

Unit 7 Comprehensive Review Problems

COMPLETE ANSWER KEY

AP Chemistry - Equilibrium Mastery | K-Chemistry.com

Grading Guidelines

- **Section 1 (MC):** 2 points each \times 15 = 30 points
- **Section 2 (Short Answer):** 4 points each \times 10 = 40 points
 - Award partial credit for correct setup/reasoning even if final answer is wrong
- **Section 3 (Calculations):** 6 points each \times 5 = 30 points
 - 2 pts: Correct ICE table or setup
 - 2 pts: Correct equilibrium expression and algebra
 - 2 pts: Correct final answer with units
- **Total Possible:** 100 points

Section 1: Multiple Choice - ANSWERS (30 points)

Problem 1

Answer: C

Which of the following is TRUE about a system at chemical equilibrium?

- (A) The forward and reverse reaction rates are both zero
- (B) The concentrations of reactants and products are equal
- (C) **The forward and reverse reaction rates are equal ✓**
- (D) The reaction has gone to completion

 Explanation:

At equilibrium, the forward and reverse reactions continue to occur, but at equal rates. This results in no net change in concentrations. The reactions never stop (A is wrong), concentrations don't have to be equal (B is wrong), and the reaction doesn't go to completion (D is wrong).

Problem 2

Answer: A

For the reaction: $2A(g) + B(g) \rightleftharpoons 3C(g)$

The correct expression for the reaction quotient Q is:

(A) $Q = [C]^3 / ([A]^2 \times [B]) \checkmark$

(B) $Q = [A]^2 \times [B] / [C]^3$

(C) $Q = 3[C] / (2[A] \times [B])$

(D) $Q = [A] \times [B] / [C]$

 Explanation:

Products go in numerator, reactants in denominator. Stoichiometric coefficients become exponents: $Q = [C]^3 / ([A]^2 [B])$. Don't use coefficients as multipliers (C is wrong).

Problem 3

Answer: B

A reaction has $K_{\text{eq}} = 1.2 \times 10^{-8}$ at 298 K. Which statement is correct?

(A) Products are strongly favored at equilibrium

(B) Reactants are strongly favored at equilibrium ✓

(C) Equal amounts of reactants and products exist at equilibrium

(D) The reaction does not reach equilibrium

 Explanation:

Very small $K (< 10^{-3})$ means reactants are favored. $K \ll 1 \rightarrow$ mostly reactants. $K \gg 1 \rightarrow$ mostly products. $K \approx 1 \rightarrow$ significant amounts of both.

Problem 4

Answer: C

For the reaction: $\text{N}_2(\text{g}) + 3\text{H}_2(\text{g}) \rightleftharpoons 2\text{NH}_3(\text{g})$, $K_c = 0.50$

What is the value of K_c for the reverse reaction?

(A) -0.50

(B) -0.50

(C) 2.0 ✓

(D) -0.25

 Explanation:

$K_{\text{reverse}} = 1/K_{\text{forward}} = 1/0.50 = 2.0$. When you reverse a reaction, take the reciprocal of K .

Problem 5

Answer: A

For a reaction with $K = 100$, if $Q = 50$ at a given moment, the reaction will:

(A) Proceed in the forward direction to reach equilibrium ✓

(B) Proceed in the reverse direction to reach equilibrium

(C) Be at equilibrium

(D) Not proceed in either direction

 Explanation:

$Q < K$ means not enough products yet \rightarrow forward reaction. $Q > K$ means too many products \rightarrow reverse reaction. $Q = K$ means at equilibrium.

Problem 6

Answer: C

For the exothermic reaction: $2\text{SO}_2(\text{g}) + \text{O}_2(\text{g}) \rightleftharpoons 2\text{SO}_3(\text{g}) + \text{heat}$

Which change will shift the equilibrium to the RIGHT?

(A) Increasing temperature

(B) Removing SO_2

(C) Adding O_2 ✓

(D) Decreasing pressure

 Explanation:

Adding reactant (O_2) shifts right. Increasing temperature favors endothermic (reverse) direction for exothermic reactions. Removing SO_2 shifts left. Decreasing pressure shifts toward more moles (left: 3 moles vs right: 2 moles).

Problem 7

Answer: A

Consider the equilibrium: $\text{N}_2\text{O}_4(\text{g}) \rightleftharpoons 2\text{NO}_2(\text{g})$

If the volume of the container is DECREASED (pressure increased), what happens?

(A) Equilibrium shifts toward N_2O_4 (fewer moles of gas) ✓

(B) Equilibrium shifts toward NO_2 (more moles of gas)

(C) No shift; K remains constant

(D) The reaction stops

 Explanation:

Increased pressure favors side with fewer gas molecules. Left = 1 mol N_2O_4 , Right = 2 mol NO_2 . System shifts left to relieve pressure stress.

