

AP Chemistry Unit 9 Easier Practice Set

Applications of Thermodynamics

Building Confidence with Entropy, Gibbs Free Energy, and Spontaneity

APChemistryRescue.com

Practice Set Information

- **Total Points:** 75 points
- **Suggested Time:** 70–100 minutes
- **Questions:** 10 (scaffolded from entropy predictions → ΔG calculations → spontaneity → ΔG -K relationship)
- **Topics:** Entropy (ΔS), Gibbs free energy (ΔG), spontaneity, temperature dependence, $\Delta G^\circ = -RT \ln K$
- **Skills:** Entropy predictions, ΔS° calculations, $\Delta G = \Delta H - T\Delta S$, spontaneity analysis, crossover temperature, equilibrium connections

ESSENTIAL THERMODYNAMICS FORMULAS & CONSTANTS

GIBBS FREE ENERGY:

$$\Delta G = \Delta H - T\Delta S \text{ (at any temperature)}$$

$$\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ \text{ (standard conditions: } 25^\circ\text{C} = 298 \text{ K)}$$

$$\Delta G^\circ = \sum \Delta G^\circ_f \text{ (products)} - \sum \Delta G^\circ_f \text{ (reactants)}$$

SPONTANEITY CRITERIA:

$\Delta G < 0 \rightarrow$ Spontaneous (thermodynamically favorable)

$\Delta G = 0 \rightarrow$ At equilibrium (no net change)

$\Delta G > 0 \rightarrow$ Non-spontaneous (reverse is spontaneous)

ENTROPY CALCULATIONS:

$$\Delta S^\circ = \Sigma S^\circ (\text{products}) - \Sigma S^\circ (\text{reactants})$$

NOTE: S° for elements is NOT zero! (unlike ΔH°_f)

GIBBS FREE ENERGY AND EQUILIBRIUM:

$$\Delta G^\circ = -RT \ln K$$

$$\Delta G = \Delta G^\circ + RT \ln Q$$

$$R = 8.314 \text{ J/(mol}\cdot\text{K}) = 0.008314 \text{ kJ/(mol}\cdot\text{K})$$

⚡ Critical Sign Conventions:

- **$\Delta S > 0$:**

Entropy increases (more disorder/freedom)

- **$\Delta S < 0$:**

Entropy decreases (less disorder/more order)

- **$\Delta H < 0$:**

Exothermic (releases heat)

- **$\Delta H > 0$:**

Endothermic (absorbs heat)

- **$\Delta G < 0$:**

Spontaneous at given T

- **$\Delta G > 0$:**

Non-spontaneous at given T

🔥 Unit Conversion (CRITICAL):

