

# AP Chemistry Unit 8 Easier Practice Set

## Acids and Bases

*Building Confidence with pH, Ka/Kb, Buffers, and Titrations*

**APChemistryRescue.com**

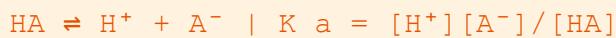


### Practice Set Information

- **Total Points:** 75 points
- **Suggested Time:** 70–100 minutes
- **Questions:** 10 (scaffolded from pH calculations → weak acids/bases → buffers → titrations)
- **Topics:** pH/pOH, strong vs. weak acids/bases, Ka/Kb equilibria, percent ionization, buffers, Henderson-Hasselbalch, titration curves
- **Skills:** pH calculations (strong and weak), ICE tables with Ka/Kb, buffer pH using Henderson-Hasselbalch, interpreting titration curves



### ESSENTIAL ACID-BASE FORMULAS & CONSTANTS


#### pH AND pOH:

$$pH = -\log[H^+] \quad | \quad [H^+] = 10^{-pH}$$

$$pOH = -\log[OH^-] \quad | \quad [OH^-] = 10^{-pOH}$$

$$pH + pOH = 14.00 \quad | \quad [H^+][OH^-] = K_w = 1.0 \times 10^{-14}$$

#### WEAK ACID/BASE EQUILIBRIA:



$$K_a \times K_b = K_w = 1.0 \times 10^{-14} \quad (\text{for conjugate pair})$$

## BUFFERS (Henderson-Hasselbalch) :

$$\text{pH} = \text{pK}_a + \log([\text{A}^-]/[\text{HA}])$$

$$\text{pOH} = \text{pK}_b + \log([\text{BH}^+]/[\text{B}])$$

## PERCENT IONIZATION:

$$\% \text{ ionization} = ([\text{H}^+]_{\text{eq}} / [\text{HA}]_0) \times 100\%$$

## STRONG ACIDS (memorize!)

- HCl (hydrochloric acid)
- HBr (hydrobromic acid)
- HI (hydroiodic acid)
- HNO<sub>3</sub> (nitric acid)
- H<sub>2</sub>SO<sub>4</sub> (sulfuric acid)\*
- HClO<sub>4</sub> (perchloric acid)

\*First proton only

## STRONG BASES (memorize!)

- LiOH, NaOH, KOH
- (Group 1 hydroxides)
- Ca(OH)<sub>2</sub>, Sr(OH)<sub>2</sub>, Ba(OH)<sub>2</sub>
- (Group 2 hydroxides)

100% ionization in water



### Key Concepts:

- **Strong acids/bases:**

100% ionization → pH calculated directly from concentration

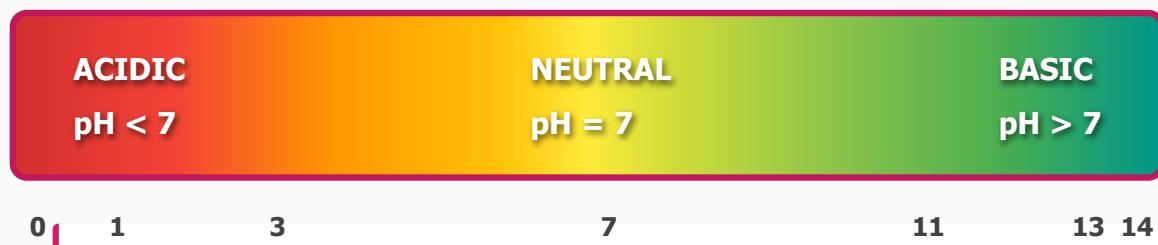
- **Weak acids/bases:**

Partial ionization → use K<sub>a</sub> or K<sub>b</sub> with ICE table

- **Buffers:**

Resist pH change; contain weak acid + conjugate base (or weak base + conjugate acid)

- **pK<sub>a</sub> = -log(K<sub>a</sub>)**


| Lower pK<sub>a</sub> = stronger acid

- **Sig figs in pH:**

Decimal places in pH = sig figs in [H<sup>+</sup>]

