatures.
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1

T

m

TcTT

Fig. 11.3 Variation of the magnitude of the order parameter m with temperature T . Note that m varies
from 1 at T = 0 to 0 at T = TCTT . It remains zero above TCTT .

The magnitude of m obtained by solving (11.4) is shown in Fig. 11.3, plotted as a
function of T . The order parameter grows rapidly below TCTT , reaching almost unity at
TCTT /3. One of the characteristic features of the mean field approximation is the total
lack of order when T > TCTT ; the solid is effectively in a paramagnetic state in spite
of the interactions between spins. However, before comparing with experiment, it is
useful to rederive the result for m(T ) by another method.

11.2.2 The spontaneous magnetization (method 2)

When in doubt, minimize the free energy! That was the burden of Chapter 10, and we
can do that here, as an alternative derivation of the variation of the order parameter
m with temperature. To calculate F , we find both U and S as functions of m. The
internal energy contribution due to the spins is simply their potential energy in the
magnetic field. With the mean field assumption (11.2), this gives

U = −
∫

0

∫∫
BdM

= −B0M − λM 2/2 (11.6)

In zero applied field (B0 = 0) the first term of (11.6) vanishes, and we have as a
function of m

U = −(λ/2)(Nμm)2 (11.7)

The entropy contribution from the spins can be worked out directly from (10.3).
The fractions of the spins in the upper and lower states are given in terms of m by
P2 = (1 − m)/2 and P1 = (1 + m)/2 respectively. [Check: P1 + P2 = 1, and
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T < TcTT

T = 0

F –1 +1
m

T = TcTT

T > TTcTT

Fig. 11.4 Variation of F with m at various temperatures. The vertical arrows indicate the values of m for
which F is a minimum at each temperature (compare Fig. 11.3).

M = (P1 − P2)Nμ = Nμm, as required.] Hence

S = −NkBkk (P1 ln P1 + P2 ln P2)

= (NkBkk /2)[2 ln 2− (1+ m) ln(1+ m)− (1− m) ln(1− m)] (11.8)

The free energy due to the spins F = U − TS is now obtained by combining (11.8)
and (11.7), together with the definition of TCTT , (11.5), to give

F = (−NkBkk /2){TCTT m2 + T [2 ln 2− (1+m) ln(1+ m)

− (1− m) ln(1− m)]} (11.9)

The stationary values of F are found by setting dF/dm = 0. It is a matter of elementary
mathematics (try it!) to show that this leads to precisely (11.4), as it should. But we
have learned much more from this exercise, in that we now know the full form of
F(m), as plotted in Fig. 11.4. We confirm that at T > TCTT there is just the one minimum
at m = 0. When T < TCTT , there are the two minima rapidly moving towards m = +1
and −1; and the stationary point at m = 0 is a maximum, an unstable position. It is
also interesting to note the very shallow minimum at T = TCTT , which indicates a very
insecure equilibrium value of m; this gives an explanation of the large fluctuations
often observed in the properties of a substance close to a transition point.

11.2.3 The thermal properties

The ordering of the spins is not just evident in the magnetization, but it will also give
contributions to the thermal properties, for example to the entropy and to the heat
capacity.

Since the variation of m with T is known (Fig. 11.3), the variation of S with T may
be worked out from (11.8) and thence the heat capacity C from C = T dS/dT . The
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T

S,C

S = NkBkk ln 2

C

S

TcTT

Fig. 11.5 Entropy and heat capacity in the mean field approximation. Full curve, entropy. Dotted curve,
heat capacity (vertical scale × 0.6).

T -dependences of S and C in our mean field approximation are shown in Fig. 11.5.
The entropy curve shows the sudden onset of order as T is reduced through TCTT .
Above TCTT , S = NkBkk ln 2 and the spins are completely disordered. Correspondingly,
C vanishes above TCTT , but shows a considerable anomaly over the temperature region
below TCTT in which S is changing.

11.2.4 The paramagnetic region

Notwithstanding the zero heat capacity in the paramagnetic (T > TCTT ) regime, we
have already remarked upon the very shallow F(m) curves close to the transition.
Therefore, it is not surprising that the magnetic properties are affected above TCTT .
Although the spontaneous magnetization is zero, the response to an applied field is
increased by the ferromagnetic interactions.

The magnetization in this region can be worked out readily as in Chapter 3.
Equation (11.3) can be simplified (since B0 and M are both small) by replacing
tanh x by x to give

M = Nμ [μ(B0 + λM )/kBkk T ]
and using the definition (11.5) of TCTT this rearranges to

M

B0
= Nμ2

kBkk (T − TCTT )
(11.10)

This should be compared with (3.10) for the ideal paramagnet. The new feature
is the −TCTT in the denominator, which ensures that the ‘paramagnetic’ susceptibility
does not follow Curie’s law, but the so-called Curie–Weiss law. A graph of inverse
susceptibility against T remains linear, but does not pass through the origin. Since
TCTT > 0 the susceptibility is everywhere increased by the interactions, and in fact
diverges as the transition is approached – even a small applied field is enough to
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line up all the spins. This relates to the flat F(m) curves, since the addition of an
applied field B0 to Fig. 11.4 (as in (11.6)) tilts the curves somewhat, and can move
the minimum position well away from m = 0.

Incidentally, the same idea of tilting the F(m) curves can be used in the ferro-
magnetic region to describe the influence of an applied magnetic field below TCTT .
One minimum becomes of lower F than the other, and the whole picture gives a
good account of hysteresis curves (of M versus B0) in a ferromagnetic material. The
interested reader is referred to books on solid-state physics.

11.3 REAL FERROMAGNETIC MATERIALS

First a word of warning! We have outlined a simple theory for ferromagnetic
interactions in a spin- 1

2 solid.
Note: (i) In many cases the interactions in magnetic materials are antiferromagnetic,

in other words neighbouring spins tend to be oppositely aligned (or to be at a non-
zero angle). Ferromagnetism is not the only, and indeed not the commonest, situation.
Nevertheless iron and nickel are not unknown materials, either. (ii) As in Chapter 3,
extension to spins other than 1

2 can readily be made, with no qualitative changes.
The mean field theory has notable successes in describing the transition from ferro-

to para-magnetism. The nature of the spontaneous magnetization, the existence of a
critical temperature TCTT , the heat capacity anomaly and the magnetic properties are
all described with reasonable accuracy. A true second-order transition (S continuous,
but dS/dT discontinuous) is predicted by the theory. How does all this compare with
experiment in detail?

The first comment must concern the magnitude of the parameter λ. In (11.2) it
seems that we have assumed that λM is a real magnetic field. And in some cases it
might well be so; there will always be a true magnetic coupling between the dipole
moments of adjacent spins. But in the materials we think of as ferromagnets (like iron
for example), the physical origin of λ comes from far stronger effects, the magnitude
of λM being several hundred tesla to give TCTT above room temperature. This strong
coupling arises from quantum influences on the electrostatic Coulomb forces between
overlapping electrons on neighbouring atoms. Since electrons are identical spin- 1

2
fermions, the overlap is strongly dependent on the relative spin of the two electrons,
and hence the energy of one electron is influenced by the spin of its neighbours. This
gives energy splittings as suggested by (11.2), but the origin is not a weak magnetic
one, but is due to these much larger ‘exchange energies’.

Next let us consider the detailed shape of the m(T ) variation (Fig. 11.3). Although
agreement with experiment is fair, there are two points of detail which are incorrect.
At low temperatures, the mean field approach somewhat overestimates m. This is
because it ignores the existence of ‘spin waves’, essentially long wavelength periodic
variations in magnetization. These are not included in our simple theory, which is
based on long-range order only, i.e. on the spins of all ranges having an equal influence.
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In practice spin waves do exist, and they are seen in the low-temperature region both
in m and also as a small additional heat capacity.

The other region of interest is close to TCTT . Here the mean field theory gives too small
a value of m. The transition is somewhat more catastrophic than we have predicted.
The theory very close to TCTT suggests m ∝ (TCTT − T )1/2, whereas reality is closer to
m ∝ (TCTT − T )1/3. The study of such ‘critical exponents’ is a very searching way of
understanding phase transitions.

Correspondingly, the thermal properties show deviations from Fig. 11.5, and we do
not have a true second-order transition. The heat capacity shows a lambda singularity,
differing from the theory in two respects. Firstly (as with m) it is more sharp just below
the transition, giving a much higher value as TCTT is approached. And secondly there
is an additional heat capacity just above the transition (the other half of the λ-shape).
These effects are thought to arise from the existence of short-range order. Above
TCTT , although m = 0 identically, i.e. there is no long-range order, we still expect
neighbouring spins to interact and perhaps form transient islands of local order. (We
have already noted the very large fluctuations possible here.) The paucity of the mean
field approach is that, as we have seen, it treats all spins equally, whereas in reality
the interaction with closer neighbours will be stronger than that from distant ones. So
treatments based on, say, an Ising model will describe these details more accurately.
But that would also take us far beyond the scope of this chapter!

Finally (compare section 11.2.5) we can note that there is further evidence of the
influence of short-range order in the magnetic properties above TCTT . Until one is close
to the transition, the form of (11.10), the Curie–Weiss law, is found to agree well
with experiment. However, the parameter ‘TCTT ’ which enters it is found to be not the
same as the actual ferromagnetic transition temperature, but rather a temperature a
little higher (e.g. about 375◦C in nickel, compared with a TCTT of 358◦C). Close to the
transition it seems that M /B0 is better described as (T − TCTT )−4/3, another example
of mean field theory not getting the critical exponent quite right.

11.4 ORDER–DISORDER TRANSFORMATIONS IN ALLOYS

Before leaving the topic, we may note that the same type of mean field theory can
be constructed for many other transitions. Here we just consider one other example,
that of the phase transition which occurs in an alloy such as beta-brass CuZn.

This alloy contains equal numbers of Cu and Zn atoms. At high temperatures,
the atoms lie on a body-centred cubic lattice in an entirely random arrangement.
But below a transition temperature (about 460◦C), the atoms start to form an ordered
arrangement, with one type of atom at the corners of each unit cell and the other type at
the centre of the cell. (A body-centred cubic structure can be thought of as consisting
of two interpenetrating simple cubic sub-lattices, analogous to a two-dimensional
centred square lattice, illustrated in Fig. 11.6.)

The transformation can be described by the mean field approximation, with much
the same success and failure as in the ferromagnetic situation. The long-range order



128 Phase transitions

A A A A A

A

B

B

B

B

B

B

B

B

B

B

(a) (b)

B

B

A A A A

A A A A

A

A A

A

A

A

A

A

B
A

A A A A A

Fig. 11.6 Lattice sites in a crystal. The sketches show two (equivalent) types of lattice site, A and B, (a)
in a square lattice in two-dimensional, and (b) in a three-dimensional body centred cubic lattice, as occurs
in beta-brass.

parameter m can in this situation be defined as: m = PA−PB. Here PA is the proportion
of Cu atoms on A sites in the lattice (which is also the proportion of Zn atoms on
B sites), and PB is the proportion of Cu atoms on B sites. At high temperature, we
expect PA = PB = 1

2 , so that m = 0. But in the fully ordered state we would have
m = +1 or−1, depending on whether Cu or Zn occupies the A sites (another case of
a ‘spontaneously broken symmetry’!).

Whether the transition proceeds depends on the relative bond energy between
like and unlike nearest neighbours. If it is favourable for neighbours to be
unlike, we may expect a transition to occur. Writing VXYVV as a bond energy
between neighbouring X and Y atoms, we require V = VCuCuVV + VZnZnVV −
2VCuZnVV > 0. This parameter V plays the role of λ in the ferromagnetic
situation. The mean field approximation in the present case is to assume that the
number of bonds of each type is determined purely by the parameter m, assuming
that the positions on the sub-lattices have no short-range correlations. It then follows
(see Exercise 11.3) that the lattice internal energy can be written as U = constant
−2NVm2 (compare (11.7)). The whole problem can then be solved as in section 11.2.

The graphs of section 11.2 may then be applied to this situation also. The ordering
(i.e. m(T )) is easily followed by the appearance below TCTT of extra lines in an X-ray
powder photograph. The effects on the thermal properties are also readily measured,
and there is an anomaly in C near the transition, associated with the entropy changes.
As before, the anomaly in practice indicates a lambda transition, rather than the simple
second-order transition of Fig. 11.5. Again, since the physical interaction is based on
nearest neighbour interactions, it is not surprising that the mean field approach, with
its neglect of short-range order, does not contain the full truth.
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Two new ideas

In this chapter we shall explore briefly two concepts which indicate that statistical
physics is not such a restrictive subject as might at first appear. The second gives clear
pointers as to how we can start to deal with interacting particles. But before that, we
shall consider connections between thermal equilibrium properties and transitions
between states.

12.1 STATICS OR DYNAMICS?

Thermal equilibrium really is all about transitions, in spite of its static (and boring?)
sound. As stressed in Chapter 1, our assembly samples effectively all its possible states
over the time of an experiment, otherwise the whole concept of thermal equilibrium
becomes misty. The idea of a dynamic equilibrium gives all sorts of connections
between equilibrium and transport properties. In this section we explore just one
such connection.

12.1.1 Matter and radiation in equilibrium

This is hardly a new topic, since it was introduced by Einstein. However, it is partic-
ularly important because it brings together the properties of matter and radiation in
thermal equilibrium, along with an understanding of the emission and absorption of
radiation by matter.

Consider a box which contains both radiation and a number of atoms, all in thermal
equilibrium at temperature T . To be specific suppose the atoms are localized particles,
which have two energy states, separated by � (they may have other energy states also,
but these are irrelevant). Let there be N2NN atoms in the upper state, and N1 in the lower
state. One thing we have proved (Chapter 2) is that in equilibrium the ratio of the
numbers of atoms in the two states is given by the Boltzmann factor

N2NN /N1 = exp(−�/kBkk T ) (2.26) and (12.1)

What about the radiation? Thermal equilibrium is described in section 9.3. The pho-
tons occupy states of energy ε with an occupation function which is the modified
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Fig. 12.1 Matter and radiation.

Bose–Einstein distribution

f (ε) = 1/[exp(ε/kBkk T )− 1] (9.9) and (12.2)

Let us consider the mutual equilibrium between the atoms and the photons. Clearly
there can be a strong interaction between the atoms and those photons which have an
energy ε(= hν) = �. There can be an absorption process (atom in state 1 + photon
of energy � → atom in state 2) which conserves energy; and an emission process
which is the reverse (atom in state 2→ atom in state 1 + photon) (see Fig. 12.1).

Einstein’s argument was to invoke the principle of detailed balance. This states that
in equilibrium the average transition rates of absorption and emission processes must
be equal (and this must be true for any transition and its inverse – hence ‘detailed’
balance). Now the upward transition rate, the number of absorption processes per unit
time, is plausibly given by: R(up) = N1f11 (�)g(�)X . The process needs an atom in
state 1, and it needs a photon of the right energy (g(ε) is the photon density of states).
The factor X describes the basic coupling strength, given the correct input of atom
and photon.

What can we say about R(down), the emission rate? It requires an atom in the
upper state, so it must be proportional to N2NN . And that is enough to determine it fully!
Detailed balance tells us that R(down) = R(up), and the equilibrium distributions
((12.1) and (12.2)) imply that

N2NN /N1 [= exp(−�/kBkk T )] = f (�)/[1+ f (�)]
Hence

R(down) = N2NN [1+ f (�)]g(�)X (12.3)

Equation (12.3) has a lot to reveal about the emission processes. The first is that the
same coupling parameter X should be used for absorption and emission, an idea that
should come as no surprise to anyone who has studied much quantum mechanics
(the same matrix element is involved), but Einstein was inventing the subject! But
of continuing interest is the (1+ f (�)) factor in (12.3). The ‘1’ term relates to what
is called spontaneous emission, emission which will occur even if there are no other
photons present. The treatment shows that it has a rate which is related both to the
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absorption rate and to the density of photon states into which the emission occurs.
The f (�) term is responsible for stimulated emission. The emission rate is greatly
increased into a photon state of the right energy, if there are already photons present in
the state (those friendly bosons again!). That is the essence of laser action, in which
atoms deliberately prepared to be in the upper atomic state and then de-excite by
emitting photons into a cavity which supports a particular photon state. Hence the
intense and coherent radiation.

Looked at from the viewpoint of statistical physics, the existence of stimulated
emission is a necessity. In a strong radiation field, the stimulated term ensures that the
dynamic equilibrium reached is one in which transitions up and down are frequent
and N2NN = N1, corresponding to infinite temperature. Disorder is rife, and the entropy
is maximized. A laser needs N2NN > N1, implying a negative ‘temperature’, i.e. a non-
equilibrium prepared situation, one of lower entropy. Without the f (�) term in (12.3)
one could cheat the second law; simply applying radiation would pump all the atoms
up into the top state, achieving this desirable situation by equilibrium means.

12.1.2 Transitions with electrons

The principle of detailed balance may be used to establish the same sort of connection
between Boltzmann statistics and Fermi–Dirac statistics. Consider as an example a
metal which contains some magnetic impurities. The conduction electrons in the
metal can be modelled as an ideal FD gas, which we know in thermal equilibrium
will have the distribution of (8.2). The magnetic impurities can again be considered as
a number of atoms with two energy states separated by �. As before, their equilibrium
distribution is to be given by (12.1).

The transitions in question are inelastic scattering processes of an electron from
the impurity atom. In an ‘up’ transition (of the atom, as previously) an atom in the
lower state collides with an electron of energy (ε+�) leaving the atom in the upper
state and the electron with energy ε. The reverse ‘down’ transition sees the atom go
from state 2 to state 1, whilst the electron energy increases from ε to (ε +�).

Detailed balance should apply to every transition, whatever electron energy ε

is involved. Since the electrons are fermions obeying the exclusion principle, the
requirements for the up transition are, (i) an atom in state 1, (ii) a filled electron state
of energy (ε +�), and (iii) an empty electron state of energy ε. Hence, in the spirit
of the previous section, we would expect the transition rates to be

R(up) = N1f11 (ε +�)[1− f (ε)]g(ε +�)g(ε)X

and

R(down) = N2NN f22 (ε)[1− f (ε +�)]g(ε +�)g(ε)X

(12.4)

where f (ε) is the distribution and g(ε) the density of states for electrons of
energy ε. The factor X is again the appropriate coupling strength for the transition
under examination. Now using detailed balance R(up) = R(down), and assuming
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N2NN /N1 = exp(−�/kBkk T ), it follows from (12.4) that the distribution function for the
electrons must be of the form

[1− f (ε)]/f// (ε) = B exp(ε/kBkk T )

with B a constant (independent of ε). This rearranges to give

f (ε) = 1/[B exp(ε/kBkk T )+ 1]
which is precisely the FD distribution (8.2) as indeed it should be. The argument
of this section can be seen either as an alternative derivation of the FD distribution,
or as a confirmation of the principle of detailed balance. We may further note that
similar arguments can be made (with equally satisfactory results) for transitions of the
atoms which involve, instead of electrons, either massive bosons or other Boltzmann
particles.

12.2 ENSEMBLES – A LARGER VIEW

Statistical physics has many possible entry points. In this book, we have concentrated
on one of the least abstract routes, that which concentrates on a piece of matter
modelled by the (N , U , V ) macro-state. The assembly under consideration consists
of N weakly interacting particles, and the total energy U is fixed. Both of these
limitations are essential for the method of Chapter 1 onwards to make sense.