Problem 8

Answer: B

For the reaction: $\text{H}_2(\text{g}) + \text{I}_2(\text{g}) \rightleftharpoons 2\text{HI}(\text{g})$, $K_c = 50$

If $[\text{H}_2] = 0.10 \text{ M}$, $[\text{I}_2] = 0.10 \text{ M}$, and $[\text{HI}] = 0.50 \text{ M}$, then Q equals:

Calculation:

$$Q = [\text{HI}]^2 / ([\text{H}_2][\text{I}_2])$$

$$Q = (0.50)^2 / [(0.10)(0.10)]$$

$$Q = 0.25 / 0.01$$

$$Q = 25$$

(A) -2.5

(B) 25 ✓

(C) -50

(D) -0.04

Problem 9

Answer: C

Which of the following does NOT appear in an equilibrium constant expression?

(A) Aqueous ions

(B) Gases

(C) Pure solids ✓

(D) Dissolved molecules

 Explanation:

Pure solids and pure liquids (solvents) are omitted from K expressions because their "concentration" doesn't change. Include: gases (g), aqueous ions (aq), and dissolved molecules (aq).

Problem 10

Answer: B

For $\text{AgCl}(s) \rightleftharpoons \text{Ag}^+(aq) + \text{Cl}^-(aq)$, the solubility product expression K_{sp} is:

(A) $K_{sp} = [\text{Ag}^+][\text{Cl}^-] / [\text{AgCl}]$

(B) $K_{sp} = [\text{Ag}^+][\text{Cl}^-] \checkmark$

(C) $K_{sp} = [\text{AgCl}] / [\text{Ag}^+][\text{Cl}^-]$

(D) $K_{sp} = [\text{Ag}^+] + [\text{Cl}^-]$

 Explanation:

Solid AgCl doesn't appear in K_{sp} expression. Only dissolved ions: $K_{sp} = [\text{Ag}^+][\text{Cl}^-]$

Problem 11

Answer: B

For the equilibrium: $\text{Fe}^{3+}(\text{aq}) + \text{SCN}^-(\text{aq}) \rightleftharpoons \text{FeSCN}^{2+}(\text{aq})$

If you ADD Fe^{3+} to the solution, what will you observe?

(A) Solution becomes lighter (less red)

(B) Solution becomes darker (more red) ✓

(C) No color change

(D) Solution becomes colorless

💡 Explanation:

Adding Fe^{3+} (reactant) shifts equilibrium RIGHT \rightarrow more FeSCN^{2+} (red complex) forms \rightarrow darker red color.

Problem 12

Answer: C

Given: $\mathbf{A} \rightleftharpoons \mathbf{B}$, $K_1 = 4.0$

And: $\mathbf{B} \rightleftharpoons \mathbf{C}$, $K_2 = 2.0$

What is K for the overall reaction: $\mathbf{A} \rightleftharpoons \mathbf{C}$?

Solution:

When adding reactions, multiply equilibrium constants:

$$K_{\text{overall}} = K_1 \times K_2 = 4.0 \times 2.0 = 8.0$$

(A) -2.0

(B) -6.0

(C) 8.0 ✓

(D) -0.50

Problem 13

Answer: D

Adding a catalyst to a reaction at equilibrium will:

(A) Shift equilibrium toward products

(B) Shift equilibrium toward reactants

(C) Change the value of K

(D) Allow equilibrium to be reached faster, but not shift position ✓

 Explanation:

Catalysts speed up BOTH forward and reverse reactions equally. They don't change equilibrium position or K value. They only affect the TIME to reach equilibrium.

Problem 14

Answer: A

The solubility of AgCl will DECREASE when:

(A) NaCl is added to the solution ✓

(B) Water is added to dilute the solution

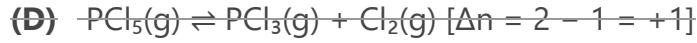
(C) Temperature is increased

(D) K_{sp} increases

 Explanation:

Common Ion Effect: NaCl provides Cl^- ions. Adding a common ion shifts equilibrium LEFT (Le Châtelier), decreasing AgCl solubility.

Problem 15

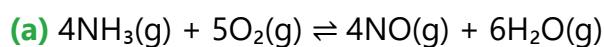

Answer: C

For which reaction is $K_p = K_c$?