## Question 1: pH Scale and Strong Acid pH (6 points)

The pH scale measures the acidity or basicity of a solution:



**(a)** Calculate the pH of a **0.010 M HCl** solution. (HCl is a strong acid, so it ionizes 100%.)

## For strong acids:

$$[\text{H}^+] = [\text{acid}]_{\text{initial}} \text{ (100\% ionization)}$$

$$\text{pH} = -\log[\text{H}^+]$$

## Work Space:

**(b)** Calculate the pH of a **0.0050 M  $\text{HNO}_3$**  solution.

## Work Space:

**(c)** A solution has  $[H^+] = 1.5 \times 10^{-4}$  M. Calculate the pH. How many significant figures should your answer have?

## Work Space:

## Question 2: Strong Base pH and pOH (7 points)

For strong bases, calculate pOH first, then pH.

- (a) Calculate the pH of a **0.020 M NaOH** solution. (NaOH is a strong base.)

### Steps:

- $[\text{OH}^-] = 0.020 \text{ M}$  (100% ionization)
- $\text{pOH} = -\log[\text{OH}^-]$
- $\text{pH} = 14.00 - \text{pOH}$

### Work Space:

- (b) A solution has pH = 11.50. Calculate  $[\text{OH}^-]$ .

### Steps:

- $\text{pOH} = 14.00 - \text{pH}$
- $[\text{OH}^-] = 10^{-(\text{pOH})}$

### Work Space:

**(c)** Explain why a solution with  $\text{pH} = 2$  is **100 times more acidic** than a solution with  $\text{pH} = 4$ .

**Work Space:**

### Question 3: $K_a$ , $K_b$ , and Conjugate Acid-Base Pairs (8 points)

For a conjugate acid-base pair, the relationship is:

$$K_a \times K_b = K_w = 1.0 \times 10^{-14}$$

**(a)** Acetic acid ( $\text{CH}_3\text{COOH}$ ) has  $K_a = 1.8 \times 10^{-5}$ . Calculate  $K_b$  for its conjugate base, acetate ( $\text{CH}_3\text{COO}^-$ ).

**Work Space:**

**(b)** Ammonia ( $\text{NH}_3$ ) has  $K_b = 1.8 \times 10^{-5}$ . Calculate  $K_a$  for its conjugate acid, ammonium ( $\text{NH}_4^+$ ).

**Work Space:**

**(c)** Which is the stronger acid: HF ( $K_a = 6.8 \times 10^{-4}$ ) or HCN ( $K_a = 6.2 \times 10^{-10}$ )? Explain using  $K_a$  values.

**Work Space:**

**(d)** If an acid has  $K_a = 1.0 \times 10^{-7}$ , is it stronger or weaker than its conjugate base? Explain by calculating  $K_b$ .

**Work Space:**

#### Question 4: Weak Acid pH with ICE Table (10 points)

Calculate the pH of a **0.100 M** solution of acetic acid ( $\text{CH}_3\text{COOH}$ ),  $K_a = 1.8 \times 10^{-5}$ .



**(a)** Set up an ICE table for this equilibrium.

**ICE Table:**

|                        | $\text{CH}_3\text{COOH}$ | $\text{H}^+$ | $\text{CH}_3\text{COO}^-$ |
|------------------------|--------------------------|--------------|---------------------------|
| <b>Initial (M)</b>     |                          |              |                           |
| <b>Change (M)</b>      |                          |              |                           |
| <b>Equilibrium (M)</b> |                          |              |                           |

**(b)** Write the  $K_a$  expression and substitute equilibrium concentrations from your ICE table.

**Work Space:**

**(c)** Apply the **small  $K_a$  approximation**:  $0.100 - x \approx 0.100$  (valid because  $K_a$  is small). Solve for  $x = [\text{H}^+]$ .