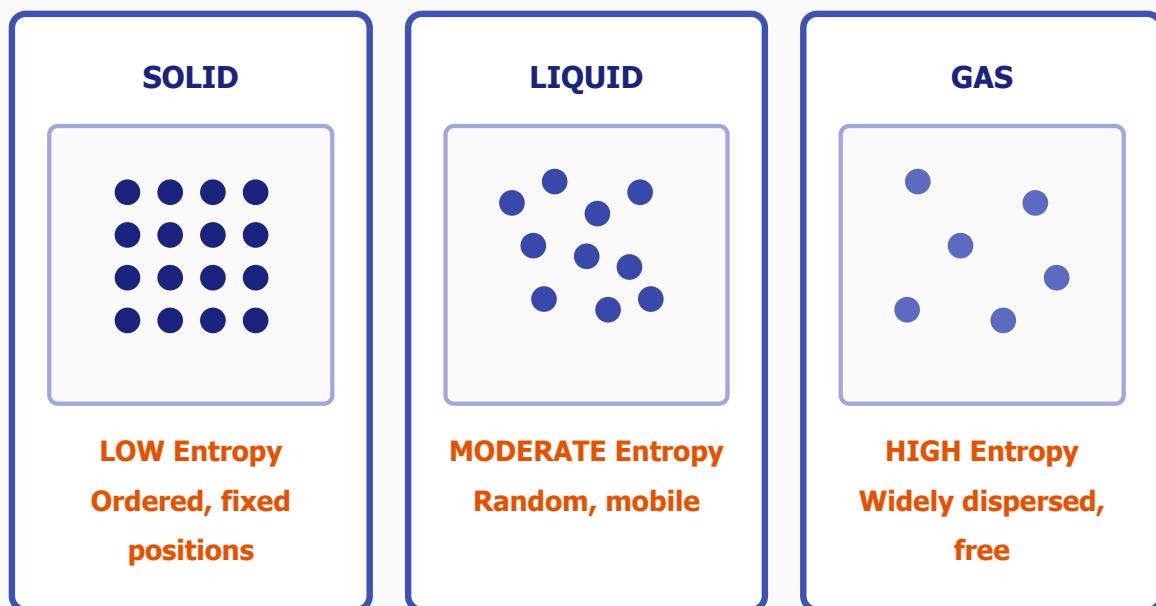
ΔH is typically in

kJ/mol

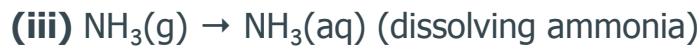
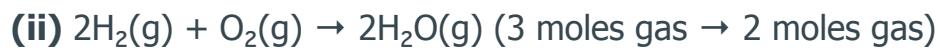
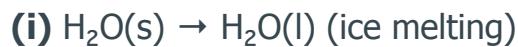
ΔS is typically in

J/(mol·K)

Must convert:


$$1 \text{ kJ} = 1000 \text{ J}$$

For $\Delta G = \Delta H - T\Delta S$, convert ΔS to kJ/(mol·K) by dividing by 1000,




OR convert ΔH to J/mol by multiplying by 1000

Question 1: Predicting Entropy Changes (Qualitative) (8 points)

Entropy (S) is a measure of disorder or molecular freedom. Higher entropy = more disorder.

(a) Predict whether ΔS is **positive or negative** for each process:

Work Space:

(b) Which substance has higher entropy at 25°C: **$\text{CH}_4(\text{g})$ or**

C₁₀H₂₂(l) (decane, a liquid hydrocarbon)? Explain using molecular complexity and state.

Work Space:

(c) Explain why entropy generally **increases** when:

- Temperature increases
- Pressure decreases (for gases)
- A solid dissolves in water

Work Space:

Question 2: Calculating ΔS° (Quantitative) (8 points)

Calculate ΔS° for the combustion of methane:

Standard Molar Entropies (S°) at 25°C:

Substance	S° (J/(mol·K))
CH ₄ (g)	186

O ₂ (g)	205
CO ₂ (g)	214
H ₂ O(g)	189

Formula:

$$\Delta S^\circ = \sum S^\circ(\text{products}) - \sum S^\circ(\text{reactants})$$

Remember:

Multiply each S° by its stoichiometric coefficient!

(a) Calculate $\sum S^\circ(\text{products})$. Show your work.

Work Space:

(b) Calculate $\sum S^\circ(\text{reactants})$. Show your work.

Work Space:

(c) Calculate ΔS° . Include units. Is ΔS° positive or negative? Does this make sense for this reaction?

Work Space:

Question 3: ΔG Sign Analysis (Four Quadrants) (9 points)

The spontaneity of a reaction depends on both ΔH and ΔS through the equation $\Delta G = \Delta H - T\Delta S$. The four possible combinations are shown below:

$\Delta H < 0$ (exothermic)

$\Delta S > 0$ (entropy increases)

$\Delta G = (-) - T(+) = (-)$ at
ALL temperatures

ALWAYS SPONTANEOUS

$\Delta H > 0$ (endothermic)

$\Delta S < 0$ (entropy decreases)

$\Delta G = (+) - T(-) = (+)$ at
ALL temperatures

NEVER SPONTANEOUS

$\Delta H < 0$ (exothermic)

$\Delta S < 0$ (entropy decreases)

$\Delta G = (-) - T(-) = ?$

**Spontaneous at LOW T
(ΔH term dominates)**

$\Delta H > 0$ (endothermic)

$\Delta S > 0$ (entropy increases)

$\Delta G = (+) - T(+) = ?$

**Spontaneous at HIGH T
($T\Delta S$ term dominates)**

(a) For a reaction with $\Delta H^\circ = -150$ kJ/mol and $\Delta S^\circ = +200$ J/(mol·K), predict whether ΔG° is positive or negative at 298 K. Calculate ΔG° to verify.