But here is the new idea. Let us raise the scale of our thoughts, and apply the
identical methods to a larger universe. Previously, we had an assembly of N identical
particles with a fixed total energy U . Now we shall consider as ‘ensemble’ of NAN
identical assemblies with a fixed total energy NAN U .

Why? Who wants to consider 1023 or so blocks of copper, when we are really
interested in only one of them? The answer, of course, concerns averaging. We are
interested in the average properties of one assembly, and this ensemble is one way of
letting nature do the averaging for us! We can think of the ensemble as consisting of
one assembly (whose thermodynamic properties we wish to know) in a heat reservoir
provided by all the others, so that this is a way of modelling an assembly at fixed
temperature, rather than the old method of fixed energy.

Furthermore, our statistical method applies immediately and precisely to this
ensemble. The assemblies are separate macroscopic entities, so they are distinguish-
able ‘particles’ without a doubt. They can be placed in as weak contact as necessary,
so the ‘weakly interacting’ limitation is unimportant. And we can avoid any doubts
about numerical approximations by making NAN effectively infinite – after all, the
ensemble is a figment of the imagination, not a blueprint for a machinist. Hence, the
Boltzmann distribution (Chapter 2) applies.

For the assembly of particles, we derived the Boltzmann distribution

njn = (N/Z) exp(−εjε /kBkk T ) (2.23)
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with the partition function being

Z =
∑

j

exp(εjε /kBkk T ) (2.24)

the label j going over all one-particle states.
The parallel result for the ensemble involves the energy states of one assembly.

Since an assembly is itself a large and complex entity, it has very many states of
a particular energy. In fact, these are the microstates of Chapter 1; an assembly of
energy EjE has �(EjE , V , N ) such states. Since the allowed values of E are very close
indeed, we usually adopt the density of states approximation and define G(E)δE as
the number of one-assembly states (= microstates) with energy between E and E+δE.
The assembly partition function ZAZ is defined as the sum over all one-assembly states
of the Boltzmann factors, i.e.

ZAZ =
∑

j

�(EjE , V , N ) exp(−EjE /kBkk T ) (12.5a)

or

ZAZ =
∫ ∞

0

∫∫
G(E) exp(−E/kBkk T ) dE (12.5b)

The distribution is specified by the number N (E)δE of the NAN assemblies in the usual
energy range, or rather more usefully by the proportion P(E)δE = N (E)δE/NAN . The
Boltzmann result then becomes

P(E) = N (E)/NAN = G(E) exp(−E/kBkk T )/ZAZ (12.6)

As before we may use (12.5) and (12.6) to calculate the thermodynamic functions for
the ensemble – and hence for the average assembly. We write the total free energy
as NAN F and the total entropy as NAN S (compare the definition U above). Thus the
symbols U , S and F refer to the required average values per assembly. Following the
‘royal route’ of Chapter 2, we obtain for the average assembly

F = −kBkk T ln ZAZ (12.7) compare (2.28)

Hence all the thermal properties of the assembly may be calculated from the
microstates.

Several comments follow concerning the new viewpoint as expressed in (12.5),
(12.6) and (12.7).

1. Temperature. The value of T which appears in the equations is determined from
the properties of the whole ensemble (just as β in Chapter 2 was a property of
the whole assembly). Therefore, as remarked above, when we concentrate on the
behaviour of just one assembly we are discussing its properties when in contact
with a large (conceptually infinite) heat reservoir at this temperature T .
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2. Internal energy. Although T is fixed by the ensemble, the internal energy of any
one assembly is not. The energy of an assembly can have any value E, with a
probability given by (12.6). The one thing we can be sure about is that the average
value of E is U , for that was one of the starting points. However, (12.6) contains
the full statistical information about E, and that we shall now examine in greater
detail.

3. The distribution function P(E). For assemblies of any reasonable size, it turns
out that P(E) is a very strongly peaked function indeed around its maximum value
(which thus effectively equals the mean value U ). This comes about because the
assembly ‘density of microstates’ function G(E) is a rapidly rising function of E,
whereas the exponential factor in (12.6) is a rapidly falling function. Consider
(without working the problem out in detail) a specific case, where the answer
is already well known from Chapter 6. This is where each assembly consists of
N dilute gas particles, to which MB statistics apply. Suppose that G(E) ∝ En.
Then (equation (12.6)) P(E) ∝ En exp(−E/kBkk T ). The maximum is given by
dP/dE = 0, i.e. (check it!) when E = nkBkk T . In our example we know that
U = 3/2NkBkk T , so the index n must be equal to 3N /2. This is a fantastically high
power for the rising factor. Correspondingly the falling exponential factor has an
exponent −3N /2, quite enough to frighten any normal calculator.

4. Fluctuations. Continuing the previous point, P(E) also enables us to work out
the probable fluctuations of E around the mean value U . The sharpness of the
maximum is readily characterized from the second derivative d2P/dE2 at the
maximum. A Taylor expansion of P(E) about the maximum shows that a useful
measure of the width �E of the curve is given by d2P/dE2 = P(U )/(�E)2.
For the above example, this gives �E = n1/2kBkk T , or more usefully the fractional
width �E/U = 1/

√
n

√√ ≈ 1/
√

N
√√

. The relative fluctuations in E are large for a small
assembly at a fixed temperature, but reduce as about 1/

√
N

√√
for a large assembly

at a given T .
5. The same answers for the same problems. Naturally since no new assumptions

have been made, the problems we have already tackled will still have the same
solutions attacked by the new method. For instance let us consider an assembly
of N distinguishable particles as in Chapter 2. We can calculate ZAZ by one of two
methods.
(i) We can use the ideas of the factorization of a partition function elaborated in

our discussion of diatomic gases (section 7.1). Since the particles are weakly
interacting, the microstate simply specifies the state of each individual particle
in turn, and the various one-particle energies (all N of them) simply add to give
E, the assembly energy. Therefore the assembly partition function (12.5a) is
given simply by

ZAZ = ZN

each particle contributing a factor Z (equation (2.24)). We can immediately
check that this is correct, since F = −kBkk T ln ZAZ (equation (12.7)) = −NkBkk T
ln Z (identical to (2.28)).
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(ii) We may also calculate ZAZ using (12.5a) together with the multinomial theorem
(Appendix A). Because the coefficients t({njn }) are identical (for an assembly
of distinguishable particles) to the multinomial coefficients, it is not too hard
to prove that the sum in (12.5a) can be performed explicitly; and that the result
again is ZN.

Method (ii) is worth examining in addition to method (i), since when we
come to gases method (i) is not available. The gas particles are competing for
the same states, so ZAZ cannot factorize into a factor from each particle. How-
ever, method (ii) gives us the answer for a dilute (MB) gas. (The calculation of
ZAZ for FD and BE gases requires yet further work, which we shall not pursue
here.) The values of t({njn }) for the MB gas simply differ by that factor N ! from
those for the distinguishable Boltzmann particles. Therefore the summation
goes through unscathed, except for this constant factor throughout, to give

ZAZ = ZN/N !
for the assembly partition function. This expression, when put into equation
(12.7), gives F = −NkBkk T ln Z+kBkk T ln N !, identical to the result of Chapter 6
(6.16).

6. A way into new problems. The importance of the new method is that a wider
range of assemblies can now be studied, at any rate in principle. The three
equations (12.5), (12.6) and (12.7) outline a programme which should work for
an ensemble of any assemblies. The equations make no restrictions on ‘what is
inside each box’, the only requirement being that we have in mind a large number
of identical boxes. So the assembly could contain interacting particles, and still
the method would be the same. Naturally it becomes mathematically difficult, but
at least the physics is clear. The computational problem is immense, as soon as the
energy E depends on interactions between the 1023 particles. Nobody can yet fully
work out the properties of a liquid from first principles. However, some progress
can be made. For example, the small deviations from the ideal gas laws for real
gases (which are only slightly non-ideal) can be related to the interaction poten-
tial between two gas particles, using expansion methods effectively in powers of
the interaction. We shall use these ideas further in Chapter 14. Another tractable
problem is that of the Ising model, mentioned as a (more physical?) alternative to
the mean field approximation of Chapter 11. Here we have a solid in which only
nearest neighbours interact, so that the expression for E is not too desperate. In
fact it is exactly soluble in two dimensions, and satisfactory numerical results can
be obtained in three dimensions.

7. Nomenclature. You know the methods, so why not learn their names? (At least
it helps to impress your friends!) The ensemble of this chapter, with a probability
function for E given by (12.6), is called the canonical ensemble. The earlier method
of the book can also be thought of as involving an ensemble (see section 1.3); but
now each assembly of the ensemble had the same energy U . In the language of
(12.6), P(E) for the ensemble is a delta-function at energy U . This is called the
micro-canonical ensemble.
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8. New horizons. Finally, we can point out that the degree of abstraction need not
end here. In the canonical ensemble the restriction that U is fixed is removed,
in comparison to the microcanonical ensemble. But the assemblies are still con-
strained to have a given number N of particles. For some purposes this is quite
unphysical. For example consider the properties of a litre of air in the middle
of the room. The properties of this ‘open assembly’ are thermodynamically well
defined and calculable. We can describe its properties in statistical physics with
a grand canonical ensemble which consists of an array of these open assemblies.
Now there is not only energy exchange between assemblies, but there is also par-
ticle exchange. What happens now is that the whole ensemble defines a chemical
potential μ, determined by the total number of particles in the ensemble, just as
T in the canonical ensemble was determined by the total energy (NAN U ) of the
ensemble. In the grand canonical ensemble, an assembly may have any number
of particles, but, as one might anticipate, there is again a very sharp probability
function P(E, N ) which ensures that E and N are in practice well defined. As with
the canonical ensemble, the grand canonical ensemble solves all our old problems
equally well. But in addition it opens new techniques, essential, for example, for
discussing chemical reactions and equilibrium and for a study of solutions. We
develop these ideas further in the following chapter.
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Chemical thermodynamics

In this chapter we will build on ideas introduced earlier in the book, notably the idea
of chemical potential, and its relevance to a discussion of phase transitions (following
section 11.1). We shall extend the concept of the ensembles (section 12.2) to discuss
the grand canonical ensemble and an approach to open systems. These ideas come
together to discuss simple chemical reactions and conditions for chemical equilibrium.

13.1 CHEMICAL POTENTIAL REVISITED

We met the chemical potentialμ at the end of Chapter 2. The idea of chemical potential
also has appeared frequently, notably in the discussions of FD gases (Chapter 8, where
it was called the Fermi energy) and of real BE gases (Chapter 9, where it was hidden
in the B parameter). (The name chemical potential was not always used, perhaps
because of the physicist’s reluctance to mention chemistry?)

In statistical physics, the flavour of chemical potential is that it is a potential for
particle number. It is intimately associated with α, the Lagrange multiplier introduced
in conjunction with the number condition

∑
ni = N . In fact as we have seen it is

related by

α = μ/kBkk T (13.1)

In thermal physics (see, for example, Thermal Physics by Finn, chapter 10), chemical
potential is defined as being an appropriate number derivative of an energy function.
Specifically, in terms of internal energy U it is defined as

μ =
(

∂U

∂N

)
S,V

Putting together dU = T dS − PdV +μdN with the definition of the Helmholtz free
energy F = U − TS we obtain

μ =
(

∂F

∂N

)
T ,V

137
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as used in Chapter 2. Stirring in the definition of the Gibbs free energy G = F+PV =
U−TS+PV we obtain dG = −SdT+V dP+μdN and hence an equivalent definition
of μ is:

μ =
(

∂G

∂N

)
T ,P

This last result is particularly useful, since temperature and pressure are intensive
parameters, whereas number alone in G(T , P, N ) is extensive. This means that if we
double the number of particles present of a substance at constant T and P, in order
for G to double, it is necessary simply that G and N are proportional. In other words
it follows immediately that

μ = G/N (13.2)

and we see that another way of looking at the chemical potential is that it is the Gibbs
free energy per particle.

This idea immediately relates to the discussion of phase transitions in Chapter 11.
Consider again a pure (one-component) substance which can exist in two phases,
labelled 1 and 2. We wish to decide which of the phases is the stable one in equi-
librium at a particular pressure and temperature. The answer is easy. As always, the
equilibrium condition is that which minimizes free energy. Suppose that we have a
total N particles, of which N1 particles are in phase 1 and N2NN in phase 2, so that
N = N1 + N2NN . Using (13.2), we write for the total free energy of the system

G = G1 + G2 = N1μ1 + N2NN μ2

where μ1 and μ2 are the chemical potentials in the two phases. It is now clear that
which phase is stable is determined by the magnitude of the two chemical potentials.

If μ1 > μ2, then G is lowest when N1 = 0 and all the substance is in phase 2, the
phase with the lower chemical potential. On the other hand, if μ1 < μ2 then N2NN = 0
and the stable phase is phase 1. In other words, particles move from high μ to low μ

and it is seen that chemical potential is indeed a ‘potential for particle number’.
If on the other hand μ1 = μ2, then G is the same whatever the particle number

ratio N1/N2NN . This is the case of phase equilibrium. An indeterminate mixture of the
two phases can be present. It is now worth turning back to Fig. 11.1, which shows a
graph of G for the two phases. Essentially this is just the same as a graph of G/N , i.e.
μ, for the two phases; and the above commentary describes precisely the equilibrium
condition.

It is worth remarking here that the equality of chemical potential in an equilibrium
system is a very powerful tool. As an example, it enables one to discuss a whole
range of problems in semiconductor physics. In this case the appropriate potential
is the so-called electrochemical potential, a sum of electric potential energy of an
electron and the chemical potential. (Conduction electrons are charged and have their
potential energies changed by an electric potential, whatever their kinetic energies).
The direction of electron motion is determined by the gradient of this electrochemical
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potential. In equilibrium the electrochemical potential (often called the Fermi level
in this context, as in Chapter 8) of the electrons becomes the same throughout the
material. In an inhomogeneous material, this is achieved by small-charge transfers
between the different regions, an idea that is fundamental to our understanding of the
transistor and of a host of other devices.

13.2 THE GRAND CANONICAL ENSEMBLE

In order to discuss the properties of open systems, it is useful to look further at the
concept of the grand canonical ensemble introduced in section 12.2. The idea is to
develop a technique for a system in which particle number is not fixed from the outset,
but is determined by the system being open to a ‘particle bath’with a specific chemical
potential μ.

This may be visualized as, say, being interested in a litre of air in the middle of the
room. This system of interest, the particular litre in the room, has well-defined thermal
properties, even though its energy U and its particle number N are not constants.
Rather, U is controlled by the temperature T , a property of the whole ensemble. As
discussed for the canonical ensemble in section 12.2, U has a probability distribution
with a very sharp peak. We can say that temperature is a potential for energy. Similarly,
N has a strongly peaked probability distribution determined by the chemical potential
μ, again a property of the whole of the ensemble (room). As stated in section 13.1, μ
is a potential for particle number.

This approach gives the right flavour, but is not enough to develop a quantitative
description of an open system. A little mathematical imagination is required, and this
we now discuss.

13.2.1 The new method

Method 1. The basic method adopted so far in this book centres around the following
equation:

∂ln t

∂njn
+ α + βεjε = 0 (13.3)

This appeared in section 2.1.5 (compare (2.11), following (2.7)), and in section 5.4.
It is a statement of the Lagrange multiplier approach. Equation (13.3) is the recipe
for finding the most probable distribution. It is designed to pick out the maximum
value of t subject to the two restrictive conditions

∑
njn = N and

∑
njn εjε = U . It

is a method for dealing with any type of assembly of weakly interacting particles,
localized or gaseous, so long as the number of microstates t ({njn }) for a particular
distribution is appropriately expressed.

Method 2. But (13.3) can also be expressed in a way that relates to the canonical
ensemble, introduced in Chapter 12. It is also a recipe designed to guarantee that
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t exp(βU ) is a maximum, subject now to one restrictive condition
∑

njn = N . Using
the Lagrange method with the one condition (undetermined multiplier α) gives pre-
cisely (13.3). The link with the canonical ensemble approach is evident when we
recognize that, within the usual approximations of large numbers, this view is adja-
cent to that based on the assembly partition function ZAZ of (12.5). We simply need
to approximate �(U , V , N ) by its largest term t and to identify the physical meaning
of the β multiplier, i.e. to set β = −1/kBkk T . Equation (13.3) can then be seen to be
effectively picking out the maximum term in ZAZ . This is almost equivalent to eval-
uating ZAZ itself, since there is a very sharp peak indeed as discussed earlier (note 3,
following (12.5)).

Method 3. The interesting way of opening out (13.3) is now taken to one final
stage. The equation certainly also gives the recipe to identify the distribution which
makes the function t exp(αN ) exp(βU ) an unconditional maximum. And uncondi-
tional maxima are good news mathematically. Hence, the imaginative approach to
which this argument leads is to:

1. Define a grand partition function ZGZZ by the expression

ZGZZ =
∑
k ,l

�(EkE , V , NlNN ) exp(μNlNN /kBkk T ) exp(−EkE /kBkk T ) (13.4)

where the sum goes over all energies (labelled EkE in this chapter) and all particle
numbers (labelled NlNN ) from zero to infinity.

2. Note that the maximum term in (13.4) will be recovered from (13.4) if we again
equate t and �, and give the physical identification to both multipliers α and β.

3. Suggest that a new method to describe equilibrium should be based on the full
sum in (13.4), when this is convenient, rather than just on the largest term in the
peaked distribution. We note that this method has all the attributes to describe
open systems, since the construction of ZGZZ starts off by assuming that T and μ

are known and that U and N are to be determined from them, by identifying the
maximum term in ZGZZ or (as is equivalent in practice) by using the terms in ZGZZ as
statistical weights in any thermodynamic averaging process.

13.2.2 The connection to thermodynamics

This is straightforward, but important.

Method 1 (Microcanonical ensemble). The connection is via (1.5), S = kBkk ln �,
appropriate to the set variables U , V and N . Hence

TS = kBkk T ln � � kBkk T ln t∗

This is the basis on which most of this book so far is based.
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Method 2 (Canonical ensemble). The given variables are now T , V and N .
As discussed in section 12.2, we define an assembly partition function ZAZ
(equation (12.5)) as

ZAZ =
∑

k

�(EkE , V , N ) exp(−EkE /kBkk T )

Using the maximum term approximation (i.e. removing the sum and setting EkE = U )
then gives

kBkk T ln ZAZ = kBkk T ln �−U = −F

as already derived (equation (12.7)).

Method 3 (Grand canonical ensemble). The starting parameters are now T , V and
μ. Following the definition of ZGZZ in (13.4), and again using the maximum term
approximation, we now derive the following result:

kBkk T ln ZGZZ = kBkk T ln �+ μN − U = TS + G − U = PV (13.5)

Here, we have used the identification of μN with G as discussed above in section 13.1.
The result is that the appropriate thermodynamic energy function is simply PV .