**Approximation:**

$$\begin{aligned}K_a &= \frac{x \cdot x}{0.100} = \frac{x^2}{0.100} \\x^2 &= K_a \times 0.100 \\x &= \sqrt{K_a \times 0.100}\end{aligned}$$

**Work Space:**

**(d)** Check the validity of the approximation: Is  $(x / 0.100) \times 100\% < 5\%$ ?

**Work Space:**

**(e)** Calculate the **pH** and **percent ionization**.

**Work Space:**

### Question 5: Buffer pH (Henderson-Hasselbalch) (9 points)

A buffer contains **0.50 M  $\text{CH}_3\text{COOH}$**  ( $K_a = 1.8 \times 10^{-5}$ ) and **0.75 M  $\text{CH}_3\text{COONa}$**  (sodium acetate, which provides  $\text{CH}_3\text{COO}^-$ ).

**Henderson-Hasselbalch Equation:**

$$\text{pH} = \text{p}K_a + \log ([\text{A}^-] / [\text{HA}])$$

**(a)** Calculate **pK\_a** from  $K_a$ . Use  $\text{p}K_a = -\log(K_a)$ .

**Work Space:**

**(b)** Identify the **weak acid (HA)** and **conjugate base (A<sup>-</sup>)** in this buffer.

**Work Space:**

**(c)** Calculate the **pH of the buffer** using Henderson-Hasselbalch. Show all work.

**Work Space:**

**(d)** If you add a small amount of **HCl** to this buffer, which component ( $\text{CH}_3\text{COOH}$  or  $\text{CH}_3\text{COO}^-$ ) will react with the HCl? What is the purpose of this reaction?

**Work Space:**

**Question 6: Buffer Conceptual Understanding (7 points)**

**(a)** What is a buffer? What two components must be present?

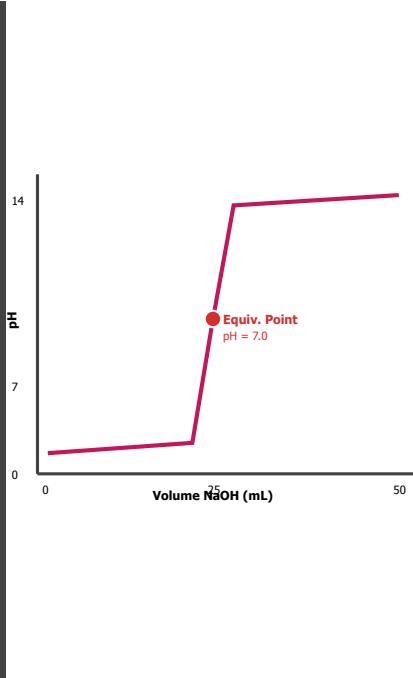
**Work Space:**

**(b)** Explain how a buffer resists pH change when a small amount of **strong base ( $\text{OH}^-$ )** is added.

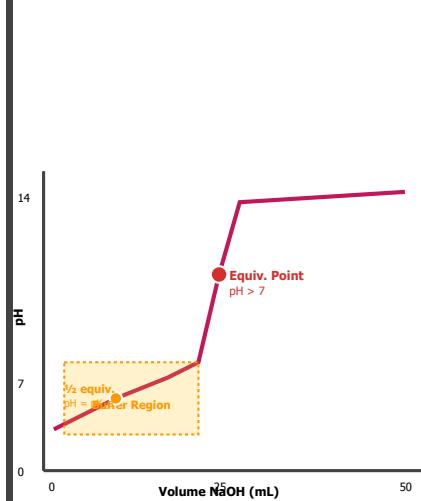
**Work Space:**

**(c)** A buffer works best when  $\text{pH} \approx \text{pK}_a$ . Why? What is the ratio  $[\text{A}^-]/[\text{HA}]$  when  $\text{pH} = \text{pK}_a$ ?

**Work Space:**


**(d)** Can you make a buffer from a **strong acid (HCl)** and its conjugate base ( $\text{Cl}^-$ )? Explain why or why not.

**Work Space:**


## Question 7: Titration Curves (9 points)

Below are two titration curves: (A) Strong acid + Strong base, (B) Weak acid + Strong base.