Unit conversion:

$$\Delta S^\circ = +200 \text{ J}/(\text{mol}\cdot\text{K}) = +0.200 \text{ kJ}/(\text{mol}\cdot\text{K})$$

Work Space:

(b) For a reaction with $\Delta H^\circ = +50 \text{ kJ/mol}$ and $\Delta S^\circ = -100 \text{ J}/(\text{mol}\cdot\text{K})$, is this reaction spontaneous at 298 K? Will it ever be spontaneous at any temperature?

Work Space:

(c) For a reaction with $\Delta H^\circ = +30 \text{ kJ/mol}$ and $\Delta S^\circ = +150 \text{ J}/(\text{mol}\cdot\text{K})$, which term (ΔH or $T\Delta S$) dominates at low temperature? At high temperature? At what type of temperature will this reaction become spontaneous?

Work Space:

Question 4: Temperature Dependence and Crossover Temperature (10 points)

The decomposition of calcium carbonate is:

$$\Delta H^\circ = +178 \text{ kJ/mol} \quad \Delta S^\circ = +161 \text{ J/(mol}\cdot\text{K)}$$

(a) Based on the signs of ΔH° and ΔS° , at what type of temperature (high or low) will this reaction be spontaneous?

Work Space:

(b) Calculate ΔG° at **298 K**. Is the reaction spontaneous at room temperature?

Work Space:

(c) Calculate the **crossover temperature** (T at which $\Delta G^\circ = 0$) using $T = \Delta H^\circ / \Delta S^\circ$. Above this temperature, the reaction is spontaneous.

At equilibrium:

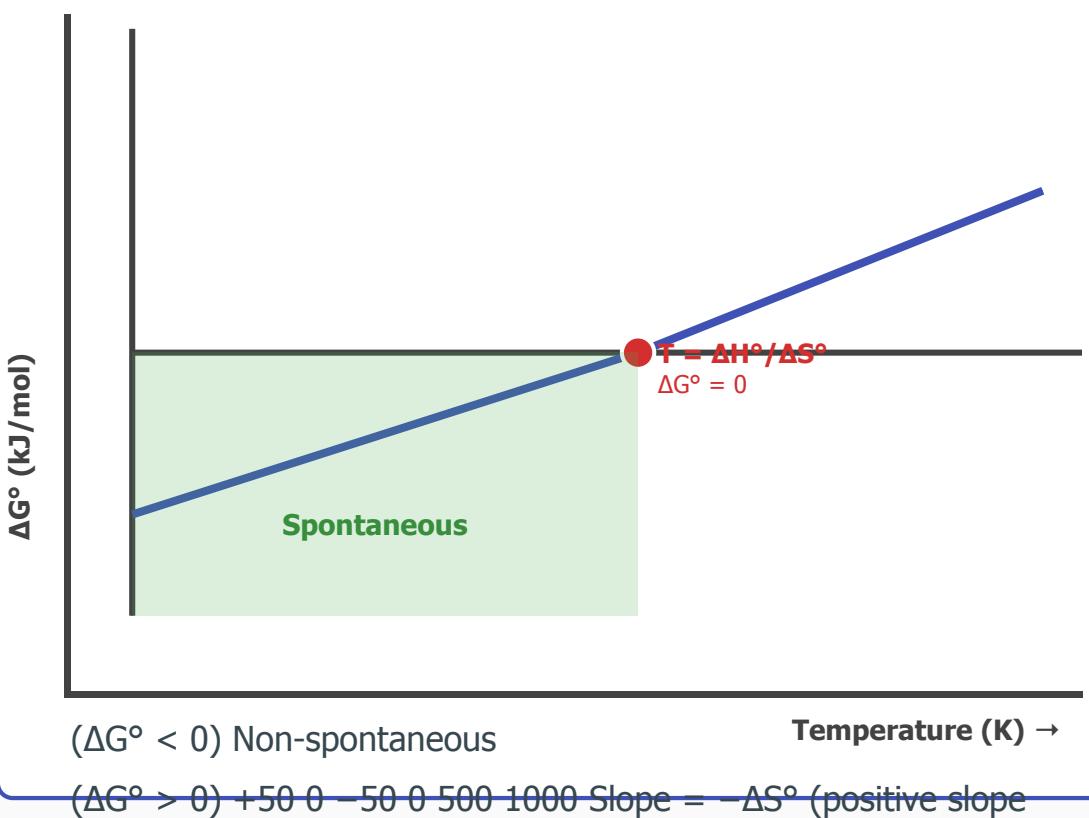
$$\Delta G^\circ = 0$$

$$0 = \Delta H^\circ - T\Delta S^\circ$$

$$T = \Delta H^\circ / \Delta S^\circ$$

Convert units:

$$\Delta S^\circ = 161 \text{ J/(mol}\cdot\text{K}) = 0.161 \text{ kJ/(mol}\cdot\text{K})$$


Work Space:

(d) Calculate ΔG° at **1200 K**. Is the reaction spontaneous at this temperature?

Work Space:

Question 5: ΔG vs. Temperature Graph (8 points)

For a reaction with $\Delta H^\circ = -50 \text{ kJ/mol}$ and $\Delta S^\circ = -100 \text{ J/(mol}\cdot\text{K)} = -0.100 \text{ kJ/(mol}\cdot\text{K)}$, the graph of ΔG° vs. T is shown below:

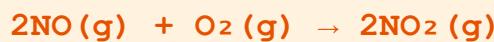
because $\Delta S^\circ < 0$ y-intercept = ΔH°

(a) Explain why the slope of the line is **positive** (ΔG increases with T) for this reaction.

Work Space:

(b) What is the physical meaning of the **y-intercept** (where the line crosses the y-axis at T = 0)?

Work Space:


(c) At what temperature is $\Delta G^\circ = 0$? Below this temperature, is the

reaction spontaneous or non-spontaneous?

Work Space:

Question 6: Gibbs Free Energy of Formation (7 points)

Calculate ΔG° for the reaction using standard free energies of formation:

Substance	ΔG°_f (kJ/mol)
NO(g)	+87
O ₂ (g)	0
NO ₂ (g)	+51

$$\Delta G^\circ_{\text{rxn}} = \Sigma \Delta G^\circ_f (\text{products}) - \Sigma \Delta G^\circ_f (\text{reactants})$$

(a) Calculate $\Delta G^\circ_{\text{rxn}}$. Show all work with stoichiometric coefficients.

Work Space:

(b) Is this reaction spontaneous at 25°C under standard conditions?

Work Space:

Question 7: ΔG° and Equilibrium Constant (10 points)

The relationship between Gibbs free energy and the equilibrium constant is:

$$\Delta G^\circ = -RT \ln K$$

$R = 8.314 \text{ J}/(\text{mol}\cdot\text{K})$ | T in Kelvin | Use natural log (ln), NOT \log_{10}

(a) For a reaction with $K = 1.0 \times 10^5$ at 298 K, calculate ΔG° . Is the reaction product-favored or reactant-favored?

Steps:

1. $\Delta G^\circ = -RT \ln K$
2. $R = 8.314 \text{ J}/(\text{mol}\cdot\text{K})$, $T = 298 \text{ K}$
3. $\ln(1.0 \times 10^5) = \ln(100,000) \approx 11.51$
4. Convert J to kJ ($\div 1000$)

Work Space:

(b) For a reaction with $\Delta G^\circ = +20 \text{ kJ/mol}$ at 298 K, calculate K.