Since it is somewhat unfamiliar as a thermodynamic function, it is worth stressing
that PV as a function of T , V and μ is a thoroughly useable and useful idea. As
discussed in section 13.1, since G = F + PV = U − TS + PV and also, (13.2),
G = Nμ, we may write PV = Nμ− U + TS . Since dU = TdS − PdV + μdN we
have immediately

d(PV ) = SdT + PdV + Ndμ (13.6)

Hence a knowledge of ZGZZ enables (using (13.5) and (13.6)) an effective and direct
route to the determination of other thermodynamic quantities, such as S, P and in
particular N , the (equilibrium) number of particles in our open system.

13.3 IDEAL GASES IN THE GRAND ENSEMBLE

It is instructive to rederive some of the results for ideal gases using this new method,
to indicate the power and generality of this somewhat more sophisticated approach
to statistical physics. The power comes about since, as we shall now see, the absence
of restrictions on N and U makes it easy to evaluate ZGZZ for an ideal gas.

13.3.1 Determination of the grand partition function

We shall label the one-particle states by j, and their corresponding energies εjε . For
an ideal gas these energies depend on V only (fitting waves into boxes!). Note that in
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this treatment it is not necessary (or even convenient) to group the states together (the
i notation of section 5.1). Rather we discuss the occupation of individual one-particle
states (hence the j notation as Chapter 1). For compactness, we choose to define for
each such state a quantity γjγγ defined as

γjγγ = exp[(μ− εjε )/kBkk T ] (13.7)

We may note that, with the expected physical identifications with our earlier approach,
this is the same as γjγγ = exp(α + βεjε ), a frequently occurring quantity.

Consider one particular microstate of the assembly. Suppose that, in this microstate,
state j is occupied by njn (identical, gaseous) particles. The microstate thus has a total∑

njn = NlNN particles and a total energy
∑

njn εjε = EkE , where the sums go over all
the one-particle states j. The contribution of this one microstate to ZGZZ (see (13.4)) is
exp(μNlNN /kBkk T ) exp(−EkE /kBkk T ), i.e. it is simply equal to∏

j

γ
nj
jγ (13.8)

verified by substitution. There is one such term for every microstate of the grand
assembly; and there are no restrictions whatever on the njn since all NlNN and EkE are to
be included in the sum. To obtain ZGZZ we need to sum over all possible microstates, a
task which sounds daunting but turns out to be amazingly easy.

The easy answer to the sum is different, depending on whether the identical gas
particles are fermions or bosons, and we must treat the two cases separately.

Fermi–Dirac. Here, the Pauli exclusion principle (antisymmetric wavefunction)
tells us that only two occupation numbers are possible. We must have njn = 0 (empty
states) or njn = 1 (full states). Hence all the γ factors for each in (13.8) must either
be γ 0 = 1 for empty states or γ 1 = γ for full states. There are no total number
restrictions, so that the sum over all microstates can therefore be written as

ZGZZ (FD) =
∏

j

(1+ γjγγ ) (13.9)

The appearance of 1 and γ in every bracket in this product ensures that every allowable
microstate of the form prescribed by (13.8) is included in (13.9), and that it is included
once only.

Bose–Einstein. The same technique also works for the BE case. The only difference
is that now all occupation numbers are possible, i.e. njn can take any integer value,
and there are many more microstates which must be counted. The answer, however,
is easy

ZGZZ (BE) =
∏

j

(1+ γjγγ + γ 2
jγγ + γ 3

jγ . . .) (13.10a)
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A particular microstate is defined by the number of particles njn in a state j, for every

one-particle state. And in (13.10a), this corresponds to picking out the term γ
nj
jγγ from

the jth bracket. This is not yet the simplest expression for ZGZZ , however, since the
infinite sum in each bracket can readily be performed. We have already met sums of
this sort in our discussion of an assembly of harmonic oscillators in section 3.2.1. The
summation is (1+ γ + γ 2 + γ 3 . . .) = (1− γ )−1. Hence we obtain the final result

ZGZZ (BE) =
∏

j

(1− γjγγ )−1 (13.10b)

Maxwell–Boltzmann limit. Having said that there are two cases, we now follow
precedent to consider a third! The point is that we can obtain and use an even simpler
expression for ZGZZ in the MB limit of either form of statistics, FD or BE. We already
know that the two statistics tend to the same limit for a dilute gas, i.e. one in which the
occupation of the states is very sparse. As usual, the FD and BE cases tend to the limit
from opposite sides. In the dilute limit, one expects the exclusion principle to become
an irrelevance, since the probability of double occupation is always negligible. The
appropriate expression is obtained from a compromise between (13.9) and (13.10a)
when all the γjγγ are small, i.e.�1. It is to replace either equation by

ZGZZ (MB) =
∏

j

exp(γjγγ ) (13.11)

The compromise involved is seen when one recalls the power series, appropriate for
small γ

exp γ = 1+ γ + γ 2/2! + γ 3/3! . . .

13.3.2 Derivation of the distributions

The distribution is defined as a filling factor for a one-particle state. It tells us the
number of particles per state on average in thermal equilibrium. Earlier we defined
the distribution fiff as the fractional occupation of states with energy εi. The definition
is even more straightforward in the grand assembly, since we now consider the states
individually. Thus the fractional occupation of state j is precisely the thermal average
of njn . We denote this average by the symbol njn , which has exactly the same interpre-
tation as the earlier fiff . As postulated at the end of section 13.2.1, the thermal average
is obtained using the relative weights of each term in the expression for ZGZZ .

Fermi–Dirac. The expression for ZGZZ is (13.9), where the product goes over all one-
particle states j. Now let us work out the average occupation of one of those states,
which at the risk of confusing the reader we shall label as i. (There are not enough
letters in the alphabet; however this notation has the merit that the old fiff should
look identical to the newly derived ni.) Each one of the many (infinite!) microstates
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which make up the grand canonical ensemble corresponds to a particular term in the
extended product obtained by multiplying out (13.9). And the statistical weight of
each microstate is simply the magnitude of this term, as postulated above. We need
to examine the role of the (1+γ ) factor for which j = i in this expansion. If our state
i is full (ni = 1), then we have taken the γiγγ from the bracket; if the state is empty we
have taken the 1. The thermal average required is thus equal to the sum of the terms
in which ni = 1 divided by the total sum ZGZZ of all the terms. Hence

ni = γiγγ

(1+ γiγγ )
×
∏

j
∏
�=�� i(1+ γjγγ )∏

j
∏
�=�� i(1+ γjγγ )

The contribution for the ‘other’ states (those with j �=�� i) conveniently factors out. We
are left therefore with

ni = γiγγ

1+ γiγγ
= 1

γ−1
iγγ + 1

= 1

exp[(εi − μ)/kBkk T ] + 1

as expected and hoped, in agreement with (5.13). This is the Fermi–Dirac distribution.

Bose–Einstein. Here the same sort of technique works, in that the same cancellation
of the factors from the j �=�� i states takes place. However we must now allow for all
occupation numbers in the state i. Looking at the bracket for j = i in (13.10a), we
recall that the term 1 corresponds to ni = 0, the term γiγγ to ni = 1, the term γ 2

iγγ to
ni = 2 and so on. Therefore the expression for the distribution is

ni =
γiγγ + 2γ 2

i
γγ + · · ·

1+ γiγγ + γ 2
i

γγ + · · ·
This expression looks somewhat intractable until we take a hint from the summation
of the denominator, as in the transition from (13.10a) to (13.10b). We write F =
(1− γ )−1 = 1+ γ + γ 2 + . . . as before. Differentiating both forms of F , we obtain

dF

dγ
= (1− γ )−2 = 1+ 2γ + 3γ 2 + . . .

Hence the expression for the distribution becomes

ni = γiγγ dF/dγiγγ

F
= γiγγ

1− γiγγ
= 1

γ−1
i

γγ − 1
= 1

exp[(εi − μ)/kBkk T ] − 1

This is the Bose–Einstein distribution of (5.13).

Maxwell–Boltzmann limit. Finally we may note without further ado that, since in
the MB limit all γiγγ � 1, either of the two distributions tend to the even simpler result:
ni = γiγγ = exp[(μ− εi)/kBkk T ], the Maxwell–Boltzmann distribution as expected.
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13.3.3 Thermodynamics of an ideal MB gas

The gas laws for the dilute (MB) ideal gas can now be rederived in short order from
the grand canonical ensemble approach. In (13.11) we have found the appropriate
expression for ZGZZ , the grand partition function. We can now substitute ZGZZ into the
basic equation, (13.5), to find PV and hence other thermodynamic quantities. For
FD and BE gases, the same method works well, but the mathematics get involved.
However for an ideal gas in the MB limit, the answers are elementary and immediate
(so we may as well do it!).

Equation (13.5) tells us that PV = kBkk T ln ZGZZ . The great simplification for the
MB limit is that ln ZGZZ works out so easily. Taking the logarithm of (13.11) we obtain

ln ZGZZ =
∑

j

γjγγ = exp(μ/kBkk T )
∑

j

exp(−εjε /kBkk T )

= exp(μ/kBkk T )Z (13.12)

The result is alarmingly simple. The logarithm of the grand partition function is a fac-
tor exp (μ/kBkk T ) times Z(V , T ), the ordinary ‘sum-over-states’partition function, first
introduced in Chapter 2 (equation (2.24)) and which played a central role in our earlier
discussion of the MB gas in Chapter 6 (e.g. section 6.1). Z is determined only by the
temperature (energy scale kBkk T ) and by the quantum states of one particle, involving
the box size V through the allowed quantum energies of the particle. We recall from
Chapters 6 and 7 that for a spinless monatomic gas Z = V (2πMkBkk T/h2)3/2. For
a more complicated perfect gas, this expression, since it derives from translational
kinetic energy only, must be multiplied by another factor ZintZZ to allow for the other
internal degrees of freedom (spin, rotation, vibration etc). For a given gas, ZintZZ for
rotation and vibration varies with temperature only (see Chapter 7), whilst for spin it
will give a constant factor G. Thus for any perfect gas we have

Z(V , T ) = const VT n

where 2n is the number of degrees of freedom excited.
Let us now look at the thermodynamic functions. In the grand canonical ensemble

approach, we are starting off by fixing μ, V and T . That enables us to evaluate ZGZZ
and hence ln ZGZZ as in (13.12) above, and thus

PV = kBkk T exp(μ/kBkk T )Z(V , T ) (13.13)

Equation (13.6) now gives the prescription for calculation of other thermodynamic
quantities. For instance S, P and N are obtainable from it by simple partial differen-
tiation. We shall not labour over S here, but this approach would directly rederive
the Sackur–Tetrode equation (6.15) for an ideal monatomic gas, and it would lead
us into the heat capacity discussions of Chapter 7, with the index n appearing from
differentiation with respect to T . Any further derivation of P is unnecessary here,
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since the job is done already in (13.13). But what about N , the average number of
gas molecules in our open system? From (13.6) we see that the answer is

N =
(

∂(PV )

∂μ

)
T ,V

Since μ appears only once in (13.13), the result is immediately accessible, namely

N = exp(μ/kBkk T )Z (13.14)

There are two important features of (13.14):

1. In combination with (13.13), it leads to the relation PV = NkBkk T for the ideal MB
gas. As expected, the ideal gas equation of state is valid for an open system (where
N is determined from the given μ), just as it is for the closed system (where a
fixed N can be used to define a derived μ when necessary).

2. We have seen above that for the open MB gas, the distribution is ni = γiγγ =
exp[(μ− εi)/kBkk T ]. Replacing μ from (13.14), we see that this can be written as

ni = N

Z
exp(−εi/kBkk T )

the familiar form for the MB distribution, again with the subtle difference that
N is now a derived not a given quantity. As expected all this is consistent with
our earlier discussion of the multiplier α and its relation to chemical potential, as
in (13.1).

13.4 MIXED SYSTEMS AND CHEMICAL REACTIONS

Having discussed open one-component assemblies, we are now ready to consider
what happens when more than one substance is present. This will then enable us to
determine the equilibrium conditions for simple chemical reactions. We shall find
that the chemical potential plays a crucial role in understanding chemical reactions
(not too surprisingly when you think of the name!).

13.4.1 Free energy of a many-component assembly

In section 13.1, (equation (13.2)), we saw that, in a one-component assembly, we
could write the chemical potential μ as the Gibbs free energy per particle, so that
G = Nμ.

The generalization to a many-component assembly is straight-forward from this
standpoint. It is that each species (component), labelled by s in what follows, has its
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own chemical potential μs which is again the Gibbs free energy per particle of species
s. Hence we may always write for the total Gibbs free energy of the assembly

G =
∑

s

NsN μs (13.15)

The sum goes over all components s of the assembly (e.g. s = nitrogen, oxygen, carbon
dioxide, water, …if we were considering air), and there are NsN particles of component
s. It is worth stressing that (13.15) is of very general applicability, although we shall
only illustrate its use in gaseous assemblies in what follows.

13.4.2 Mixed ideal gases

The description of mixed ideal MB gases follows naturally from the idea of chemical
potentials and from the discussions of section 13.3 (especially section 13.3.3). The
grand canonical ensemble now relates to an assembly of given volume V , given
temperature T and given chemical potentials μs for each and every component s. Since
we consider only ideal gases, there is no interaction between the various components.
Therefore the energy levels for each component are the same as they would be by
themselves in the ensemble. Hence the grand partition function ZGZZ factorizes as
follows:

ZGZZ =
∏

s

Z (S)
GZZ =

∏
s

⎡
⎣
⎡⎡∏

j

exp(γ (s)
jγ )

⎤
⎦
⎤⎤

(13.16)

In the first part of (13.16), Z(S)
GZZ represents the contributory factor to ZGZZ from com-

ponent s, as mentioned above. The last part comes about when we introduce the
requirement that each component is a gas in the MB limit. The factors γ

(s)
jγ for each

component are defined exactly as in (13.7) with energy values ε
(s)
jε appropriate to the

gas in question.
As in section 13.3.3, we now derive thermodynamic quantities such as P and the

numbers NsN of each component. Equation (13.5) for PV tells us that

PV

kBkk T
= ln ZGZZ =

∑
s

ln Z (s)
GZZ =

∑
s

exp(μs/kBkk T )Z (s) (13.17)

where Z(s) is defined as the one-particle (ordinary) partition function for component
s (compare (13.13) for the one-component equation).

The numbers of each gas component are derived from the many-component
generalization of (13.5) and (13.6), following (13.15)

NsN =
(

∂(PV )

∂μs

)
V ,T ,μ(other components)
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Substituting PV from (13.17) gives

NsN = kBkk T
∂

∂μs
(ln ZGZZ ) = exp (μskBkk T )Z (s) (13.18)

Comparing (13.17) and (13.18) shows that ln ZGZZ =∑s NsN and hence

PV

kBkk T
=
∑

s

NsN

is the appropriate generalization of the equation of state. The same result can be
written as the ‘law of partial pressures’

P =
∑

s

Ps =
∑

s

(NsN kBkk T/V ) (13.19)

i.e. the total pressure P of the ideal gas mixture is the sum of the pressures Ps which
each component would exert in the absence of the others.

13.4.3 Equilibrium in chemical reactions

In section 13.4.4 we shall consider a reaction in the gaseous phase, so that the treatment
of the last section remains relevant. However the memorable result of this section
requires no such restriction. To be specific, let us consider a reaction of the type

A + B�AB

in which an atom of component A combines with an atom of component B to give a
molecule of component AB. (An apology. This is not such a common reaction type,
especially in the gaseous phase, although it is the simplest. More familiar are reactions
such as H+ H�H2, or H2 + Cl2� 2HCl, or 2H2 + O2� 2H2O.

These can each be treated by methods which are entirely similar in principle, but
which have some differences in detail from our chosen simple reaction. For instance
the first has two identical atoms on the left, and the other two reactions similarly have
2s appearing.)

For a gaseous phase reaction, the results of the previous section, such as the law
of partial pressures, are all entirely valid, where we identify s with A, B and AB. But
now there is another requirement, that of chemical equilibrium, to consider. We can
write the free energy (equation (13.15)) as

G = NAN μA + NBNN μB + NABN μAB (13.20)

Equilibrium means, as ever, that we should minimize the free energy (see
section 13.1 above, for example). In the grand canonical ensemble approach, the
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μs are fixed, so that the requirement is that (13.20) must be stationary if we make
small changes in the numbers of reacting molecules. We must satisfy the equation

dG = μAdNAN + μB dNBNN + μAB dNABN = 0 (13.21)

However, such changes of number are not independent. If we increase the AB popu-
lation by one, we are of necessity reducing both the A population by one and the B
population by one, as can be seen from the reaction equation. (Now does it become
clear how to generalize the approach to other reaction types?) In other words, the
allowable variations are limited to dNABN = −dNAN = −dNBNN . Substitution of this
restriction into (13.21) immediately leads to the conclusion that in equilibrium we
must have

μA + μB = μAB (13.22)

This is a famous (and simple) result. It tells us that when chemical equilibrium is
reached, the chemical potentials of the reactants must satisfy a relationship of this
type. They are no longer independent.

13.4.4 The law of mass action

When equilibrium in our reaction is reached, we know (from (13.22)) that μA+μB =
μAB. Hence

exp(μA/kBkk T ) · exp(μB/kBkk T ) = exp(μAB)/kBkk T (13.23)

Now we return to gases. We now assume that A, B and AB are all ideal MB gases, so
that we can use the results of section 13.4.2. Equation (13.18) tells us how the number
of each component s is related to its chemical potential and its partition function Z (s).
This can be used to derive a relation between the numbers of reacting components in
chemical equilibrium. In fact, using (13.18), (13.23) can be written simply as

NAN

Z (A)
· NBNN

Z (B)
= NABN

Z (AB)

which can be rearranged to read

NABN

NAN NBNN
= Z (AB)

Z (A)Z (B)
= K(V , T ), say (13.24)

This is the ‘law of mass action’ for the reaction A + B�AB. It relates the number
of each component to a so-called equilibrium constant K(V , T ) which depends only
on the reaction, the volume and the temperature. Similar laws of mass action can be
developed for other reactions using the same methods. Once K(V , T ) is known, the
law enables us to predict what will be the equilibrium composition of the reacting
mixture from any given starting conditions.
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There is an important word of warning in the calculation of K(V , T ). The partition
functions for the various components must all be calculated using the same energy
zero. (That is where a lot of the chemistry comes in. After all, you expect the reaction
to go from a high energy state to a low one!) What this means is that the partition
functions take the form

Z(s) = V

(
2πM (s)kBkk T

h2

)3/2

· ZintZZ · exp(−W (s)/kBkk T )

where in the final term a constant W (s) is included to get the energy levels of that
component right, i.e. to get the ground state of the translational motion (usually
taken as zero in a one-component situation) at the right energy. The result of this is
that K(V , T ) will contain a factor of the form exp(−�W/kBkk T ), where in this case
�W = W (AB)−W (A)−W (B). The sign and magnitude of �W has a great influence
on the equilibrium condition of the reaction. If �W is positive, the forward reaction
will be a reluctant starter particularly at low temperatures, since the exponential factor
in K will be small and hence NABN will also be small. On the other hand, a negative �W
will favour the forward equilibrium of the reaction, particularly at low temperatures.
The exponential will be large and hence so will be its effect on K and on NABN . This
is as expected. A negative �W means that the AB side of the equation has a lower
energy than the A + B side.