**Curve A: HCl + NaOH**



**Curve B:  $\text{CH}_3\text{COOH}$  + NaOH**



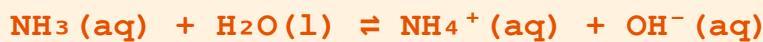
**(a)** In Curve A (strong acid + strong base), what is the pH at the equivalence point? Why is it exactly 7.0?

**Work Space:**

**(b)** In Curve B (weak acid + strong base), why is the pH at the equivalence point **greater than 7**?

**Work Space:**

**(c)** What is the significance of the **half-equivalence point** on Curve B? What is the relationship between pH and pK<sub>a</sub> at this point?


**Work Space:**

**(d)** Why does Curve B have a **buffer region** (gentle slope before equivalence point) while Curve A does not?

**Work Space:**

### Question 8: Weak Base pH Calculation (8 points)

Calculate the pH of a **0.150 M ammonia (NH<sub>3</sub>)** solution. K<sub>b</sub> = 1.8 × 10<sup>-5</sup>.



**(a)** Write the  $K_b$  expression for ammonia.

**Work Space:**

**(b)** Set up an ICE table and solve for  $[OH^-]$  using the small  $K_b$  approximation.

**Work Space (ICE table and calculation):**

**(c)** Calculate **pOH**, then **pH**.

**Work Space:**

### Question 9: Salt Hydrolysis (6 points)

When salts dissolve in water, they can affect the pH through **hydrolysis**.

**(a)** Predict whether a solution of  $NaCH_3COO$  (sodium acetate) will

be acidic, basic, or neutral. Explain using the acetate ion ( $\text{CH}_3\text{COO}^-$ ).

**Hint:**

$\text{Na}^+$  is the conjugate of a strong base ( $\text{NaOH}$ ) and doesn't affect pH. What about  $\text{CH}_3\text{COO}^-$ ?

**Work Space:**

**(b)** Predict whether a solution of  **$\text{NH}_4\text{Cl}$**  (ammonium chloride) will be acidic, basic, or neutral.

**Work Space:**

**(c)** Predict whether a solution of  **$\text{NaCl}$**  will be acidic, basic, or neutral. Explain.

**Work Space:**

## Question 10: Conceptual Synthesis (5 points)

**(a)** Why can't you use Henderson-Hasselbalch equation for a solution containing **only** a weak acid (no conjugate base present)?

**Work Space:**

**(b)** A student claims: "A buffer with  $\text{pH} = 7$  is always the best buffer." Explain why this is not necessarily true. When is a buffer most effective?

**Work Space:**

**(c)** Explain why adding water to a buffer **dilutes** the buffer but doesn't significantly change the pH.

**Work Space:**

**END OF PRACTICE SET**

Total: 75 points | Answer key begins on next page



# COMPLETE ANSWER KEY & SCORING GUIDE

## Question 1: pH Scale and Strong Acid pH (6 points)

### (a) pH of 0.010 M HCl (2 points):

HCl is a strong acid, so  $[H^+] = 0.010 \text{ M}$

$$\text{pH} = -\log[H^+] = -\log(0.010) = -\log(1.0 \times 10^{-2}) = 2.00$$

(1 pt for  $[H^+] = 0.010 \text{ M}$ ; 1 pt for pH calculation)

### (b) pH of 0.0050 M HNO<sub>3</sub> (1.5 points):

$$\text{pH} = -\log(0.0050) = -\log(5.0 \times 10^{-3}) = 2.30$$

(1.5 pts)

### (c) pH from $[H^+]$ and sig figs (2.5 points):

$$\text{pH} = -\log(1.5 \times 10^{-4}) = 3.82$$

$[H^+]$  has 2 significant figures, so pH should have **2 decimal places**: pH = 3.82. (1 pt for calculation; 1 pt for sig figs; 0.5 pt for explanation)