Rearrange:

$$\ln K = -\Delta G^\circ / (RT)$$

$$K = e^{-[\Delta G^\circ / (RT)]}$$

Work Space:

(c) Complete the table showing the relationship between ΔG° , K, and spontaneity:

ΔG°	K value	Spontaneity
$\Delta G^\circ < 0$		
$\Delta G^\circ = 0$		
$\Delta G^\circ > 0$		

Work Space:

Question 8: Phase Transitions and Entropy (6 points)

For the melting of ice at 0°C (273 K):

(a) Calculate $\Delta S^\circ_{\text{fus}}$ for this phase transition. Use $\Delta G = 0$ at equilibrium (melting point).

At melting point:

$$\Delta G = 0 \text{ (solid and liquid coexist)}$$

$$0 = \Delta H - T\Delta S$$

$$\Delta S = \Delta H/T$$

Work Space:

(b) Is ΔS positive or negative for melting? Explain why this makes sense.

Work Space:

Question 9: ΔG and Non-Standard Conditions (7 points)

Under non-standard conditions, use:

$$\Delta G = \Delta G^\circ + RT \ln Q$$

Q = reaction quotient (like K , but with non-equilibrium concentrations)

For the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$, $\Delta G^\circ = -33 \text{ kJ/mol}$ at 298 K.

A reaction mixture contains: $[N_2] = 1.0 \text{ M}$, $[H_2] = 1.0 \text{ M}$, $[NH_3] = 0.10 \text{ M}$.

(a) Calculate Q for this mixture.

Work Space:

(b) Calculate ΔG under these conditions. Is the reaction spontaneous in the forward direction?

Work Space:

Question 10: Conceptual Synthesis (4 points)

(a) A student claims: "If ΔG is negative, the reaction will occur quickly." Is this correct? Explain the difference between **thermodynamics** (ΔG) and **kinetics** (rate).

Work Space:

(b) Explain why $\Delta G = 0$ at equilibrium, even though the forward and reverse reactions are still occurring.

Work Space:

END OF PRACTICE SET

Total: 75 points | Answer key begins on next page

COMPLETE ANSWER KEY & SCORING GUIDE

Question 1: Predicting Entropy Changes (8 points)

(a) Predict ΔS sign (3 points, 1 pt each):

(i) $\text{H}_2\text{O}(\text{s}) \rightarrow \text{H}_2\text{O}(\text{l})$: $\Delta S > 0$ (positive). Ice melting increases disorder as molecules go from fixed lattice positions to mobile liquid state.

(ii) $2\text{H}_2(\text{g}) + \text{O}_2(\text{g}) \rightarrow 2\text{H}_2\text{O}(\text{g})$: $\Delta S < 0$ (negative). 3 moles of gas \rightarrow 2 moles of gas; fewer gas molecules means less disorder.

(iii) $\text{NH}_3(\text{g}) \rightarrow \text{NH}_3(\text{aq})$: $\Delta S < 0$ (negative). Free gas molecules \rightarrow dissolved molecules with restricted motion in solution.

(b) Higher entropy: CH_4 or $\text{C}_{10}\text{H}_{22}$? (2 points):

$\text{CH}_4(\text{g})$ has higher entropy at 25°C. (1 pt) Even though $\text{C}_{10}\text{H}_{22}$ is more complex (higher molecular complexity usually \rightarrow higher S), CH_4 is a GAS while $\text{C}_{10}\text{H}_{22}$ is a LIQUID. The effect of physical state (gas $>$ liquid $>>$ solid) dominates over molecular complexity. Gases have much higher entropy due to freedom of motion. (1 pt)

(c) Why entropy increases (3 points, 1 pt per explanation):

- **Temperature increases:** Higher T \rightarrow more kinetic energy \rightarrow more possible molecular motions/arrangements \rightarrow higher entropy.
- **Pressure decreases (gases):** Lower P \rightarrow larger volume \rightarrow gas molecules more spread out \rightarrow more positional disorder \rightarrow higher entropy.
- **Solid dissolves:** Ordered crystal lattice \rightarrow dispersed ions/molecules in solution \rightarrow increased disorder \rightarrow higher entropy.