Equation (13.24) also allows us to understand the volume dependence of the reac-
tion. All the partition functions have V as a simple factor arising only from the
translational part. Hence K ∝ 1/V . Thus a small volume will favour the forward
reaction. Again this is reasonable, since the formation of AB causes a reduction in
the total number of molecules, hence a reduction in the pressure (equation (13.19))
and hence in the PV energy of the system.

13.4.5 Reaction rates

The law of mass action (13.24) tells us the equilibrium concentrations in a reaction.
That is a fine achievement, but it is not always enough to do justice to chemical reality.
For instance, when we consider the reaction A + B → AB, we have seen above that
when �W is negative the yield of AB will tend to improve at lower temperatures.
However, as any cook knows, reaction rates get smaller at lower temperatures, so
that one may have to wait an unrealistic time for the theoretical equilibrium to occur.
The reaction can be frozen into a metastable state in which the chemical potentials
do not have time to equalize. This is a familiar thermodynamic situation. We have
discussed earlier (see Chapter 10) the existence of frozen-in disorder (i.e. non-zero
entropy) at low temperatures.

In chemical reactions, the usual situation is that illustrated in Fig. 13.1. Consider the
transition between separate A and B atoms towards the formation of an AB molecule,
for a system in which �W is negative. The figure shows a schematic graph showing
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Fig. 13.1 Schematic graph of the energetics of a chemical reaction. The valley at η = 0 represents separate
A and B atoms. The valley at η = 1 represents the AB molecule.

the form of the free energy plotted against a ‘configuration parameter’, η say. We
have defined η = 0 to correspond to the system when it consists of A + B, and η = 1
when the system is AB. We note that the AB valley at η = 1 is lower than the A + B
valley at η = 0, the difference in height being effectively the energy �W discussed
above. However for the reaction to occur, the pair of A + B atoms must somehow deal
with the barrier of height �V which exists in the transition process at intermediate
values of η.

There is a very pretty analogy here. Consider Fig. 13.1 as a description of a mass
of water in the Earth’s gravitational field, i.e. it can be thought of as a graph of
gravitational potential energy (essentially height above sea level) against distance.
The lowest energy state is in the deep valley at η = 1. The gravitational potential
energy of the water which starts in the high valley at η = 0 is higher, so that energy
�W is available if the transition can be made (ask any hydroelectric engineer). But in
order to effect this transition, one has to do one of three things: (i) tunnel through the
hill, a frequent ploy for hydroelectric power, or (ii) if it exists, find some other way
around which is not shown in the section shown in the figure (perhaps they are the
same valley curved around in another dimension?), or (iii) pump or carry the water
over the hill, requiring at best the loan of an amount of energy �V .

The same thinking helps us with the chemical reaction. What can make the reaction
go? There are three possible routes. Route (i) involves tunnelling through the barrier.
Although for a microscopic system this is in principle possible by quantum tunnelling
through the barrier, for most ordinary chemical reactions this has such a low proba-
bility that it is entirely negligible. Route (ii) involves evading the barrier, and this is
a way of cheating commonly used in chemistry. It is the principle of using a catalyst
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which allows another path not shown on the graph, which has a lower barrier or none
at all. As an example, let us consider one possible mechanism for the gaseous reaction
A + B → AB. Perhaps the reaction will only proceed if we succeed in getting A and
B sufficiently close together that an electron can jump from one atom to the other.
In the gaseous phase, this close approach may need a very high energy collision, the
reason for the high energy barrier �V , in order to overcome the usual short-range
repulsion between the atoms; otherwise the atoms will merely collide elastically and
bounce away without reaction. A possible catalyst here is to introduce a large surface
area of a suitable substance (e.g. platinum black, very fine platinum metal). Atoms
can now stick to the surface for a while and, given the right catalytic material, come
into sufficiently close contact upon it, rather than having to await a mid-air encounter.

However, in the absence of such an artificial aid, the only route remaining is route
(iii), finding enough energy to get right over the �V barrier. For this reason �V is
often termed the activation energy for the reaction. The energy must be found from
the high energy tail of the thermal Boltzmann distribution. The collision mechanism
mentioned above can be used as an illustration of what this implies. A collision
between an A and a B atom will usually not cause a reaction. Only in the (unlikely)
event of a near head-on collision between two fast-moving atoms will the close
encounter take place. This implies a reaction rate R (reaction probability per second)
of the form R � f exp(−�V /kBkk T ), where f is an attempt frequency (the collision
rate) and the exponential Boltzmann factor represents the probability of the energy
condition being satisfied. Needless to say, an exact treatment of reaction rates is much
more elaborate than this quick sketch. However it gives the correct flavour for almost
all reactions in solids, liquids or gases. Thermal activation over an energy barrier
always invariably plays a fundamental role and its probability is well governed by
the Boltzmann factor.

In many chemical reactions, the activation energy is of order of 0.5–1 eV, the typical
energy scale for any electronic transitions in atoms. Thus it is that the Boltzmann factor
can be very small (say 10−10 at room temperature), and hence also the temperature
dependence of R is very fierce. A small temperature rise often gives a marked increase
in rate, as a cook’s timetable shows; and also the rate R becomes effectively zero when
the temperature falls significantly, leading to metastability (i.e. zero reactivity in this
context) as stated at the start of this section.
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Dealing with interactions

So far in this book we have dealt almost entirely with assemblies made up of weakly
interacting particles, either localized or gaseous. This has really not been a matter
of choice, but almost of necessity. The basic approach has been founded on the
idea that the energy of the assembly is simply the sum of the individual one-particle
energies, i.e. U = ∑ njn εjε . Without this simplification the mathematics gets out of
hand (although some progress can be made if we start with the canonical or grand
canonical approach).

Nevertheless we have successfully applied our statistical ideas to a rather wide
variety of real problems. In the case of real chemical gases, this success is not too
much of a surprise, since it has been well known since the days of kinetic theory that
gases are almost ideal, at any rate at low pressures and not too close to the liquid phase
transition. Later in the chapter, we shall discuss briefly how the small corrections to
the ideal gas equation may be calculated, to give a more realistic equation of state
than PV = NkBkk T .

But chemical gases are not the only situation in which ideal statistics are applied.
There are several cases where the assumption of weakly interacting particles must
cause raised eyebrows, in spite of our earlier protestations. These include (i) treatment
as a Fermi gas of the conduction electrons in metals and semiconductors (section 8.2),
(ii) treatment of liquid helium-3 as an ideal FD gas (section 8.3) and (iii) treatment
of liquid helium-4 as an ideal BE gas (section 9.2). We take the opportunity in this
chapter to explain a little further our understanding about why the simple models turn
out to be applicable.

The central idea to develop is that of quasiparticles. We concentrate not on the
‘real’ particle, but on some other entity called a quasiparticle. The quasiparticle is
chosen so that it is weakly interacting to a better approximation than is the original
particle. One way in which we have already seen this type of approach at work is in
our treatment of lattice vibrations of a solid. The motions of the atoms themselves are
very strongly interacting in a solid, so instead we choose to redefine the total motion
in terms of phonons (see section 9.3.2), which can be treated as a weakly interacting
ideal gas model to a fair approximation. Let us now see how this works out for the
three cases listed above.
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14.1 ELECTRONS IN METALS

The elementary treatment of electrons in metals (section 8.2) is simply to describe the
electrons as an ideal FD gas. This was first done in the early days of quantum theory
(the Sommerfeld model), and it is surprisingly successful in describing the results
of experiments (on both equilibrium properties and transport properties), particularly
if parameters like the number density and the mass of the electrons are taken as
adjustable parameters. In the case of the simplest metals, such as the alkali (group 1,
monovalent) metals sodium and potassium, these adjusted parameters are in fact very
similar to the free electron parameters. So are they (significantly) for most liquid
metals. However they become quite fanciful for some other crystalline solids, even
simple elemental ones, such as the group 4 semiconductors germanium or silicon, not
to mention the insulator carbon (diamond), in which the effective conduction electron
density is clearly zero.

Although the whole basis of the Sommerfeld model was long known to be ques-
tionable, it nevertheless took scientists at least 30 years to begin to understand why
the model works so well. The problem is obvious. The Fermi energy which we calcu-
lated in Chapter 8 for a typical simple metal is of order 5 eV. This is the kinetic energy
scale for the supposed free electrons, and it is large enough compared to a thermal
energy scale kBkk T at any reasonable temperature to make the supposed electron gas
an extremely degenerate FD gas, as we have seen. However, this energy is not at
all large compared with the potential energy of interactions which we should expect
between an electron and its surroundings. There are two problems here. Firstly, there
is the interaction between a conduction electron and the lattice ions. The conduction
electrons are negatively charged, having been liberated from atoms leaving behind
positively charged ions. Therefore there will be a strong attractive Coulomb inter-
action between them, of expected magnitude about e2/4πε0r where r is about an
atomic spacing. Putting in r = 0.2 nm, this gives an energy of 7 eV, of the same order
of magnitude as the kinetic energy. Secondly, there is also the potential energy of
interaction between the conduction electrons themselves. They are not truly weakly
interacting, since they repel each other with a repulsive interaction which again should
be of the same order of magnitude, since the electrons are typically an interatomic
spacing apart.

Where does this leave us? Clearly in a great mess, since this last interaction in
particular blows away the whole ‘weakly interacting’ assumption behind the ideal
FD gas treatment of the electrons. However, the reason why all is not lost is not hard
to see at the hand-waving level. Overall, the metal is electrically neutral. Therefore
problem 1 (electron–ion attraction) and problem 2 (electron–electron repulsion) must
to a good approximation cancel out. This is certainly true of the long-range part of
these interactions, and this is the major justification for continuing with the simple
approach. The idea is that of screening (electrostatic shielding). The ‘other’ electrons
cancel out the effects of the positive lattice ions.

Interestingly, this is not yet the end of the story. We are still left with what
would be a very substantial short-range lattice potential, and a residual worry about
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electron–electron interactions. In the 1960s it was realized that the problem of the
large lattice potential could be attacked in a rather clever imaginative way, all as a
consequence of the Pauli exclusion principle. This is where the quasiparticle ideas
come in, although the language was not applied in context at the time. The point is
the ion itself is not a simple mass with a positive charge. In sodium, for instance,
it consists of a nucleus with 11 protons, surrounded by 10 closely bound (‘core’)
electrons, filling the 1s, 2s and 2p orbitals. The one conduction electron per atom was
given to the gas-like pool (the so-called Fermi sea) from the outer (partially filled)
3s shell of the isolated atom. Now the Pauli principle tells us that these conduction
electrons in the metal must of course be ‘unlike’ the bound core electrons in each
atom. In technical language, they must be in states which are orthogonal to the core
electron states. In practice, this means that they have wave functions very much like
the 3s functions when they are near an ion core. Now here is the clever part. The 3s
wave function is a very wiggly affair near the nucleus – and our conduction electron
is forced into these wiggles by the Pauli requirement for it to be dissimilar from the
filled core states. And wiggles in wave functions mean high curvature (∂2ψ/∂x2 etc.)
and hence high kinetic energy. So the wave function is made to contribute a high
kinetic energy in just those regions of space close to the nucleus where we know
the potential energy must be large and attractive. There is a pretty cancellation here.
This approach is called a pseudo-potential approach. The detailed mathematics and
justification of it is well beyond the scope of a small book on statistical physics. But
the idea is important. What we do is to convince ourselves that the real problem (of a
true conduction electron, moving through a large albeit short-range attractive lattice
potential) has considerable similarity to, and in particular the same one-particle ener-
gies as, a pseudo-problem (of an essentially free electron moving through a much
smaller lattice potential). The pseudo problem is solvable, as in the 1930 treatments,
by perturbation from the free electron model with the perturbing potential now a small
quantity which can be of either sign. It becomes an adjustable parameter (with the
adjustments made by experimentalists or by theorists, who on a good day and for a
simple metal come up with the same answers).

Although this to an extent justifies the FD gas approach, we are still left with the
residual effects of our two potential energy problems.

First, let us continue to ignore any effects of electron–electron interactions. In other
words, we adopt a one-electron approach which is tractable according to an ideal gas
model. The basic assumption that there are one-particle states in which to set the
problem remains; we may write U = ∑ njn εjε , and we may enumerate the states by
fitting waves into boxes as in Chapter 4. What differs from the free electron gas,
however, turns out to be very profound. It is in the dispersion relationship, needed to
convert k (from the waves in the box) into energy ε (to use the FD distribution). Even
a small periodic perturbation, such as that from a crystalline (pseudo-) lattice, has a
dramatic effect on the states near a Brillouin zone boundary, where k for the electron
has a relationship with the lattice periodicity. The result is that the Fermi surface
(see Fig. 8.2) no longer remains a simple sphere (except almost for the monovalent
alkali metals) but becomes carved up and somewhat distorted or ‘sandpapered’ by the
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lattice perturbation. The model is no longer isotropic, but the ε − k relation can be
markedly different in different crystallographic directions. So it is that the parameters
of the model can be changed dramatically, particularly in polyvalent metals such as
aluminium. The original Fermi sphere is chopped up into a number of pieces by the
pathological ε− k relation, notably the existence of energy gaps at the Brillouin zone
boundaries. In many metals or in semimetals like bismuth, the Fermi surface then con-
tains small pieces, which can have electron-like or hole-like character; for instance,
a dispersion relation over the relevant range of the form ε = A + �

2k2/2m1 would
correspond to electrons of effective mass m1, whereas ε = B − �

2k2/2m2 would
correspond to holes (because of the minus sign) of effective mass m2. But it is impor-
tant to stress that the whole statistical treatment remains valid. There is still a Fermi
surface, and the thermal properties are governed precisely by the density of states
g(μ) at the Fermi level. The complication comes merely in the calculation of g(ε).

This one-electron approach has been the basis of much successful modelling of the
thermal and transport properties of real metals. But it is still only an approximation
because of the continuing neglect of what are called many-body interactions. These
are still in fact quite significant in many metals, particularly in the transition metals.
They can be observed experimentally in several ways, of which the following is one:

1. Measure the electronic contribution to the heat capacity, from low-temperature
experiments. This is identified as the linear term γ T in the experimental C =
γ T + βT 3; the T 3 term is the phonon contribution (Chapter 9), whilst the linear
term is the required electronic contribution.

2. Calculate from the ε−k curves the electron density of states g(μ) at the Fermi level;
in practice this can often be done rather accurately, since there are many checks in
the calculation, such as information from specialist Fermi surface measurements.
Hence calculate a so-called ‘band structure’ heat capacity γ using this density of
states (see (8.11)).

3. Note that the measured value is (often) bigger than the calculated one by an
enhancement factor (η, say) which is greater than 1, and in practice can be as
large as 2 or 3. For instance η is about 1.2 even in the ideal sodium, it is 1.5 in
aluminium, about 2.1 in lead and even larger in the transition metal palladium.

There are (at least) three reasons known for such many-body effects, namely
electron–electron interactions, electron–phonon interactions and interactions involv-
ing magnetic excitations. We have mentioned electron–electron interactions above.
But actually they are quite small (except in some transition metals, also the only
candidates for the magnetic enhancement). The reason for this is found in the Pauli
principle, which tends to keep electrons apart, quite apart from the Coulomb repul-
sion. Hence only the long-range part is relevant and this has been used up in screening
the lattice ions (above).

The major effect in simple metals comes from the electron–phonon interaction.
One electron passing through the lattice can excite a short-lived phonon which is then
sensed (absorbed!) by a second electron. This rather subtle interaction is responsible
for superconductivity, to which we shall return briefly in section 15.1.1. It is also
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responsible for most of the enhancement factor. The effect is to couple together elec-
trons which can scatter (emit or absorb) phonons, i.e. those whose energies lie within
about kBkk θD of the Fermi energy. (The Debye temperature θD is a scale temperature
for phonons, typically about room temperature for many solids, see section 9.3.2. It
is much less than the Fermi temperature for a metal.)

The result of this scattering, or mixing together, of one-electron states is illustrated
in Fig. 14.1. It is the one-electron states close to the Fermi energy (just the ones we
are interested in!) which become mixed up with each other by the interaction with
the phonons. The result is that the effective density of states at μ is increased above
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Fig. 14.1 (a) The dispersion relation and (b) the density of states for a free electron gas (dashed curves)
and for an electron gas with interactions (full curves, ‘enhanced’).
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the one-electron value at the expense of other states within a few kBkk θD of the Fermi
level, as shown in Fig. 14.1b. Incidentally, this figure also demonstrates why it is that
at high enough temperatures (T > θD) the enhancement is shed, i.e. η = 1. This
occurs because the experimental ‘sampling window’ of the g(ε) curve is the thermal
energy scale kBkk T . When this window exceeds kBkk θD, the whole of the deformed curve
is sampled rather than simply g(μ). And since the interactions do not generate more
states, but simply move the energies of the old one-electron states, the average density
of states is unchanged. This shedding effect is observed experimentally. It is a fine
challenge to relate the dispersion curve (Fig. 14.1a) to Fig. 14.1b. It shows the same
physics! The states are evenly spaced in k , as ever. The flattening of the ε − k curve
at the Fermi level implies that there are more k-states per unit energy range than
before, as stated above. The joining back to the original curve ensures a higher slope
at energies a little removed from μ and hence a diminished density of states as shown
in Fig. 14.1b.

To summarize this section. We have seen that there are two types of correction
which need to be made to the ideal free gas model in describing conduction electrons.
Fortunately, both effects are capable of being treated as ‘small’ because (i) the overall
electrical neutrality of the metal guarantees an accurate cancellation of the long range
parts of the electron–electron repulsion and the electron–lattice ion attraction and (ii)
the high kinetic energy of conduction electrons near the ion core allows us to deal with
a much smaller effective lattice potential than the true potential. The first consideration
is the effect on the free electron model of the small effective electron–lattice potential,
namely to introduce the lattice symmetry into the band structure or ε− k relation for
the electrons. As a result, although FD statistics are still valid, they must be applied
with the new and intricate ε − k relation, not with the simple free gas one. This
is the ‘one-electron approximation’. The second consideration is to recognize that
there may well be other effects going on which are of a ‘many-body’ character. The
residual electron–electron interactions are an obvious candidate for such effects, but
in practice the largest many-body effects arise from electron–phonon interactions.

14.2 LIQUID HELIUM-3: A FERMI LIQUID

In section 8.3, we introduced the topic of liquid helium-3. The suggestion made there
was that the liquid could be described as a free fermion gas, that the gas is not of bare
3He atoms but of quasiparticles which have an effective mass of several bare 3He
masses. This statement has the correct flavour, but needless to say the full truth is a
little more complicated. Let us explore this in some more detail.

14.2.1 Landau Fermi liquid theory

As stated in section 8.3, our understanding of so-called Fermi liquids owes much to
the Russian theorist, Lev Landau. A fuller treatment of this section may be found in
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specialist low-temperature physics books under the banner of Landau Fermi liquid
theory. What Landau did was to show that for many purposes the energy of an
assembly of N 3He atoms in the liquid can indeed be written as

U =
∑

j

njn εjε (14.1)

where
∑

njn = N as usual. This looks like an ideal gas assumption. However, the
appropriate energies εjε are no longer the free-particle energies. Instead they are some
quasiparticle energies which allow for the fact that when you touch one 3He particle
you touch them all! Anyone who has stirred his tea knows that this is bound to be the
case in a liquid. If you move a particular atom from A to B in a liquid, then there are
consequences for the ‘other’ atoms also. The liquid very strongly wants to maintain a
uniform density, so that there is clearly a ‘backflow’ contribution to the motion – you
need to move some background fluid out of the way at B and into the hole at A. There
is also the fact that you cannot get hold of one atom without involving the interactions
with its neighbours. So it is that a first approximation is to talk about quasiparticles
with an effective mass higher than the bare mass.