**Rule:** Decimal places in pH = sig figs in  $[H^+]$  (because pH is a logarithm).

**Scoring:** (a) 2 pts; (b) 1.5 pts; (c) 2.5 pts

## Question 4: Weak Acid pH with ICE Table (10 points)

### (a) ICE table (2 points):

|  | CH <sub>3</sub> COOH | H <sup>+</sup> | CH <sub>3</sub> COO <sup>-</sup> |
|--|----------------------|----------------|----------------------------------|
|  |                      |                |                                  |

|                        |                  |           |           |
|------------------------|------------------|-----------|-----------|
| <b>Initial (M)</b>     | <b>0.100</b>     | <b>≈0</b> | <b>0</b>  |
| <b>Change (M)</b>      | <b>-x</b>        | <b>+x</b> | <b>+x</b> |
| <b>Equilibrium (M)</b> | <b>0.100 - x</b> | <b>x</b>  | <b>x</b>  |

(2 pts for correct setup)

**(b) K<sub>a</sub> expression (1.5 points):**

$$K_a = \frac{[H^+][CH_3COO^-]}{[CH_3COOH]} = \frac{x \cdot x}{0.100 - x} = \frac{x^2}{0.100 - x}$$

(1.5 pts)

**(c) Solve using approximation (3 points):**

Assume  $0.100 - x \approx 0.100$ :

$$1.8 \times 10^{-5} = \frac{x^2}{0.100}$$

$$x^2 = (1.8 \times 10^{-5})(0.100) = 1.8 \times 10^{-6}$$

$$x = \sqrt{1.8 \times 10^{-6}} = 1.34 \times 10^{-3} \text{ M}$$

(1 pt for approximation setup; 1 pt for algebra; 1 pt for answer)

**(d) Check validity (1.5 points):**

$$\frac{x}{0.100} \times 100\% = \frac{1.34 \times 10^{-3}}{0.100} \times 100\% = 1.34\%$$

Since  $1.34\% < 5\%$ , the approximation is **valid**. (1 pt for calculation; 0.5 pt for conclusion)

**(e) pH and percent ionization (2 points):**

$$\text{pH} = -\log(1.34 \times 10^{-3}) = 2.87$$

$$\text{Percent ionization} = \frac{[H^+]}{[HA]_0} \times 100\% = \frac{1.34 \times 10^{-3}}{0.100} \times 100\% = 1.34\%$$

(1 pt for pH; 1 pt for % ionization)

**Scoring:** (a) 2 pts; (b) 1.5 pts; (c) 3 pts; (d) 1.5 pts; (e) 2 pts

## Question 5: Buffer pH (Henderson-Hasselbalch) (9 points)

### (a) Calculate pK<sub>a</sub> (2 points):

$$pK_a = -\log(K_a) = -\log(1.8 \times 10^{-5}) = 4.74$$

(2 pts)

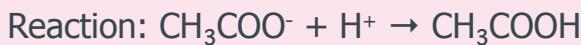
### (b) Identify acid and base (1.5 points):

**Weak acid (HA):** CH<sub>3</sub>COOH (0.50 M)

**Conjugate base (A<sup>-</sup>):** CH<sub>3</sub>COO<sup>-</sup> (0.75 M, from CH<sub>3</sub>COONa)

(1.5 pts)

### (c) Calculate pH (4 points):


$$pH = pK_a + \log\left(\frac{[A^-]}{[HA]}\right) = 4.74 + \log\left(\frac{0.75}{0.50}\right)$$

$$= 4.74 + \log(1.5) = 4.74 + 0.18 = 4.92$$

(1 pt for formula; 1 pt for substitution; 1 pt for log calculation; 1 pt for final answer)

### (d) Reaction with HCl (1.5 points):

The **conjugate base CH<sub>3</sub>COO<sup>-</sup>** will react with HCl (strong acid, source of H<sup>+</sup>). (1 pt)



Purpose: The acetate ion **neutralizes the added H<sup>+</sup>**, preventing a large pH drop. The buffer resists pH change by converting strong acid into weak acid. (0.5 pt)

**Scoring:** (a) 2 pts; (b) 1.5 pts; (c) 4 pts; (d) 1.5 pts