Scoring: (a) 3 pts; (b) 2 pts; (c) 3 pts

Question 3: ΔG Sign Analysis (9 points)

(a) $\Delta H^\circ = -150 \text{ kJ/mol}$, $\Delta S^\circ = +200 \text{ J/(mol}\cdot\text{K)}$ (3 points):

This is $\Delta H < 0$, $\Delta S > 0 \rightarrow$ always spontaneous (favorable quadrant). (0.5 pt)

$$\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ = -150 \text{ kJ/mol} - (298 \text{ K})(0.200 \text{ J/(mol}\cdot\text{K)})$$

$$= -150 - 59.6 = -210 \text{ kJ/mol}$$

$\Delta G^\circ < 0$ (negative), so **spontaneous** at 298 K. (1.5 pts for calculation; 1 pt for conclusion)

(b) $\Delta H^\circ = +50 \text{ kJ/mol}$, $\Delta S^\circ = -100 \text{ J/(mol}\cdot\text{K)}$ (3 points):

$$\Delta G^\circ = +50 - (298)(-0.100) = +50 + 29.8 = +79.8 \text{ kJ/mol}$$

Not spontaneous at 298 K ($\Delta G^\circ > 0$). (1 pt)

This is $\Delta H > 0$, $\Delta S < 0 \rightarrow$ **never spontaneous** at any temperature. Both terms make ΔG positive: $(+) - T(-) = (+) + (+) =$ always $(+)$. (2 pts for explanation)

(c) $\Delta H^\circ = +30 \text{ kJ/mol}$, $\Delta S^\circ = +150 \text{ J/(mol}\cdot\text{K)}$ (3 points):

Low T: ΔH term dominates ($T\Delta S$ small), so $\Delta G \approx \Delta H > 0$ (non-spontaneous). (1 pt)

High T: $T\Delta S$ term dominates, so $\Delta G = (+) - \text{large } (+) = (-)$ (spontaneous). (1 pt)

This reaction becomes spontaneous at **high temperature**. (1 pt)

Scoring: (a) 3 pts; (b) 3 pts; (c) 3 pts

Question 7: ΔG° and Equilibrium Constant (10 points)

(a) Calculate ΔG° from $K = 1.0 \times 10^5$ (4 points):

$$\Delta G^\circ = -RT \ln K = -(8.314 \text{ J/(mol}\cdot\text{K})(298 \text{ K}) \ln(1.0 \times 10^5)$$

$$\ln(10^5) = 11.51$$

$$\Delta G^\circ = -(8.314)(298)(11.51) = -28,520 \text{ J/mol} = -28.5 \text{ kJ/mol}$$

(2 pts for calculation; 1 pt for unit conversion)

Product-favored ($K \gg 1$ and $\Delta G^\circ < 0$ both indicate products predominate at equilibrium). (1 pt)

(b) Calculate K from $\Delta G^\circ = +20 \text{ kJ/mol}$ (3 points):

$$\ln K = -\frac{\Delta G^\circ}{RT} = -\frac{20,000 \text{ J/mol}}{(8.314)(298)} = -\frac{20,000}{2478} = -8.07$$

$$K = e^{-8.07} = 3.1 \times 10^{-4}$$

(2 pts for calculation; 1 pt for answer)

(c) Complete table (3 points, 1 pt per row):

ΔG°	K value	Spontaneity
$\Delta G^\circ < 0$	$K > 1$	Product-favored (spontaneous forward)
$\Delta G^\circ = 0$	$K = 1$	At equilibrium (equal amounts)
$\Delta G^\circ > 0$	$K < 1$	Reactant-favored (non-spontaneous forward)

Scoring: (a) 4 pts; (b) 3 pts; (c) 3 pts

For more AP Chemistry resources, practice problems, and study guides, visit APChemistryRescue.com