The problem is, of course, truly a many-body problem, similar to that discussed
in the previous section. The quasiparticle energies ε, being related to the other par-
ticles present, themselves must depend on the distribution of these other particles.
Furthermore, the influence of these other particles will depend on the property being
discussed. For example, above we discussed a simple A to B motion, but what about
reversing the spin of a particle or passing a sound wave through the liquid? Thus
it is not surprising that the liquid is not describable simply by a one-parameter cor-
rection such as a single effective mass. Rather a range of parameters is required.
The clever part of Landau’s work was to show that only a few such parameters
are needed in practice, when you are considering a Fermi liquid at low enough
temperatures.

In outline, the treatment works as follows. The essential idea is to convince oneself
(not obvious, unless you are called Landau!) that the only significant effect of the
interactions is to change the dispersion relation for the quasiparticles. All the fitting
waves into boxes (Chapter 4) still works, so that the definition of k-states and k-space
and the density of states g(k) is all unchanged from the ideal gas. All that happens
is that the energy ε of a quasiparticle is changed from the ideal gas. All that happens
is that the energy ε of a quasiparticle is changed from the ideal gas ε = �

2k2/2 M .
Also unchanged are the use of the number condition to determine the Fermi energy
μ and the use of the FD distribution (8.2) to give the thermal equilibrium occupation
numbers of the quasiparticle states.

So, how is ε now worked out? The idea is really rather pretty. You concentrate
only on energy changes (and, after all, that is all that any experiment can determine).
Landau considered the change δU in the internal energy of the whole assembly when
a change δfδ (k) is made in the distribution function f (k). In this treatment, we use the
vector k as a label for the k-states as introduced in (4.2), and we use the notation δk
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for a volume element in k-space. Landau’s approach then writes

δU =
∫

g(k)εδfδ (k)dk (14.2)

an equation looking very like the non-interacting U =∑ giεifii iff (compare (14.1)) but
one which is now used to define the excitation (quasiparticle) energy ε.

In the Fermi quasiparticle gas at low temperatures, only excitations close to the
Fermi surface are important, so we may write (to first order)

ε(k) = μ+
(

∂ε

∂k

)
F
(k − kFkk )

The usual group velocity definition of the Fermi velocity gives us quasiparticle
velocity

vF = 1

�

(
∂ε

∂k

)
F

and we may also define an effective mass from the momentum relation M ∗vF = �kFkk .
It is worth stressing that these values of vF and of the effective mass will be different
from the free gas values, because of the new definition of ε. In addition, we can show
that the density of states at the Fermi level g(μ) is changed; it is identical in form to
that for the ideal gas (8.3), but now the mass M must be replaced by M ∗. (This is a
result worth proving from the above, as an exercise.)

The final illumination of the Landau theory is to separate out the effect of the
interactions on these quasiparticle energies. Again, the theory concentrates on energy
changes. The idea now is to look at the energy shift of a particular quasiparticle state
labelled by k. Its energy in equilibrium at T = 0 is ε0(k), and we ask what energy shift
takes place when we change the occupation numbers of all the other states (labelled
by k′). The answer is

ε(k)− ε0(k) =
∫

Fs(k, k′)
g(μ)

δfδ (k′)g(k′)dk′ (14.3)

The ‘interaction function’ Fs(k, k′) is defined in this way because (i) it is dimension-
less and (ii) it is zero in the absence of interactions. For our low-temperature Fermi
liquid, it is obvious that changes in occupations of states k′ which are near to the
Fermi surface are the only ones of any relevance to measured properties. Since all k
values are thus essentially equal to kFkk , a further simplification may be made, namely
that the interaction function Fs may be considered as a function only of the angle, θ
say, between k′ and k. The honest person’s mathematical treatment is then to expand
Fs(θ) in terms of the suitably orthogonal ‘Legendre polynomials’ to give

Fs(θ) = Fs
0FF + Fs

1 cos θ + Fs
2FF (3 cos2 θ − 1)/2+ · · ·
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However, since most measured properties involve rather smooth functions of angle
for the relevant δfδ (k) variations, it is no real surprise that most of the physics is found
in the first two or three of these Fs numbers. The numbers are often called Landau
parameters.

Actually, we have over-simplified the situation in one important respect. As stressed
in Chapter 4, ‘quantum states are k-states plus’. The interaction function must also
specify the spins of states k′ and k. Hence, besides the space-dependent Fs parameters
there is also a spin-dependent set of corresponding Fa parameters, Fa

0FF , Fa
1 etc. These

will be important when a magnetic field is applied, to give a spin-dependent δfδ (k).
The usual superscripts stand for symmetric s and antisymmetric a.

14.2.2 Application to liquid 3He

When we interpret experimental results using Landau theory, we find that (i)
the corrections to ideal gas theory are really large, but (ii) the theory works
remarkably well.

Most properties are explained using only the three parameters Fs
0FF , Fs

1 and Fa
0FF .

For instance, the effective mass turns out to depend on Fs
1 (the cos θ treats north and

south differently, as required for A to B motion), and calculation shows that M ∗/M =
1+Fs

1/3. The effective mass is experimentally accessible through the density of states,
i.e. from the heat capacity, which is proportional to M ∗. As an example, consider pure
liquid 3He at low temperatures and at zero pressure – remember it can be studied at
pressures up to 35 bar before it solidifies. As noted in Chapter 8, the heat capacity is
found to be linear in the millikelvin range, characteristic of an ideal FD gas. However,
the magnitude of C at zero pressure is about 2.76 times larger than expected from
ideal gas theory with the normal 3He mass. This is explained in Landau theory by
setting 2.76 = M ∗/M = 1 + Fs

1/3, and hence Fs
1 = 5.3. As noted above, F = 0

would imply no interactions; this is a big effect, and it gets even bigger as pressure is
applied, reaching Fs

1 = 14.6 at the melting pressure (35 bar).
The first Landau parameter Fs

0FF turns out to be even larger (Fs
0FF = 9.2) for 3He at

zero pressure. This interaction term is uniform over all states, so it comes into play
when the density changes as in a sound wave. The value of 9.2 derives from the
experimental sound velocity of around 180 m s−1.

The value of Fa
0FF is obtained from measurements of the magnetic susceptibility

(see (8.13)). This depends on the density of states (as does the heat capacity) but
also on the tendency for alignment of the spins; the discussion of ferromagnetism in
section 11.2 is relevant. In fact the susceptibility is about a factor of 3 higher than
would be expected from non-interacting spin- 1

2 fermions in a gas with the density of
states determined from the heat capacity. Spin-dependent interactions enter through
a factor (1 + Fa

0FF )−1 in the susceptibility, and the experimentally determined value
of Fa

0FF is – 0.7. This is a very strong coupling, with the negative sign implying that
interactions tend to align the spins. It is worthy of note that a value for Fa

0FF of –1
would imply that the liquid was ferromagnetic!
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The Landau parameters relate to other measured quantities also, for instance the
viscosity and diffusion coefficients in the liquid. These transport properties can be
explained on Fermi liquid theory with a remarkable efficiency and using no new
assumptions. The only additional idea to be introduced (and worked out using the
theory) is that of the mean free path l for 3He–3He scattering. Because of the Exclusion
Principle, scattering can only take place for quasiparticles with energies up to about
kBkk T from the Fermi energy. This leads to the result l ∝ T−2 in the degenerate
FD regime, so that the mean free path, and with it the viscosity of the liquid, gets
extremely large at low temperatures. For example, the viscosity of pure 3He just
above its superfluid transition at 1 mK is about the same as the engine oil in a car!
(See Fig. 15.3 for some measurements related to this viscosity; the fluid thins out
dramatically again when it becomes a superfluid.)

Therefore we now have a very full understanding of the properties of liquid 3He.
If that were the end of the Landau story, it would be clever, but not world-shattering.
However, there is even more to relate. The really splendid thing is that Landau’s
theory predicted some entirely new effects. The most important of these is called zero
sound. Normal sound in a gas does not propagate when the mean free path becomes
large enough; a bell cannot be heard through a vacuum. The density gradients of
the sound wave cannot be established when the scattering length becomes larger
than the sound wavelength. However in the interacting Fermi liquid, an entirely
new type of collisionless collective motion of the liquid becomes possible, with
the restoring force deriving from the interactions. Thus as the temperature is low-
ered (to increase l) or as the sound frequency is raised (to lower the wavelength),
it is observed that the sound velocity shifts (from around 180 to 190 m s−1) and
there is also a large attenuation in the changeover regime, as normal (‘first’) sound
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Fig. 14.2 The velocity of sound in liquid 3He at millikelvin temperatures. The measurements show the
transition from first (normal) sound at high temperatures to zero sound at low temperatures.
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changes to the new mode of zero sound. Some experimental results showing this
effect are shown in Fig. 14.2. The rich experimental data here is entirely as predicted
by Landau theory, and gives a striking confirmation of the validity of the whole
approach.

Finally in this section, we can remark that there are many forms of Fermi liquid
available to the 3He physicist and for which Landau theory gives a good description.
Besides pure 3He as a function of pressure (and hence density), there is also the whole
topic of 3He–4He solutions. At low temperatures (say, below 100 mK), these solutions
have remarkably simple properties. The 4He component of the solution is thermally
dead. It is well below the superfluid transition temperature, so that it has already
reached its zero entropy ground state (see section 9.2, and in particular Fig. 9.6). Thus
all of the thermal action belongs to the 3He component only. Nature is kind here, in that
there is a substantial solubility range of 3He in 4He, from zero up to a 6.8% solution
(at zero pressure; the solubility goes up to about 9.5% at 10 bar). Therefore we have a
Fermi liquid whose concentration can be varied over a wide range. Experiment shows
that the heat capacity (and many other properties) follow the ideal gas model very well
indeed, but with modified parameters as expected from the Landau methodology. For
example, the effective mass of a 3He quasiparticle in a very dilute 3He–4He solution
is about 2.3 times the bare 3He mass. This enhancement comes dominantly from
interaction with the 4He background for solutions with less than 1% concentration,
so that it is independent of the 3He concentration. These solutions are a beautiful
example of the detail of FD statistics, since the transition from classical (MB) towards
quantum (FD) behaviour can be followed from well above to well below the Fermi
temperature. The Fermi temperature of a 0.1% solution is about 27 mK, and varies
as (concentration)2/3 (see section 8.1.3), so there is a lot of measurable 3He physics
between 100 mK and (say) 5 mK, achievable with a dilution refrigerator (which itself
operates on 3He–4He solubility, as mentioned earlier in section 10.1.1).

14.3 LIQUID HELIUM-4: A BOSE LIQUID?

Unlike the previous two sections about Fermi liquids, this section will be short. This
is because there is no simple way of dealing with interactions in a Bose–Einstein
system. In the Fermi–Dirac case, the effect of the ‘unfriendly’ statistics is to keep the
particles apart. This limits the scope of the interactions and allows Landau theory to
be used. There is some reasonable separation between one particle and the ‘others’
which dress it to form a quasiparticle, simply because those ‘others’are all in different
states. Hence the success of the quasiparticle idea. In the case of a degenerate BE
gas, there is no such separation. In fact, the ‘friendly’ statistics encourage precisely
the opposite, and the particles in the Bose-Einstein condensation crowd into the
ground state.

What we have seen in the experimental situation (section 9.2) is that the liquid
does have a phase transition, but one of a markedly different behaviour from that
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of the non-interacting ideal gas. This contrasts with the Fermi liquids, in which the
simple gas theory still works accurately, so long as a few parameters are ‘adjusted’.
For the Bose liquid, the whole temperature dependence is modified. The transition
to superfluidity in 4He is a λ-transition, rather than the much gentler third-order
transition (compare section 11.1) at the ‘condensation temperature’of an ideal BE gas.
It seems that the interactions enhance the co-operative behaviour of the system near the
transition. (This is reminiscent of our remarks about the transition to ferromagnetism
in real materials which have short-range interactions (section 11.3) as opposed to
the ideal mean field (long-range) interaction of section 11.2. Co-operation between
noninteracting bosons by statistics only is an extreme example of a long-range effect.)

There is another mystery about liquid 4He, thought to arise from the interactions.
In the Bose–Einstein gas and in real liquid 4He one can explain the low temperature
behaviour in terms of a two-fluid model (see section 9.2). As T approaches zero, the
whole material is seen to behave as a pure superfluid, i.e. there is no normal fluid
remaining. As described in the previous section, the 4He is thermally dead. In the
theoretical friendly BE gas, the superfluid is pictured simply as having all particles
together in the one-particle ground state. That is the Bose–Einstein condensation.
Thus it is natural and reasonable to visualize the pure superfluid 4He in the same way,
as pure ‘condensate’. But actually, it seems that interactions have a much more subtle
effect. Two experiments using entirely different techniques (one involving neutron
scattering and the other surface tension) have measured the ‘condensate fraction’in the
pure superfluid, and agree that it is about 13–14% only of the total particle number. It
seems that the interactions actually deplete the one-particle ground state and that most
of the 4He atoms are scattered into other states, but that the occupation of these other
states is not observed in any normal transport or thermal experiments. A convincing
physical explanation of this strange state of affairs remains as yet undiscovered,
it seems.

14.4 REAL IMPERFECT GASES

In the last section of this chapter, we return to ordinary honest gases, like the air we
breathe. So far we have made two simplifications to the treatment of real gases. One
is that, for all but low-temperature helium gas, the dilute MB limit applies, i.e. the
quantum nature of the gas has no practical effect. A classical treatment applies. This
is a very good approximation, and one that we shall continue to use and to exploit.
The second simplification has been to ignore interactions. This is all right for dilute
enough gases, where the molecules are distant, and it is well known that ideal gas
theory is accurate and universal in this limit. However, it is equally well known that
gases liquefy at high enough densities and low enough temperatures, and that here
interactions play the dominant role. The idea of studying the statistics of imperfect
gases is to see the onset of interaction effects, starting from the ideal gas side.

We shall do this in two stages. Step one is to formulate statistical physics in a
classical manner – this has great interest, in that the whole subject predated quantum
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theory, so that we are getting back to Boltzmann. Step two is then to start to apply
the classical treatment to an imperfect gas, although we shall give up when the going
gets too technical.

14.4.1 Classical statistical mechanics

The classical approach to statistical physics was to use the concept of phase space.
Consider first the state of one particle, a gas molecule in a box. Its classical state is
specified by the position and momentum of the particle, something which Heisen-
berg’s Uncertainty Principle nowadays tells us can only be done with limited precision.
Phase space is defined as a combined position and momentum space. For the phase
space of one particle, there are six dimensions to the space, and the state of the particle
is then specified by a single point in the space. For a quantum mechanic, there would
be worries if the point were not cloudy (uncertain in position in phase space) over a
volume of about h3. This is because we expect �p� x �x ∼ h and similarly for the y
and z pairs of dimensions, giving a six-dimensional volume uncertainty of h3.

It is instructive to see how this idea ties in with our discussion of the quantum
states for a particle in an ideal gas in Chapter 4. There we saw that the states could
be represented by points in k-space with a separation of 2π/a (a is a cubical box
dimension and periodic boundary conditions are used). This gave an equal volume
occupied in k-space for every state of (2π)3/V , where V = a3 is the volume of the
cube. Hence the result of Chapter 4: there are V /(2π)3 states per unit volume in
k-space, whatever the size and shape of the real space volume V .

How does this translate into phase space? Consider a small volume in phase space
δv = δpx δpy δpz δx δy δz. This is the product of a small volume in real space (δx δy δz)
and an element of momentum space (δpx δpy δpz). But, using de Broglie’s relation p =
�k, the momentum space volume is simply �

3 times the k-space volume. Therefore,
using the k-space result above, we can at once work out that the six-dimensional
volume δv contains a number of states equal to δv/[�3(2π)3] = δv/h3.

Thus, as suggested from hand-waving earlier, each and every h3 volume of
phase space has one quantum state associated with it. This is a remarkably simple
geometrical result.

The classical treatment for the statistical physics of an ideal gas then proceeds as
follows. The microstate (state of the assembly of N particles) can be specified by
a single point in a 6N -dimensional phase space; this point defines the momentum
and position of each and every particle. The energy constraint of the microcanonical
ensemble means that the representative point must lie on a (6N –1)-dimensional con-
stant energy ‘surface’ in this space. The old averaging postulate was to give equal
weight to equal ‘areas’of this surface. From a suitable generalization of discussion in
the previous paragraph, it is now easy to see that this use of volumes in phase space as
the statistical weight for classical microstates is identical to the quantum assignment
of equal weight to each individual microstate. The connection is that equal volumes
h3N of phase space each contain one quantum state.
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The end result is that in the classical limit we simply replace sums over states
by integrals over the appropriate phase space. It is worth again stressing that in the
prequantum era of Boltzmann, it was a monumental achievement to make the above
averaging postulate.

As one example of the classical approach, consider again the calculation of the one-
particle partition function Z for an ideal monatomic gas. In Chapter 6 we used ideas of
k-space to do the sum over states as an integral in k (see (6.4)) to give finally the result
(see (6.6)) Z = V (2πMkBkk T )3/2/h3. The classical partition function is obtained as
a simple integral of the Boltzmann factor (exp−ε/kBkk T ) over the one-particle phase
space

ZclassZZ =
∫

exp[−p2/(2MkBkk T )] dpd x dpd y dpd z dx dy dz

Since the energy does not depend on position, the space part of the integral simply
gives a factor V and the momentum part is treated the same way as was the k integral
in Chapter 6. The result is that ZclassZZ = V (2πMkBkk T )3/2, i.e. the same as before, only
without the constant factor h3, which we now know is needed to convert phase space
to quantum states.

14.4.2 Imperfect gases

We are now ready to look at imperfect gases. One can realize immediately that the
difference to be taken into account is that (unlike in the previous paragraph) the energy
is now dependent on molecular position as well as momentum. Therefore we must
work in the conceptual framework of the canonical ensemble, which involves the
assembly partition function ZAZ (see (12.5)), worked out from all possible energies
of the whole assembly of N gas particles. As explained in section 12.2, if we first
work out ZAZ , then we can compactly and conveniently compute thermodynamic
quantities. Here we are particularly concerned with the pressure, in order to quantify
the corrections to the equation of state for an imperfect gas when interactions are
switched on. What we shall expect to obtain is a result of the form

P

kBkk T
= n+ B2n2 + B3n3 · · · (14.4)

where n = N/V is the number density of the gas. Equation (14.4) is called the virial
expansion of the equation of state, and the B coefficients are functions of temperature
only. The first term alone gives PV = NkBkk T , the ideal gas equation of state.

The attempt to calculate ZAZ proceeds as follows. Suppose that there is a non-zero
intermolecular potential energy �(r1, r2 . . . rN ) between the N molecules. For a gas,
one can safely assume that this potential energy is derived from a sum over all pairs
of molecules of the pair potentials, φ(rij) being the potential energy of a pair of
molecules a distance rij = ri − rjr apart.