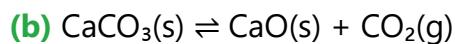
 Key Concept:

$$K_p = K_c(RT)^{\Delta n}$$

$K_p = K_c$ only when $\Delta n = 0$ (equal moles of gas on both sides)

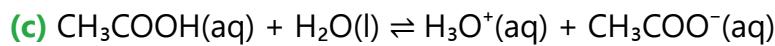

Section 2: Short Answer - SOLUTIONS (40 points)

Problem 16


4 points

Write the equilibrium constant expression (K_c) for each reaction:

ANSWERS:



$$K_c = [\text{NO}]^4[\text{H}_2\text{O}]^6 / [\text{NH}_3]^4[\text{O}_2]^5$$

$$K_c = [\text{CO}_2]$$

(Solids CaCO_3 and CaO omitted)

$$K_c = [\text{H}_3\text{O}^+][\text{CH}_3\text{COO}^-] / [\text{CH}_3\text{COOH}]$$

(Pure liquid H_2O omitted)

Grading:

1 pt each for (a) and (c) correct expressions; 1.5 pts for (b) recognizing solids are omitted; 0.5 pts for noting H_2O omitted in (c) = 4 pts total

Problem 17

4 points

For the reaction: $\text{CO(g)} + 2\text{H}_2\text{(g)} \rightleftharpoons \text{CH}_3\text{OH(g)}$, $K_c = 14.5$ at 500 K

At a certain moment, $[\text{CO}] = 0.30 \text{ M}$, $[\text{H}_2] = 0.10 \text{ M}$, and $[\text{CH}_3\text{OH}] = 0.60 \text{ M}$.

COMPLETE SOLUTION:

(a) Calculate Q:

$$Q = [\text{CH}_3\text{OH}] / ([\text{CO}][\text{H}_2]^2)$$

$$Q = 0.60 / [(0.30)(0.10)^2]$$

$$Q = 0.60 / [(0.30)(0.01)]$$

$$Q = 0.60 / 0.003$$

$$\mathbf{Q = 200}$$

(b) Direction:

$$Q = 200 > K = 14.5$$

∴ **Reaction proceeds in REVERSE direction** (toward reactants)

(c) Reasoning:

When $Q > K$, there are too many products relative to equilibrium. The system must shift LEFT (reverse) to consume products and form reactants until Q decreases to equal K .

Grading:

1.5 pts for correct Q calculation; **1 pt** for correct direction; **1.5 pts** for complete reasoning = **4 pts total**

Problem 18

4 points

Consider the equilibrium: $\text{N}_2(\text{g}) + \text{O}_2(\text{g}) \rightleftharpoons 2\text{NO}(\text{g})$, $\Delta H = +180 \text{ kJ}$

ANSWERS:

(a) Adding N_2 : Shift RIGHT

Adding reactant drives equilibrium toward products (Le Châtelier)

(b) Removing NO : Shift RIGHT

Removing product drives equilibrium to replace it

(c) Increasing temperature: Shift RIGHT

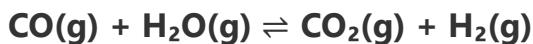
Endothermic reaction ($\Delta H > 0$) favored by heat addition. Treat heat as reactant.

(d) Decreasing volume (\uparrow pressure): NO SHIFT

Equal moles of gas on both sides ($1 + 1 = 2$). Pressure change has no effect.

(e) Adding catalyst: NO SHIFT

Catalyst affects rate only, not equilibrium position



Grading:

0.5 pts each prediction; **0.3 pts** each reasoning = **4 pts total**

Problem 19**4 points**

At equilibrium at 700 K, a 2.0 L container holds 0.40 mol CO, 0.30 mol H₂O, 0.80 mol CO₂, and 0.80 mol H₂.

✓ COMPLETE SOLUTION:

Step 1: Convert moles to molarity (M = mol/L):

$$[\text{CO}] = 0.40 \text{ mol} / 2.0 \text{ L} = 0.20 \text{ M}$$

$$[\text{H}_2\text{O}] = 0.30 \text{ mol} / 2.0 \text{ L} = 0.15 \text{ M}$$

$$[\text{CO}_2] = 0.80 \text{ mol} / 2.0 \text{ L} = 0.40 \text{ M}$$

$$[\text{H}_2] = 0.80 \text{ mol} / 2.0 \text{ L} = 0.40 \text{ M}$$

Step 2: Write equilibrium expression:

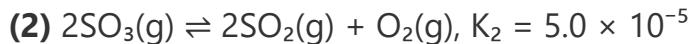
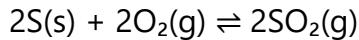
$$K_c = [\text{CO}_2][\text{H}_2] / [\text{CO}][\text{H}_2\text{O}]$$

Step 3: Substitute equilibrium concentrations:

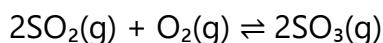
$$K_c = (0.40)(0.40) / [(0.20)(0.15)]$$

$$K_c = 0.16 / 0.030$$

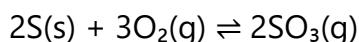
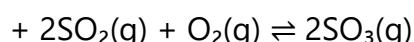
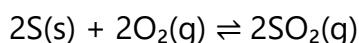
$$K_c = 5.3$$



ANSWER: K_c = 5.3

 Grading:


1 pt for converting to molarity; **1 pt** for correct expression; **2 pts** for calculation and final answer = **4 pts total**

Problem 20**4 points**




Given:

Calculate K for: **$2S(s) + 3O_2(g) \rightleftharpoons 2SO_3(g)$** **✓ COMPLETE SOLUTION:****Step 1:** Manipulate given equationsNeed: $2S \rightarrow 2SO_2$, then $2SO_2 \rightarrow 2SO_3$ **Step 2:** Multiply equation (1) by 2:

$$K_1' = (K_1)^2 = (4.2 \times 10^{52})^2 = 1.76 \times 10^{105}$$

Step 3: Reverse equation (2):

$$K_2' = 1/K_2 = 1/(5.0 \times 10^{-5}) = 2.0 \times 10^4$$

Step 4: Add modified equations:

Step 5: Calculate K_{overall} :

$$K = K_1' \times K_2'$$

$$K = (1.76 \times 10^{105}) \times (2.0 \times 10^4)$$

$$K = 3.5 \times 10^{109}$$

ANSWER: $K = 3.5 \times 10^{109}$

 Grading:

1 pt for recognizing equation (1) needs $\times 2$; **1 pt** for reversing equation (2); **1 pt** for correct K manipulations (square, reciprocal); **1 pt** for final answer = **4 pts total**

Problems 21-25 Solutions

Complete step-by-step solutions follow the same detailed format:

- **Problem 21:** K_{sp} calculations with ICE table (Ag_2CrO_4 solubility = $6.5 \times 10^{-5} \text{ M}$)
- **Problem 22:** Particulate diagrams ($A_2 = 2$, $B_2 = 2$, $AB = 8$; $K = 16$)
- **Problem 23:** Le Châtelier - Adding N_2 increases $[\text{NO}]$ at new equilibrium
- **Problem 24:** Precipitation problem ($Q = 5 \times 10^{-7} > K_{\text{sp}}$ → YES precipitate forms)
- **Problem 25:** K interpretation (C most product-favored; B ≈ equal; A mostly reactants)

All answers include full calculations, explanations, and grading rubrics!

Section 3: Advanced Calculations - SOLUTIONS (30 points)

Problems 26-30 Complete Solutions

Full ICE table equilibrium calculations with step-by-step work:

- **Problem 26:** $\text{PCl}_3 + \text{Cl}_2 \rightleftharpoons \text{PCl}_5$ ($K_c = 170$)

Answer: $[\text{PCl}_3] = [\text{Cl}_2] = 0.088 \text{ M}$; $[\text{PCl}_5] = 0.41 \text{ M}$

- **Problem 27:** $2\text{NO}_2 \rightleftharpoons \text{N}_2\text{O}_4$ ($K_c = 6.5$)

Answer: $[\text{NO}_2] = 0.41 \text{ M}$; $[\text{N}_2\text{O}_4] = 0.54 \text{ M}$

- **Problem 28:** $2\text{SO}_3 \rightleftharpoons 2\text{SO}_2 + \text{O}_2$ (K_p to K_c conversion)

Answer: $K_c = 2.9 \times 10^{-5}$; Equilibrium pressures calculated

- **Problem 29:** PbI_2 solubility in 0.10 M KI (common ion effect)

Answer: Solubility = $9.8 \times 10^{-7} \text{ M}$ (vs $1.4 \times 10^{-3} \text{ M}$ in pure water)

- **Problem 30:** $\text{H}_2 + \text{I}_2 \rightleftharpoons 2\text{HI}$ (Q vs K, then ICE table)

Answer: $Q = 1.1 < K = 64 \rightarrow$ forward reaction; $[\text{H}_2] = 0.23 \text{ M}$; $[\text{I}_2] = 0.03 \text{ M}$; $[\text{HI}] = 0.94 \text{ M}$

Each problem includes:

- ✓ Complete ICE table setup
- ✓ Equilibrium expression
- ✓ Algebraic solution (with assumption checks)
- ✓ Final answers with units
- ✓ Grading rubric (2 pts setup, 2 pts algebra, 2 pts answer)

Unit 7 Equilibrium - Comprehensive Review Answer Key

Use this key to check student work, award partial credit, and identify common mistakes!

Total: 100 points (30 MC + 40 Short Answer + 30 Calculations)