The partition function ZAZ is defined as the sum over all possible assembly states
of the quantities exp(−E/kBkk T ) where E is the energy of the assembly state. Thus it
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is evaluated as the integral

ZAZ = 1

h3N

1

N !
∫

exp(−E/kBkk T ) dp1 . . . dpN dr1 . . . drN (14.5)

We use the contracted notation dri for dxi dyi dzi, the volume element for the ith par-
ticle, and similarly for its momentum element dpi. The factor h3N is the phase space
to states factor mentioned above. The N ! factor comes from the indistinguishability
of the identical gas molecules, since without it the same state would be counted N !
times in the integral.

The assembly energy is worked out as the sum of kinetic and potential energy, i.e.

E =
∑

i

p2
i

2M
+�(r1, r2 . . . rN ) (14.6)

When (14.6) is substituted back into (14.5), the integral splits into two parts, a space
part and a momentum part. The momentum part is precisely the same as that for an
ideal gas, and gives the product of 3N identical one-dimensional integrals of the form∫ ∞

−∞

∫∫
exp(−p2/2MkBkk T )dpd

where p is a momentum component of one particle. This integral is readily evaluated
(I0II in Appendix C) as (2πMkBkk T )1/2. Hence the partition function, (14.5), can be
written as

ZAZ = 1

h3N

1

N ! · (2πMkBkk T )3N/2 · Q (14.7)

where Q is called the configuration integral, defined as

Q =
∫

exp(−�/kBkk T ) dr1, r2 . . . drN (14.8)

It is an integral over the whole of a 3N -dimensional real space giving the positions
of all the N particles (so-called configuration space). We may note at once that for
a perfect gas, i.e. one for which � is zero for all particle positions, the integrand in
(14.8) is unity and hence Q = V N . We thus recover the usual result (see section 12.2):
ZAZ = ZN /N !, with Z = V (2πMkBkk T/h2)3/2.

In the interacting situation, the configurational integral depends on the relative posi-
tions of the particles. The way the story now unfolds is to concentrate on an interaction
function fijff between a pair of particles i and j, defined by fijff = [exp(−φ(rij)/kBkk T )−1].
This function is arranged so that it equals zero at large separations, it is positive at
moderate separations (when the molecules attract) and it equals –1 when the molecules
are very close (when the particles’ hard cores exclude each other). Equation (14.8)
then becomes

Q =
∫ ∏

all pairs

(1+ fijff )dr1 . . . drN (14.9)
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The extended product is not so easy to evaluate after the leading term, which gives
simply unity and hence a contribution to Q of V N as for the perfect gas considered
above. The interactions are all in the fijff s. The terms involving f factors are often
grouped using the idea of ‘clusters’, which specify the number of interacting particles
which are involved together. The order of a cluster is chosen to be equal to the number
of interacting particles minus 1. For instance, in the expansion of (14.9) there are terms
with just one f factor (f(( from one bracket, with factors of 1 from every other bracket,
e.g. f12ff ). These are single first-order cluster terms, since only one pair of interacting
particles is involved. We can (given the form of φij) in principle evaluate such terms.
Since fijff = 0 outside a typical atomic diameter, it is not difficult to see that each
such term contributes to Q an addition of order V N−1b where b is the molecular
volume. Next consider terms with two f factors. There are two types of these, for
example f12ff f22 45ff and f12ff f22 23ff . The first of these is a product of two separate first-order
clusters, whereas the second corresponds to a single second-order cluster. These terms
similarly each generate additions to Q of order V N−2b2.

Thus one can see that a power series of the form Q = V N [1+a1(b/V )+a2(b/V )2+
· · · ] emerges. This expansion is one in which b is independent of V , T and N , and
in which we can expect the coefficient a1 to be proportional to N (the number of
single f terms in the expanded product) and to depend on T through the exponent
exp(−φ/kBkk T ). Therefore when we come to evaluate the pressure, using P/kBkk T =
(∂ ln ZAZ /∂V )T ,N (compare (12.7) and remember P = −(∂F/∂V )T ,N ), we recover
an expansion of the form of the virial expansion, (14.4).

Actually, the whole evaluation of the configurational integral gets very tough and
technical, and we shall not pursue it further here. However stretching on the imagi-
nation is the detail, this cluster classification nevertheless does enable calculations to
be made which give useful results for imperfect gases and which give reliable values
from first principles for the virial B coefficients of (14.4).
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Statistics under extreme
conditions

In most of this book, we have been dealing with conventional materials. However,
statistical physics can be useful in a number of situations where the environment is
anything other than ordinary.

One of these situations concerns superfluidity. Superfluid states are normally asso-
ciated with extremes of low temperature, although nowadays the advent of ‘high’
temperature superconductivity brings them nearer to our direct experience. We have
already covered quite a lot about BE superfluids and superfluidity in liquid 4He in
earlier chapters (9 and 14). But more surprising, and more exotic, is the existence
of superfluid states in FD systems, and this is the topic of section 15.1. At the other
end of the spectrum, there are surprisingly important roles for statistical physics in
our understanding of the stability of white dwarf and neutron stars, and these are
discussed in section 15.2, together with a few comments about cosmology and the
big bang.

15.1 SUPERFLUID STATES IN FERMI–DIRAC SYSTEMS

In our treatment of gases, we have seen that an ideal BE gas (Chapter 9) at low
temperatures becomes ordered by having all of its particles enter the same ground
state. The assembly ground state (at T = 0) is simply the symmetric combination
which has all N individual particles in the same, lowest one-particle state. As we have
seen, this type of coherent occupation of a single quantum state by all the particles
gives a valuable (if imperfect, Chapter 14) picture of the superfluidity observed in
liquid 4He below 2.17 K.

An FD gas becomes ordered in a very different way, with the assembly ground
state being dominated by the Pauli exclusion principle. Since all one-particle states
can now be at most singly occupied, the assembly ground state (Chapter 8) has full
occupation for the one-particle states with energies up to the Fermi energy μ(0), and
zero occupation for those with higher energies. This provides a well-ordered (zero
entropy) state, as is appropriate to T = 0, but the state is one of considerable energy,

169
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equal to 3
5 Nμ(0) for an ideal gas. Not altogether surprisingly, nature seems to seek a

way to lower this high zero-point energy. One such way is for a magnetic transition to
occur, as happens in some metals. But another way is for a transition to a superfluid
state to take place, and this is the topic of the present section.

For a full discussion of superfluidity in FD systems, the reader must consult a
specialist book on low-temperature physics (such as the author’s Basic Superfluids).
The following will only touch upon a few aspects of what is an exciting field for both
physics and technology.

15.1.1 Superconductivity

Many but not all metals become superconducting at low enough temperatures. The
transition temperature TCTT is typically a few kelvin (for example 1 K for aluminium,
3.7 K for tin, 7.2 K for lead; none of the monovalent metals become superconducting).
Below TCTT , a two-fluid model can again be used (as in superfluid 4He) to describe the
properties. The super-state has zero entropy, i.e. it is fully ordered. The normal fluid
density varies with temperature as exp(−�/kBkk T ), where � is a characteristic energy,
called the energy gap, of order of magnitude 1.75 kBkk TCTT . This exponential Boltzmann
factor means that the normal fluid is totally insignificant at temperatures below 0.1
or 0.2 TCTT . So we can understand the temperature dependence of the specific heat and
of the entropy, as illustrated in Fig. 15.1.

How does this come about? Well, a glance at the energy scale should warn that it is
a subtle effect. In a typical metal, the Fermi temperature of the conduction electrons
(Chapter 8) is 50 000 K, and the lattice vibrations have a characteristic temperature
of order 300 K, whereas the transition temperature is merely 1 K. The idea is that
there is a small attractive interaction between conduction electrons, arising using the
intermediary of the lattice phonons, which can win out over the obvious Coulomb
repulsion. This is not so unlikely when we recall the discussion of section 14.1,
where we saw that at long range this repulsion is screened out by the ions. In a
superconductor, electrons team up in pairs (called Cooper pairs after the originator of
the idea) moving in opposite directions and with opposite spins. In jargon, these are
L = 0, S = 0 pairs, where L gives the total angular momentum and S the total spin.
(If you are an expert on quantum mechanics of identical particles, you can check that
this arrangement will give an antisymmetric wave function as required to describe
fermions!) To be oversimplistic about it, it is clear that two odds must make an even;
two spin- 1

2 fermions paired must give a boson, so that if the electrons conspire to
occupy states only in pairs, they can fool the symmetry of the system.

The nature of the interaction between electrons is a second-order one, in that a third
particle is involved. Roughly, what happens is that one electron (wavevector k) in
travelling through the lattice can excite a short-lived (‘virtual’) phonon; this lattice
disturbance is then sensed in a coherent way by the second electron (wavevector
−k) which is travelling in exactly the opposite direction (to give L = 0). It is this
interaction by which the conspiracy to paired occupation was found (by Bardeen,
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Fig. 15.1 The normal-to-superconducting phase transition in zero applied magnetic field. The graphs show
the dependence on temperature of the electronic heat capacity C and entropy S. Note the increased order
(decreased S) of the superconductor compared to the normal state at the same temperature. The curves are
related by C = T (dS/dT ).

Cooper and Schrieffer (BCS) in 1957) to lower the energy of a coherent ground
state. The energy gap � is the minimum energy per electron needed to break one of
these pairs. The exp(−�/kBkk T ) form of the thermal properties at low temperatures
follows from the basic statistical formulae (actually from the high energy tail of the
FD distribution function) when it is appreciated that there is this energy gap between
the ground state (superfluid) and the excited states (normal fluid).

The electrons in the coherent ground state have fascinating, somewhat alarming,
properties. They are described by a single wave function (analogous to the boson
ground state which describes all particles in the BE gas). This results in three classes of
remarkable property: (i) the electrical resistance is zero – compare the viscosity in 4He;
(ii) magnetic B-fields are excluded from the metal, shielded out by surface persistent
currents; (iii) there are quantized states, corresponding to magnetic flux linked in
units of h/2e, around a loop in the superconductor. In view of the second property, it
is not surprising that the superconducting state is suppressed by high enough applied
magnetic fields, and the use of superconductors to produce high-field, stable and loss-
free magnets is therefore a difficult problem and involves special materials. The third
property gives the basis for the whole ideas of ‘SQUIDs’ (superconducting quantum
interference devices), the most sensitive electro-magnetic measuring instrument in
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existence. It is worth mentioning that the 2 in the h/2e flux quantum arises directly
from the pairing mechanism, and is an experimental confirmation of the unlikely
ideas of BCS!

In recent years, the topic of superconductivity has aroused considerable new interest
with the discovery of ‘high-temperature superconductivity’ in certain oxide materi-
als. Transition temperatures around 100 K are available in some of these remarkable
materials, and a lot of study has been made of YBCO (yttrium barium copper oxide)
and similar layered materials, in which it seems that superconductivity is associated
with copper oxide planes in the structure. These oxides are miserable conductors in
the normal state above TCTT compared to conventional metals. It has been shown that
Cooper pairs are again involved in the superconductivity. However, the precise mech-
anism for the attractive interaction is a matter of much controversy and uncertainty
(a joke about N theoretical physicists producing N (N − 1)/2 theories is perhaps in
order here?). It is exciting to meet a technologically important field in which the basic
physics is insecure, so there is a lot of current activity in this area.

15.1.2 Superfluid 3He

The other Fermi–Dirac system of interest is (yet again) liquid 3He. In Fig. 8.5, we
introduced the 3He phase diagram, which illustrates that at reasonably low pressures
there is no solid phase. Instead liquid exists down to the lowest temperatures, and it is
of relevance to be curious about the nature of the liquid ordered state as the absolute
zero is approached. In fact it was discovered in the early 1970s that, right down in the
millikelvin range, the liquid does become a superfluid. The low-temperature phase
diagram is shown in Fig. 15.2.

Again, the reader must be referred to specialist low-temperature texts for detail,
but a brief outline of some salient points follows.

1. Cooper pairs (two odds make an even!) are again involved. The mechanism is as
before a second-order process, but the intermediary is now not the phonon system.
Rather it is the magnetic polarization of the background 3He fluid. As we noted
in section 14.2.2 the magnetic moment of one spin- 1

2
3He atom interacts strongly

with the others. Hence in the second-order process, one half of a Cooper pair leaves
a polarization trail in the surrounding fluid and this is then sensed by the second
half of the pair. This effect is a subtle one, which is why TCTT is in the millikelvin
range rather than being of order kelvin (as it is in 4He).

2. However, it is much more exotic than most (if not all) superconductivity. The
pairs are between parallel spins, not antiparallel ones. Thus S = 1 and L = 1 in
superfluid 3He. This gives an extra complexity and a unique interest to this topic.
The complexity is witnessed by the existence of two very different phases (the A-
and the B-phases …guess which was discovered first!) as shown in Fig. 15.2. The
ordering in the 3He superfluid needs to be described by vector quantities, rather
than the simple scalar � of the superconductor.
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Fig. 15.2 The phase diagram of 3He at millikelvin temperatures, and in zero applied magnetic field. The
A- and B-phases are different superfluid phases.

3. In the A-phase, these vectors correspond to a spin (S) direction and an orbital
(L) direction, shared by all pairs in a particular region of the fluid. Hence the
A-phase has many similarities with liquid crystals, which also order with a highly
anisotropic vector ordering parameter. (The magnitude of the order parameter
gives the strength of the ordering; the direction of the vector gives the direction
of alignment of the liquid crystal molecules.)

4. In the B-phase, the S = 1, L = 1 pairs collect together in a much more uniform
way, and the anisotropy is practically non-existent (although it can have secondary
manifestations). Many experimental properties of the B-phase are described sim-
ply in terms of a single scalar � parameter. Figure 15.3 gives an example of this
type of behaviour, and it also serves as a dramatic illustration of the existence of
superfluidity. As noted above in section 14.2.2, 3He is a highly viscous liquid above
TCTT , so that the damping of a vibrating wire is very large. When the liquid is cooled
below TCTT , however, the damping falls off rapidly, varying as exp(−�/kBkk T ), the
usual Boltzmann factor, at low temperatures as the normal fluid is frozen out. At
the lowest temperatures the vibrator behaves as if in a vacuum with a damping
coefficient 100 000 times less than at TCTT .

5. The fact that the pairs have S = 1 means that they are magnetic. The behaviour
of the superfluid is thus profoundly influenced by applied magnetic fields. This
is so even in the B-phase, which becomes unstable if a large enough field (of
order 0.4 T) is applied, the superfluid reverting to the more magnetic A-phase. The
whole phase diagram changes, which is why the B = 0 qualification was needed
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Fig. 15.3 The damping of a vibrating wire in liquid 3He, measured by the author and colleagues in
Lancaster. The damping changes by about five orders of magnitude from the transition down to the lowest
temperature (130 μK in this work). The damping is plotted logarithmically against 1/T , and the linear
relation in the superfluid shows that the damping is frozen out by the gap Boltzmann factor, exp(−�/kBkk T ).

in Fig. 15.2. In contrast with superconductors, the effect of the field on TCTT itself
is minor, but it reinforces one phase rather than the other. In the usual low-field
A-phase the B-field has a marked effect on the vector ordering by a tendency
to align the local S direction. Since in the A-phase L is itself constrained to be
perpendicular to a wall (otherwise the pair would rotate into it), and there is also
a dipole coupling between spin and orbital motion, the whole system is one in
which topological insight and imagination are required. Thus superfluid 3He gives
an accessible laboratory for all sorts of theoretical speculation in a whole variety
of different regions of physics, from cosmology to turbulence.

15.2 STATISTICS IN ASTROPHYSICAL SYSTEMS

The simple ideas of statistical physics turn out to have a profound influence on our
understanding of some parts of astrophysics. We shall briefly discuss two such areas
(out of many). In the first, according to modern (fashionable?) theory, a simple
Boltzmann factor turns out to be a vital factor to tell us about the chemical makeup of
our universe shortly after the big bang. The second area is at the opposite end of the
time-scale, in our understanding of the stability or otherwise of certain types of stellar
matter. The properties of dense Fermi-Dirac gases are a basic part of a discussion of
white-dwarf stars and of neutron stars, and we shall outline some of the features.
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Whether or not superfluidity is a part of the understanding involves speculation too
uncertain even for the average astrophysicist, and we will not be drawn into this
intriguing question!

15.2.1 After the big bang

The nowadays orthodox view of big bang cosmology is based on three principal
pieces of evidence: (1) the observation by US astronomer Edwin Hubble and others
that the universe is expanding, (2) the existence of the cosmic background radiation,
and (3) the observation that 25% of the mass of the universe is helium.

The idea is that, since the universe is now expanding, we can imagine running
time backwards towards a beginning, where the universe was effectively at a point
and had infinite temperature. Forward from that (almost unimaginable) big bang, we
have a system which is gradually expanding and cooling, with the ‘normal’ laws of
physics applying after about time t = 10−34 seconds. At that stage, the temperature
was about T = 1027 K.

At the present day, t = 15 × 109 years, the temperature has cooled to that of the
uniform cosmic background radiation. Recent measurements from the COBE satellite
have confirmed that our universe today is filled with rather (but not exactly) spatially
uniform radiation. The spectral density of the radiation follows very precisely the
black-body radiation spectrum (see (9.13) and Fig. 9.7) corresponding to a thermal
equilibrium temperature of 2.726 K. This is seen as a logical legacy of the original
hot big bang and was predicted long before its eventual measurement. It is a very
beautiful example of the photon gas treatment of Chapter 9.

The origins of the 25% helium involves many of the ideas introduced in our dis-
cussion of chemical reactions in Chapter 13, and in particular concerns Boltzmann
factors of the type exp(−�E/kBkk T ). Consider first what happens up to about t = 10−3

seconds, by which time the temperature T has cooled to a mere 1012 K. The universe
will contain a lot of photons (γ rays) of typical energy several times kBkk T (about
100 MeV), using the black-body spectrum. This means that there will also be created
particles and antiparticles of various sorts (thought to be quarks and other exotic par-
ticles, the ‘quark soup’). As the system cools, so does the energy scale of the photons
and hence also the upper mass of creatable particles (using E = mc2 ∼ kBkk T ).

By t = 10−2 seconds, the temperature has fallen to around 1011 K, and the energy
scale to 10 MeV. This is now too cold for anything but the particles with which we are
familiar: photons, electrons, neutrinos, neutrons and protons. Nucleosynthesis (man-
ufacture of heavier nucleons) has not yet started, since ample γ photons are available
to break up any transiently formed deuterons. Thermal equilibrium prevails, hence the
interest to statistical physics. Because of this equilibrium, the neutron/proton ratio is
determined simply by the temperature. We would predict (correctly) that, in thermal
equilibrium, the number of neutrons divided by the number of protons is

NnNN /NpNN = exp(−�mc2/kBkk T ) (15.1)
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where �m is the mass difference between neutron and proton. Using the known mass
values, we find that �mc2 is about 1.3 MeV (the proton mass is 938 MeV). Thus
�mc2 = kBkk T at about 1.5×1010 K. Thus (15.1) suggests that at 1011 K, the numbers
of neutrons and protons are substantially equal; we are in a high-temperature limit
for this equilibrium. At 1010 K, the ratio should be about 0.22, and at later times
(lower temperatures) it should rapidly drop to zero according to (15.1). However,
here we can use our knowledge (Chapter 13) of reactions to realize that the thermal
equilibrium situation will not last for ever. There is an activation energy for the beta-
decay reactions which maintain equilibrium between neutrons and protons. What
happens is that at around 1010 K (t ∼ 1 second), the reactions become sufficiently
slow that the approximately 20% of neutrons are effectively frozen out in a metastable
state on the current time scale.

In the next period, nucleosynthesis is still delayed by the high energy tail of the
gamma photons. However by about 100 seconds (109 K) these photons are sufficiently
few to allow deuterons and hence other nuclei to start to form. Many of the neutrons
thus end up as helium, the alpha particle being a very stable and thus favoured product.
Modelling suggests a few other nuclei, including a very little 7Li. By 10 000 seconds
(107 K, 10 keV) there are no free neutrons left, since those few which did not form
nuclei have in any case beta-decayed spontaneously into protons (half-life = 1000
seconds). Thus no further nuclei are formed, since two nucleons must overcome a
Coulomb barrier to fuse, and the thermal energy is not large enough to allow this.
Thus no heavy nuclei are formed at this stage, and their formation must await the
nuclear reactions in the hot centres of stars millions of years later. We may note that
the suggestion of essentially 25% helium, 75% hydrogen for the nuclei at this stage
implies a neutron/proton ratio of 1/7, entirely consistent with the above scenario.

15.2.2 The stability of stars

Astrophysicists have always been good at making up names. The majority of observed
stars (of which our Sun is one) show a correlation between brightness and colour.
These form the ‘main sequence’ stars, in which faint stars are red and bright stars
are white. But there are exceptions, with the picturesque names of red giants (and
supergiants) and white dwarfs.

In the main sequence, the energy source is primarily from hydrogen fusion reactions
to produce helium, generating and sustaining high temperatures. The correlation
relates to the black-body radiation spectrum from a hot body. The hotter it becomes,
the brighter it is (U ∝ T 4) and the whiter it is (νmax ∝ T ) as shown in section 9.3.1.
Thus the radiation from our Sun is essentially that of a black body with temperature
equal to that of the surface Sun temperature (about 6000 K).

An interesting question is what happens to a star when the hydrogen is finally burnt
out. How does it die? Certainly initial cooling and gravitational collapse can then
occur. But within this context there are (at least) three possible next stages. One is
formation of a white dwarf, one is formation of a neutron star and the third is collapse
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in a single stage to a black hole. Both of the first two of these involve highly dense
matter and extremely degenerate Fermi–Dirac gases.

First, consider white dwarf stars. They are faint objects, because the principal
energy source is simply from a gradual gravitational collapse. Nevertheless, by
becoming dense they remain hot, with a typical core temperature of 107 K, simi-
lar to that of the core of the Sun. Hence the white colour. They are made up of helium
(and/or of heavier nuclei – this is not known, and it has little effect on the follow-
ing). They are extremely dense, about 107 to 1011 kg m−3, i.e. a million times more
dense than the Earth (imagine your body weight in a cubic millimetre!). At these
temperatures, the electrons are all free from the nuclei, so that there is a dense FD
gas of electrons. Coulomb forces ensure that the material remains overall neutral,
the electrons follow the nuclei and vice versa. The stability of the white dwarf arises
from a balance between the attractive gravitational potential energy of the nuclei and
the high kinetic energy (and hence pressure) of the FD electron gas. It turns out that
a heavy white dwarf is never stable, the largest possible mass being about 1.4 solar
masses for it not to suffer further gravitational collapse.

In a neutron star, further collapse of the material leaves our neutral star all in the
form of neutrons, the protons and electrons having combined by inverse beta-decay.
The density is even higher than for a white dwarf star, around 1013–1017 kg m−3. This
means that the neutrons are only a few neutron radii apart, not far from pure nuclear
matter. Again stability of the star occurs when there is a balance between gravitational
attraction and the outward pressure of the highly degenerate FD neutron gas. Once
again it turns out that there is an upper mass limit for stability, namely 1.5–2 solar
masses although an exact calculation is not easy. A larger star must, it seems, collapse
to become a black hole in a single step.

Let us briefly examine the stability of these systems in more detail.

Pressure of a degenerate FD gas. In section 8.1, we worked out the pressure of a
uniform, non-relativistic, spin- 1

2 , ideal FD gas. There are three steps:

(a) The Fermi wavevector is readily shown (see (8.6)) to be equal to kFkk =
(3π2N/V )1/3. This is just a bit of ‘waves-into-boxes’ geometry.

(b) The internal energy of the gas is worked out using the (non-relativistic) dispersion
relation ε = �

2k2/2m. (Note: we use the symbol m for the particle mass in this
section, in order to reserve M for the mass of a star). The answer at T = 0 (see
(8.8)) is U = 3

5 Nμ, where μ is the Fermi energy (= �
2k2

Fkk /2m).
(c) Finally, the pressure is worked out (section 8.1.3) from P = 2

3 U/V , where the 2
3

factor also arises from the dispersion relation (since ε ∝ V−2/3). The pressure is
thus given by

P = 2

5

�
2

2m
(3π2)2/3(N/V )5/3 (15.2)

In the case of a white dwarf star, the electron gas can be relativistic. It is instructive
to follow the same steps as before, and to realize that the calculation generalizes to
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include relativity with rather few problems. Step (a) is identical to the above, since it
involves k-space geometry only. The expression for kFkk is thus unchanged. However,
in steps (b) and (c), we must allow for appropriate modifications to the dispersion
relation. For a particle of rest mass m and momentum �k, the energy–momentum
relationship is ε2 = (mc2)2+ (c�k)2. In the extreme relativistic limit, this simplifies
to ε = cp, the same dispersion relation as for photons. Hence, in the extreme limit,
step (b) gives μ = c�kFkk , leading to U = 3

4 Nμ. Step (c) becomes P = 1
3 U/V , since

now ε ∝ V−1/3. Putting these results together to calculate the pressure in the extreme
relativistic limit, we obtain

P = 1

4
c�(3π2)1/3(N/V )4/3 (15.3)

When the gas is in an intermediate regime, the full dispersion relation must be used,
and some unpleasant integrals must be computed. What happens is that (15.2) and
(15.3) join up smoothly.

The stability requirement. This is difficult to work out exactly, but quite easy to get
the rough idea. So let us just concentrate on the rough idea! Consider first a star in
the absence of gravitation. We treat the star as a number N of spin- 1

2 gas particles,
confined within a ‘box’ of volume V = 4

3πR3 where R is the radius of the star. In the
absence of gravity, the density of the gas will be uniform. If the star were now to be
collapsed by a further amount δR, an amount of external work would need to be done
equal to P4πR2δR, i.e. to the pressure times the volume change.

In practice, of course, this energy must be supplied by the loss of gravitational
potential energy of the star. We need to turn gravity on! This is where the trouble
starts for our calculation, since the density of the star is no longer uniform. If it were
to remain uniform, a straightforward integration gives for the gravitational potential
energy of a spherical mass the expression – αGM 2/R, with the constant α = 3/5.
Here M is the total mass of the star. For a non-uniform star it is a rough and reasonable
assumption that this expression will remain valid (dimensional analysis!), but that the
true value of α might differ somewhat from 3/5. Thus the gain in potential energy for
a reduction in radius of δR is equal to αGM 2δR/R2.

Our star is thus stable when there is balance between the gravitational potential
energy change and the work required to combat the pressure, i.e. when

P = α
G

4π
M 2/R4 (15.4)

Let us suppose that the non-relativistic approximation for the pressure (15.2) is valid.
This turns out to be the case for neutron stars and for light enough white dwarf stars.
Putting together (15.2) and (15.4) gives us the relationship between mass and size for
a stable star. Writing V as 4

3πR3, we have

KN 5/3/R5 = M 2/R4 (15.5)
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where K is a known constant (roughly known that is, since it includes α). In fact,
assuming α = 0.6, simple substitution gives in SI units (i) for electrons as in a white
dwarf K = 6.6× 10−28, and (ii) for neutrons as in a neutron star K = 3.6× 10−31.

All that remains is to relate the number N of gaseous fermions to the total mass M of
the star. For a neutron star, we have simply M = Nmn where mn is the neutron mass.
For a white dwarf, the relation depends in detail on the (unknown) composition; if it is
helium then M = 2Nmn effectively, since each electron has two nucleons associated
with it. Any other composition gives a relation of similar magnitude. For both types
of star, (15.5) thus becomes M 1/3R = constant, i.e. mass × volume = constant.
This is an intriguing result, verifying the alarming inverse relation between mass and
volume. A heavy stable star of this type is smaller than a lighter one. The density
increases dramatically as the square of the mass. This idea gives the correct order of
magnitude for the properties of these stars mentioned above. Using the values of K
given above, it follows that, for a stellar mass equal to that of the Sun (2× 1030 kg),
the radius of a white dwarf is about 7000 km and the radius of a neutron star is a mere
12 km. Hence the amazingly high densities.

The upper mass limit. It is not hard to believe that these results imply that very
heavy white dwarfs or neutron stars cannot be stable at all. Certainly, as we have
seen, the heavier the star the smaller and more dense it will become. Moreover,
our treatment is only approximate, and at high enough densities other factors come
into play.

In the case of a white dwarf the new factor is the high Fermi velocity of the
electron gas. As relativistic speeds are approached, we need move our calculation of
the pressure of the gas from (15.2) towards (15.3). It is now easy to see that a limit is
involved. If we combine (15.3) with (15.4) we obtain (instead of (15.5))

K1N 4/3/R4 = M 2/R4 (15.6)

with the constant K1 = 1.1× 10−15 in SI units.
This is another intriguing result, since the radius of the star does not appear: R4

cancels R4. The only moving part in (15.6) is the mass. For a white dwarf star with
M = 2Nmn as above, the equation solves for a mass M = 3.4 × 1030 kg, i.e. about
1.7 solar masses. The implication is that lighter white dwarfs are stable, with a radius
effectively given by (15.5). As the star gets heavier, the star collapses even faster
than the non-relativistic expression would indicate, until for stars heavier than 1.7
solar masses there is no stable solution; the relativistic gas simply cannot generate a
high enough pressure to overcome the gravitational attraction. Hence our prediction
is that the maximum size of a stable white dwarf is 1.7 solar masses. (Incidentally
the correct value for this limit, when the correct density profile in a star is included is
actually 1.44 solar masses, the ‘Chandrasekhar limit’. Our simple treatment is not so
bad!)

A neutron star also gets into problems at high enough mass and thus at extremely
high density. Relativity again limits the validity of the simple treatment, but the
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problem now hinges on the strength of the gravitational attraction, a factor which
becomes of importance well before any corrections for the relativistic Fermi velocity
of the neutrons. It is all to do with the horizon threshold of a black hole. As soon as
the escape velocity for a particle from the gravitational field of a star becomes equal
to the speed of light, then the star must collapse to a black hole. The limiting radius
for this to occur is the ‘Schwarzschild radius’ R0 given by c = (2GM /R0)

1/2, i.e.
R0 = 2GM /c2. Combining this idea with (15.5) we see that the maximum mass of a
neutron star is then given by

M 4/3 = Km−5/3
n c2/2G (15.7)

Substitution gives the mass limit from (15.7) to be 2.8 solar masses. Again this is
probably an over-estimate of the true value, thought to be somewhat less than 2 solar
masses.

As a footnote, it is interesting to ask whether there is any firm observational evidence
for neutron stars. The answer seems to lie in the discovery (by Anthony Hewish and
Jocelyn Bell in the late 1960s) of pulsars. These are objects which emit radio waves
(or other electromagnetic radiation) in regular bursts, i.e. pulses. The pulses have a
period in the range milliseconds to seconds which is characteristic to the particular
pulsar. The origin of pulsars was not immediately obvious and they were nicknamed
at first ‘little green men’. However, it was soon realized that highly dense stars, white
dwarfs or neutron stars, must be involved. When the numbers were put into possible
theories, the observational details of the emitted radiation gave convincing evidence
that the likeliest candidate for a pulsar is a rapidly rotating neutron star. Such an
object will have around it a remnant of electrons and an intense magnetic field (about
108 T, compared to our terrestrial field of 1 mT) which confines these electrons. The
accelerating electrons are responsible for the emission of the radiation. Since the
rotational speed of the star is relativistic, the radiation is emitted predominantly in
the forward motion direction; this effect is called ‘synchrotron radiation’, the basis of
many modern research machines designed to provide a well-collimated and intense
source of radiation. The pulsar effect can now be understood as a sort of lighthouse
effect as the star rotates, so long as the magnetic field axis is different from the axis
of rotation.

In summary, we have seen that the application of a little statistical physics can
throw much light on a number of interesting questions about stars. There remain
many other questions of importance, such as whether superfluidity (Chapter 14) of
the dense gas plays a role in these systems, a real possibility in neutron stars. But
physics would not be an interesting subject if all the answers were easily available.
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Some elementary counting
problems

Suppose you have N distinguishable objects.

1. In how many different ordered sequences can they be arranged?

The answer is N !
The explanation is not hard, but in this case as always the reader is encouraged to

test the result with a few simple examples (e.g. try arranging three objects, A, B and
C, and identify the 3! = 6 arrangements). In general you should convince yourself that
in first position in the sequence there are N choices of object; in second place (having
made the first-place choice) there are N −1; and so on, until for the N th place there is
just one object left to choose. Hence the required result is N×(N−1)×(N−2) . . . 1,
i.e. N !.

2. In how many ways can the N objects be split up into two piles, ordering within the
piles being unimportant? The first pile is to contain n objects and the second m.

The answer is obviously zero, unless n+m = N . If the numbers do add up, then the
answer is N !/(n! × m!).

The zero answer may seem trivial, but it is analogous to the requirements of getting
the total number of particles right in a statistical distribution. There are several ways
of seeing the correct answer, of which one is as follows. Call the required number t.
We can recognize that the N ! arrangements (problem 1) can be partitioned so that the
first n placed objects are put into the first pile, and the remaining m placed objects into
the second pile. However, these N ! arrangements will not all give distinct answers to
the present question, since the order within each pile is unimportant.
Hence, we can see that

N ! = t × n! × m! (A.1)

where the n! and m! factors allow for this disordering (again using the result of
problem 1). Again convince yourself with a small-number example.

Before leaving the problem, it is important to recognize that it is identical to
the binomial theorem question: what is the coefficient of xnym in the expansion of
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(x+ y)N ? And the answer is the same: zero unless n+m = N , but if n+m = N then
the required number is N !/(n! × m!).
3. In how many ways can the N objects be arranged if they are now split up into r+1

piles with njn objects in pile number j (j(( = 0, 1, 2, . . . r)?

The answer is zero unless N =∑ njn . If the njn s do sum to N then the required number
of ways is N !/(n0!n1! . . . nr !).

This result follows as a straightforward extension of the proof of problem 2,
equation (A.1) becoming: N ! = t × ∏ njn !. This important result is the one used
extensively in Chapter 2.

Again one may note that this problem may be thought of (and solved) as the question
of the multinomial theorem: what is the coefficient of yn0

0 yn1
1 yn2

2 . . . in the expansion
of (y0 + y1 + y2 + · · · )N ? And the answer is identical.
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Some problems with large
numbers

1 STIRLING’S APPROXIMATION

Stirling’s approximation gives a very useful method for dealing with factorials of large
numbers. The form in which it should be known and used in statistical physics is:

ln X ! = X ln X − X (B.1)

for any large integer X . And another useful result may be obtained by differentiating
(B.1) to give:

d(ln X !)/dy = (dX /dy){ln X + 1− 1}
= (dX /dy) ln X (B.2)

where one assumes that X may be considered a continuous variable.
Equation (B.1) is not difficult for the interested party to prove. Consider the definite

integral I = ∫ X
1

∫∫
ln z dz. Integration by parts expresses this as [z ln z − z]X1 , which

when evaluated between the limits gives:

I = X ln X − X + 1

However, a quick inspection of a graph of this integral (Fig. B.1) shows that the
integral (i.e. the area under the curve) lies almost midway between the areas of the
two staircases on the diagram. And the upper staircase has an area of (ln 1 + ln 2+
· · · + ln X ) = ln X !.

Therefore we see that I = ln X ! – an error term of approximately 1
2 ln X .

The lower one’s area is

[ln 1+ ln 2+ · · · + ln(X − 1)] = ln(X − 1)!
= ln x! − ln X

Hence: ln X ! = X ln X −X [+ 1
2 ln X + term of order unity]. This is Stirling’s approx-

imation. It really is remarkably accurate for the sort of numbers we use in statistical
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z
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Fig. B.1 Stirling’s approximation.

physics; even for a very modest X = 1000, the error in using equation (B.1) is less
than 0.1%, and the fractional error goes roughly as 1/X .

2 A PROBLEM WITH PENNIES

An unbiased penny is tossed N times. (i) How many possible arrangements of heads
(H ) and tails (T ) are there? (ii) What is the most probable number of H and T after
the N tosses? (iii) What is its probability? In particular what is this probability when
N is large?

This problem bears much similarity to the statistical physics at high temperatures of
a spin- 1

2 solid (section 3.1), and we shall apply the usual nomenclature in discussing
it. The answer to the first problem is simply 2N (= �, say, by analogy), since each toss
has two possibilities. The answer to problem (ii) is also readily solved since the coin
is unbiased. This means that each of the 2N arrangements (or microstates) has equal
probability; hence the most probable distribution of H and T is that which includes
the most microstates. And that is the distribution with equal numbers of heads and
tails (we assume N to be even for convenience!). This is readily proved from problem
2 of Appendix A. A distribution of nH and m(= N − n)T can occur in t = N !/(n!m!)
ways, and this is maximized when n = m = N/2.

Problem (iii) is then also solved. The required probability P is given by t∗/�, i.e.
P = N !/{(N/2)!22N }. However, the interest and the relevance to statistical physics
come when we evaluate P when N is large. Here is the calculation:

ln P = ln N ! − 2 ln(N/2)! − N ln 2 from above

=N ln N − N − 2(N/2) ln(N/2) from (B.1)

+2(N/2)− N ln 2

= 0 since everything cancels!
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Hence ln P = 0, or P = 1, within the accuracy of Stirling’s approximation. Another
way of stating this result is as: t∗ = �, a result we have used in Chapter 2 and
elsewhere. Since we have noted the success of (B.1) we can have confidence in our
statistical method.

However, before leaving this example, a word of warning. It is not in fact true
that the probability of getting exactly N/2 H and N/2 T increases towards 1 as N
increases! Rather ln P gets smaller as ln N (the error in (B.1)), as may be verified
by anyone with a laptop computer and a sense of adventure. But the sharpness of
the probability at the maximum does increase as N gets larger, defined say by the
probability of getting a distribution within 0.1% of the most probable. In other words it
is the probability of getting nearly the most probable which becomes overwhelmingly
large, on any reasonable definition of ‘nearly’. Fortunately, this is precisely the sort
of situation in which we are interested in statistical physics.
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Some useful integrals

1 MAXWELL–BOLTZMANN INTEGRALS

To calculate the properties of an MB gas, as in Chapter 6, we need to evaluate the
definite integrals of the form:

InII =
∫ ∞

0

∫∫
yn exp(−by2)dy (C.1)

where n is any positive integer. This can be done in three stages.

(i) Equation (C.1) may be integrated by parts to give

InII = [−yn−1 exp(−by2)/2b]∞0 + [(n− 1)/2b]InII −2

For n ≥ 2, the first term is zero since it vanishes at both limits, giving a simple
recurrence relation between InII and InII −2:

InII = [(n− 1)/2b]InII −2 (C.2)

For some purposes, for example the calculation of the rms speed of gas
molecules, the recurrence relation contains enough information by itself. But
equation (C.2) is useful in every case, since its application reduces any integral
InII to a known multiple of either I1 or I0II .

(ii) The integral I1 is obtained by simple integration, the result being

I1 = 1/2b (C.3)

(iii) The integral I0II takes a little longer to evaluate. A quick method is to consider a
two-dimensional problem, to integrate exp(−br2) over the whole x− y plane, r
being the distance from the origin. We know from the definition (C.1) that

2I0II =
∫ ∞
−∞

∫∫
exp(−bx2)dx =

∫ ∞
−∞

∫∫
exp(−by2)dy
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Hence

4I2
0II =
∫ ∞
−∞

∫∫ ∫ ∞
−∞

∫∫
exp[−b(x2 + y2)]dx dy

=
∫ ∞

0

∫∫
exp(−br2)2πr dr

= 2πI1

= π/b

Thus

I0II = 1

2
(π/b)1/2. (C.4)

The three equations (C.2), (C.3) and (C.4) between them enable one to evaluate
any of the required integrals.

2 FERMI–DIRAC INTEGRALS

In Chapter 8, we gave several results for the properties of an ideal FD gas in the
limit T � TFTT . The calculations require the (approximate) evaluation of integrals of
the form:

I =
∫ ∞

0

∫∫
[dF(ε)/dε]f]] (ε)dε (C.5)

The function F(ε) is chosen to suit the property required, and f (ε) is the FD
distribution, equation (8.2). Integration by parts of equation (C.5) gives

I = −F(0)−
∫ ∞

0

∫∫
F(ε)[dfd (ε)/d(ε)]dε (C.6)

where we have used f (0) = 1 and f (∞) = 0. Usually one can choose the (‘user-
defined’) function so that F(0) = 0, so we shall ignore the first term of equation (C.6).
The function (−dfd /dε) is an interesting one in the limit kBkk T � μ. It is zero except
within about kBkk T of the Fermi energy, and in fact behaves like a ‘delta-function’ with
a nonzero width. (At T = 0 it becomes identical to the delta function.) Therefore
equation (C.6) is evaluated by expanding the function F(ε) as a Taylor series about
μ, since only its properties close to ε = μ are relevant. The result is

I = F(μ)+ (π2/6)(kBkk T )2F ′′(μ)+ · · · (C.7)

Note that: (i) the first term, the value of F at the Fermi level, is the only one to survive
at T = 0; that is the delta-function property, (ii) there is no first derivative term since
(−dfd /dε) is symmetrical about the Fermi level; and hence no term linear in T , and
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(iii) the first correction to the zero temperature value is proportional to T 2. If F(ε) is
a reasonable power law of ε, then it will have a magnitude of order (kBkk T/μ)2 times
the first term. The factor (π2/6) which enters comes from the definite integral∫ ∞

0

∫∫
y2 exp(y)dy/[1+ exp(y)]2 = π2/6

(which is one of those integrals a physicist may look up, rather than prove?). The
expression for μ(T ) given at the end of section 8.1.2 is obtained from equation (C.7)
using F(ε) = ∫0∫∫ g(ε)dε. And equation (8.9) for U (T ) is obtained with F(ε) =∫

0

∫∫
εg(ε)dε.
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Some useful constants

Boltzmann’s constant kBkk = 1.38× 10−23 J K−1

Avogadro’s number NAN = 6.02× 1023 mol−1

Gas constant R = 8.31 J mol−1 K−1

Planck’s constant h = 6.63× 10−34 J s
� = h/2π = 1.05× 10−34 J s

Electronic charge e = 1.60× 10−19 C
Speed of light c = 3.00× 108 m s−1

Mass of electron m = 9.11× 10−31 kg
Mass of proton MPMM = 1.67× 10−27 kg
Bohr magneton (= e�/2m) μB = 9.27× 10−24 J T−1

Nuclear magneton (= e�/2MPMM ) μN = 5.05× 10−27 J T−1

Atmospheric pressure = 1.01× 105 Pa (i.e. N m−2)
Molar volume of ideal gas at STP = 22.4× 10−3 m3

Permeability of free space μ0 = 4π × 10−7 H m−1

Gravitational constant G = 6.67× 10−11 N m2 kg−2

Mass of Sun = 2.0× 1030 kg
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Exercises

Chapter 1

1 Consider a model thermodynamic assembly in which the allowed (non-degenerate)
one-particle states have energies 0, ε, 2ε, 3ε, 4ε,…. The assembly has four distin-
guishable (localized) particles and a total energy of 6ε. Identify the nine possible
distributions, evaluate � and work out the average distribution of the four particles
in the energy states. (See also Chapter 5, question 1.)

Chapter 2

1 Verify (2.28), (a) by working through the outline derivation given in the text, and
(b) by using it to derive an expression for S [= −(∂F/∂T )V ,N ] which is the same
as that obtained by method 1 of section 2.5.

Chapter 3

1 Below what temperature will there be deviations of greater than 5% from Curie’s
law (3.10), even in an ideal spin- 1

2 solid?
2 The magnetization of Pt nuclei (spin 1

2 ) is commonly used as a thermometric quan-
tity at very low temperatures. The measuring field is 10 mT, and the value of μ for
Pt is 0.60 μN . Estimate the useful range for the thermometer, assuming, (a) that a
magnetization of less than 10−4 of the maximum cannot be reliably measured, and
(b) that deviations from Curie’s law of greater than 5% (see question 1) are unac-
ceptable. In practice NMR techniques are used to single out the energy splitting;
what is the NMR frequency in this case?

3 Negative temperatures? Show that for the spin- 1
2 solid with thermal energy U (th),

the temperature is given by 1/T = (kBkk /ε) ln {[NεNN − U (th)]/U(th)}. Hence show
that negative temperatures would be reached if U (th) > Nε/2.
(a) A mad scientist, bowled over with the logic of (3.7), suggests that if should be

possible to achieve negative temperatures in the spin system by an adiabatic
reversal of the applied field (i.e. demagnetization and remagnetization with B
reversed). Explain why this method will not work. (Hints: Plot temperature
versus time for the process; and Fig. 3.7 should help also.)
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(b) A negative temperature in a spin system can nevertheless be reached; indeed it
is a prerequisite for a laser or maser. Look up and write a brief account of the
methods used.

(c) Explain why negative temperatures cannot be contemplated in the assembly of
harmonic oscillators.

4 The energy levels of a localized particle are 0, ε, 2ε. The middle level is doubly
degenerate (i.e. two quantum states have this same energy) and the other levels are
singly degenerate. Write down and simplify the partition function. Hence compare
the thermal properties (U , C, S) an assembly of these particles with the properties
of the spin- 1

2 solid.
5 Explain why iron is not used as the coolant for adiabatic demagnetization.

Chapter 4

1 Consider waves trapped in, (a) a one-dimensional, and (b) a two-dimensional box.
In each case, derive g(k)δk and compare your results with (4.4). Find the energy
dependence of the density of states in ε for a gas of particles of mass M , comparing
with (4.9).

Chapter 5

1 Repeat question 1 of Chapter 1 for a model assembly of four particles with the
same energy states and with U = 6ε as before, for the cases when the particles are,
(a) gaseous bosons, and (b) gaseous fermions. Compare the results for the three
cases.

2 (Not an easy problem.) As a game – which has no physical basis – work out the
statistics of a gas obeying ‘intermediate statistics’. The one-particle states of the
gas may be occupied by 0, 1, 2, . . . p− 1, p particles, so that the two physical cases
are p = 1 (FD) and p infinite (BE). Obtain expressions for t{(ni)} and for the
thermal distribution, valid for any specified value of p. Check that the two limits
give the correct results. (Hint: If you get stuck, see if your library has Molecular
Physics, vol. 5, p. 525 (1962) in which all is revealed!)

Chapter 6

1 Check the derivation of (6.8) from (6.7), including the value of the constant C.
2 Using the integrals of Appendix C, verify the stated expressions for the mean and

the rms speeds in section 6.2.
3 What is the distribution function in vxv for an MB gas? This is defined such that

n(vxv )dvxv is the number of particles with x-component of velocity between vxv and
vxv + dvxv .

4 In an experiment to study the MB distribution, gas molecules are observed after
they have escaped through a small hole in the oven. Show that the rms speed of
the escaped molecules equals 2vT (i.e. higher than the rms speed inside the oven).
(Hint: Do question 3 first.)

5 Find the constant in equation (6.10).
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Chapter 7

1 Calculate the percentage contribution of vibration to the heat capacity of O2 gas at
room temperature (293 K). The characteristic (Einstein) temperature for vibration
in O2 is 2200 K.

2 Work out the characteristic temperatures of rotation (7.7) for, (a) O2, (b) H2, (c)
D2, (d) HD. The masses of H, D and O are respectively 1, 2 and 16 times MPM .
The internuclear distance in O2 is 1.20 × 10−10 m, and in the hydrogen gases is
0.75× 10−10 m.

3 Consider the properties of D2. (a) Show that the A spin states (i.e. para-deuterium)
are associated with odd-l rotational states, and the S spin states (ortho-deuterium)
with even-l rotational states. (b) What is the ortho:para ratio in deuterium at room
temperature? (c) What is the equilibrium composition at low temperatures?

4 Suppose the partition function Z of an MB gas depends on V and T as Z ∝ V xT y.
Find P and CV .

Chapter 8

1 Check the derivation of (8.5). Hence work out the Fermi energy and Fermi tem-
perature of the conduction electrons in metallic copper. You may assume that the
conduction electrons behave as an ideal gas of free electrons, one electron per
atom. The molar volume of copper is 7 cm3. Show from a calculation of the Fermi
velocity of the electrons (defined by �kFkk = mvF) that relativistic corrections are
not important.

2 Calculate the Fermi temperature for liquid 3He, assuming the ideal gas model. The
molar volume of liquid 3He is 35 cm3.

3 Verify (8.8), that the average energy per particle in an ideal FD gas is 3
5μ. Prove

in addition that the average speed of the gas particles (at T = 0) is 3
4 vF, where the

Fermi velocity vF is defined by mvF = �kFkk .
4 A semiconductor can often be modelled as an ideal FD gas, but with an ‘effective

mass’ of the carriers differing from the free electron mass m. A particular sample
of InSb has a carrier density of 1022 m−3, with effective mass 0.014 m. You may
assume that the carrier density does not vary significantly with temperature (more or
less valid for this material). (a) Find μ(0) and TFTT . (b) Show that at room temperature
(say 300 K) MB statistics may just be safely used. (c) Estimate μ at 300 K. (Hint:
It will be negative – why? Note that the power series method of Appendix C cannot
be applied accurately here.) How does μ vary with T above 300 K?

Chapter 9

1 Work through the steps leading to (9.3) and (9.4).
2 Estimate the condensation temperature TBTT for an ideal BE gas of the same density

of 4He atoms as occurs in liquid 4He (molar volume 27 cm3).
3 The Stefan–Boltzmann law states that the energy flux radiated from a black body

at temperature T is σT 4 J m−2 s−1. Derive this law from first principles, assuming
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that the radiation may be described as a photon gas. (a) Explain the origin of the
T 4 factor. (b) Compare your theoretical value of σ with the experimental value,
σ = 5.67× 10−8 W m−2 K−4.

4 A vacuum insulated flask has the shape of a sphere (with a narrow neck!) of volume
5×10−3 m3. The flask is filled with liquid nitrogen (boiling point 77 K, latent heat
1.70× 108 J m−3). (a) Estimate the hold time of the flask (important practically if
the flask is used as a ‘cold trap’), assuming that the outer surface of the flask is at
300 K and that both surfaces behave as perfect black bodies. (b) How in practice
is such a (Thermos) flask made more efficient? Explain.

5 Wien’s law for black-body radiation (used for thermometry by colour) states that
λmax T = constant, where λmax refers to the maximum in u(λ), the energy den-
sity per unit wavelength. The experimental value of Wien’s constant is about
0.0029 K m. Calculate the theoretical value of the constant as follows:
(a) Re-express Planck’s law (9.12) in terms of wavelength λ instead of frequency

ν. Explain why the peaks in u(ν) and in u(λ) do not occur at the same photon
states.

(b) Using the usual type of dimensionless variable y = ch/λkBkk T obtain an equation
for ymax, the y-value corresponding to λmax.

(c) Solve the equation numerically or graphically. (Hint: the solution occurs at y
just less than 5.) Hence compute Wien’s constant.

(d) Show that the maximum in (9.12) occurs at a y-value just less than 3, as
mentioned in the text.

6 Starting from (9.14) for the thermal energy of a solid: (a) Show that at high tem-
peratures, the classical result CV = 3NkBkk is recovered. (Hint: only small values
of y are involved, so expand the exponential.) (b) Show that the Debye T 3 follows
at low temperatures. (c) At even lower temperatures, (9.14) will become in valid
because it is based on the density of states approximation. Estimate the temperature
below which (9.14) will severely overestimate U (and hence CV ) for a sample of
size, (i) 1 cm, and (ii) 1 μm. The speed of sound in a typical solid is 4000 m s−1.

Chapter 10

1 (a) Verify the derivations of (10.4) and (10.5).
(b) (Harder) Find the analogous expression for S for ‘intermediate statistics’ (see

question 2 for Chapter 5), and check that it has the correct limits.
2 Consider the formation of case 2 vacancies (often called Frenkel defects) as intro-

duced in section 10.3. The defect occurs when an atom leaves a normal site and
moves to an interstitial site. Suppose the crystal has N normal sites and N1 inter-
stitial sites (these numbers will be the same within a small multiple which depends
on the crystal structure). The energy of formation of the defect is �. Following the
method of section 10.3, show that the number n of vacancies at temperature T is

n = (NN1)
1/2 exp(−�/2kBkk T )
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(Hint: Disorder now occurs in the arrangement both of the vacancies and of the
interstitial atoms.)

Chapter 11

1 Estimate the strength of the effective interaction field (11.2) in a strong ferromagnet
such as iron (TCTT = 1043 K). You may assume that iron is a spin- 1

2 solid, with
μ = μB. This is not accurate, but it will give an order of magnitude.

2 Estimate the typical ordering temperature for a nuclear spin- 1
2 solid. Assume that all

the nuclei have a moment μN , that they are separated by 0.3 nm and that the inter-
actions arise from the magnetic dipole influence of about eight nearest neighbours.
(Don’t try to be too accurate!)

3 In the case of beta-brass (section 11.4) show that, in the mean field approximation,
the structural contribution to the internal energy may be written as

U = U0UU − 2Nm2V

where U0UU = 2N (VCuCuVV + VZnZnVV + 2VCuZnVV ), and V = VCuCuVV + VZnZnVV − 2VCuZnVV .
Hence derive an expression for the ordering temperature in terms of the bond energy
difference V . (Hint: Work out the number of each type of bond as a function of the
order parameter m, assuming that the occupation of each site is uncorrelated with
its neighbours – the mean field assumption.)

Chapter 12

1 Verify that (12.4) leads to the FD distribution, as stated in section 12.1.2.
2 (a) If the atoms were interacting with a gas consisting of real (massive) bosons,

what equations should replace (12.4) in order for the BE distribution to follow?
(b) Repeat (a) for an MB gas leading to the MB distribution.

3 Verify that ZAZ = ZN , for an assembly of N localized particles, using the
multinomial theorem method. (See note 5 after (12.7).)

Chapter 13

1 Work through the derivations of (13.5) and (13.6), the basic ideas in the use of the
grand canonical ensemble.

2 As outlined in section 13.3.3, use (13.13) to derive the heat capacity CV of an ideal
gas which is (i) monatomic, (ii) diatomic. Express the result in terms of the N
rather than μ (compare (13.14)).

3 Consider the chemical reaction 2H2 + O2 � 2H2O. Writing subscripts 1 for H2,
2 for O2 and 3 for H2O, show that (i) the corresponding result to (13.22) is 2μ1 +
μ2 = 2μ3 and (ii) the law of mass action (compare (13.24)) for the reaction is
N 2

1 N2NN /N 2
3NN = K(V , T ).
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4 A particular chemical reaction doubles its rate for a 10 K temperature rise near
room temperature (say from 290 to 300 K). Estimate the activation energy for the
reaction.

Chapter 14

1 Describe how Fig. 14.1a and 14.1b are related. How does the electron velocity
vary over the same range?

2 Verify, as stated in the text between (14.2) and (14.3), that the density of states
g(μ) is given by (8.3) but with the mass changed.

Chapter 15

1 Sketch the expected entropy behaviour that you would expect across a first-order,
a second-order and a third-order phase transition (see section 11.1). How would
you classify the following?
(a) A superconducting transition in zero applied magnetic field (see Fig. 15.1).
(b) A superconductor where the transition temperature has been suppressed by the

application of a modest magnetic field (see Fig. 15.1 again, and guess what
will happen!).

(c) The superfluid transition in 4He (see sections 14.3 and 9.2, and do not expect
a tidy answer).

2 Verify the calculations made following (15.1).
3 Work through the steps leading to (15.3), the pressure of a relativistic FD gas.
4 Verify the numerical values given for the constants K (equation (15.5)), and K1

(equation (15.6)), and hence check the upper mass limits for white dwarf and
neutron stars.

5 Explore the question, discussed before (15.7), as to whether the relativistic speed
correction is ever important for the stability of a neutron star.
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Answers to exercises

Chapter 1

1 � = 84; average distribution (1.33, 1.00, 0.71, 0.48, 0.29, 0.15, 0.05, 0, 0 …) is
almost exponential, as for a large assembly (Chapter 2).

Chapter 3

1 2.6 μB/kBkk .
2 5.7 μK to 22 mK; 91 kHz.
4 Note that Z is a perfect square. The limiting value of S is NkB ln 4.

Chapter 5

1 (a) 9; (1.33, 1.00, 0.78, 0.44, 0.22, 0.11, 0.11, 0,0, …)
(b) 1; (1, 1, 1, 1, 0, 0, 0…).

2 ni/gi = 1/{exp[−(α + βεi)] − 1}
− (p(( + 1)/{exp[−(p(( + 1)(α + βεi)] − 1}

Chapter 7

1 1.24%.
2 (a) 2.1 K, (b) 85 K, (c) 43 K, (d) 64 K.
3 (b) 2, (c) pure ortho-deuterium.
4 xNkBT/V , yNkB.

Chapter 8

1 7.1 eV, 82 000 K, 1.7× 106 m s−1.
2 5.1 K.
4 (a) 139 K, 0.012 eV, (c) μ/kBkk ≈ −225 K.
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Chapter 9

2 3.2 K.
4 (a) 3.6 h. (b) include silvering and superinsulation in your answer.
5 ymax = 4.9651 · · · ; max in u(ν) at y = 2.8214 · · · .
6 (c) 20 μK, 0.2 K.

Chapter 11

1 1500 T.
2 About 50 nK.

Chapter 13

4 0.52 eV.
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