

AP Chemistry Unit 7 Easier Practice Set

Equilibrium

Building Confidence with K expressions, ICE tables, and Le Chatelier

APChemistryRescue.com

Practice Set Information

- **Total Points:** 75 points
- **Suggested Time:** 70–100 minutes
- **Questions:** 10 (scaffolded from K expressions → ICE tables → Le Chatelier → calculations)
- **Topics:** Equilibrium expressions (K_c , K_p), homogeneous/heterogeneous equilibria, Q vs. K , ICE tables, Le Chatelier's principle, equilibrium calculations
- **Skills:** Writing K expressions, ICE table setup, predicting shifts, algebraic equilibrium calculations, $K_p \leftrightarrow K_c$ conversions

ESSENTIAL EQUILIBRIUM FORMULAS & RULES

EQUILIBRIUM CONSTANT EXPRESSIONS :

For $aA + bB \rightleftharpoons cC + dD$

$$K_c = [C]^c [D]^d / [A]^a [B]^b \text{ (concentrations, M)}$$

$$K_p = (P_C)^c (P_D)^d / (P_A)^a (P_B)^b \text{ (partial pressures, atm)}$$

IMPORTANT RULES :

- Exclude pure solids (s) and pure liquids (l) from K

- Include gases (g) and aqueous solutions (aq)
- $K_p = K_c (RT)^{\Delta n}$ where $\Delta n = (\text{moles gas products}) - (\text{moles gas reactants})$
- $R = 0.0821 \text{ L} \cdot \text{atm} / (\text{mol} \cdot \text{K})$

Q vs. K (REACTION QUOTIENT) :

Q = same form as K , but uses CURRENT concentrations

- If $Q < K \rightarrow$ reaction shifts RIGHT (toward products)
- If $Q > K \rightarrow$ reaction shifts LEFT (toward reactants)
- If $Q = K \rightarrow$ system is at EQUILIBRIUM (no shift)

Equilibrium Key Concepts:

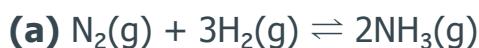
- **Dynamic equilibrium:**

Forward and reverse rates are equal; concentrations constant (NOT zero)

- **K is temperature-dependent:**

Changing T changes K; other stresses shift position but K stays same

- **Le Chatelier's Principle:**


System responds to stress by shifting to relieve it

- **ICE tables:**

Initial \rightarrow Change ($\pm x$ with stoichiometry) \rightarrow Equilibrium

Question 1: Writing Equilibrium Expressions (Homogeneous) (6 points)

Write the equilibrium constant expressions (K_c) for the following **homogeneous** (all species in same phase) gas-phase reactions:

Work Space:

Work Space:

Work Space:

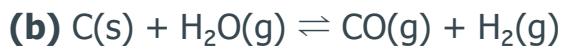
(d) For reaction (a), if the reaction is reversed ($2\text{NH}_3 \rightleftharpoons \text{N}_2 + 3\text{H}_2$), what is the relationship between the new K and the original K?

Work Space:

Question 2: Heterogeneous Equilibria (7 points)

Heterogeneous equilibria involve species in different phases. Pure solids (s) and pure liquids (l) are **excluded** from equilibrium expressions because

their activities equal 1.



Only include (g) and (aq) species in K expressions. Omit (s) and (l).

Write the K_c expression. Which species are included?

Work Space:

Write the K_c expression.

Work Space:

Write the K_c expression. (This is actually K_{sp} , solubility product, but follows the same rule.)

Work Space:

(d) Explain WHY pure solids and liquids are excluded from

equilibrium expressions.

Work Space:

Question 3: Reaction Quotient (Q) vs. Equilibrium Constant (K) (8 points)

The **reaction quotient Q** has the same form as K but uses **current** (not equilibrium) concentrations. Comparing Q to K predicts the direction of shift:

Calculate Q
using current [concentrations]

Compare Q to K

$Q < K$

Shift RIGHT →
(toward
products)

$Q = K$

At
EQUILIBRIUM
(no shift)

$Q > K$

Shift LEFT ←
(toward
reactants)

Example: For the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$, $K_c = 0.500$ at $400^\circ C$.

A reaction mixture contains $[N_2] = 0.10 \text{ M}$, $[H_2] = 0.20 \text{ M}$, and $[NH_3] = 0.040 \text{ M}$.

(a) Write the expression for Q_c .

Work Space:

(b) Calculate Q_c using the given concentrations. Show all work.

Work Space:

(c) Compare Q_c to K_c . Is $Q < K$, $Q = K$, or $Q > K$?

Work Space:

(d) In which direction will the reaction shift to reach equilibrium? Will $[NH_3]$ increase or decrease as the system reaches equilibrium?

Work Space:

Question 4: ICE Table Setup (Basic) (8 points)

An **ICE table** (Initial, Change, Equilibrium) organizes equilibrium calculations.

Example: $\text{H}_2(\text{g}) + \text{I}_2(\text{g}) \rightleftharpoons 2\text{HI}(\text{g})$, $K_c = 50.0$ at 450°C

Initially, a container holds $[\text{H}_2]_0 = 1.00 \text{ M}$, $[\text{I}_2]_0 = 1.00 \text{ M}$, and $[\text{HI}]_0 = 0 \text{ M}$.

ICE Table Rules:

-

Initial:

Write starting concentrations

-

Change:

Use variable x with stoichiometric coefficients ($\pm 1x$, $\pm 2x$, etc.)

-

Equilibrium:

Add Initial + Change for each species

	$\text{H}_2(\text{g})$	$\text{I}_2(\text{g})$	$2\text{HI}(\text{g})$
Initial (M)	1.00	1.00	0
Change (M)	$-x$	$-x$	$+2x$
Equilibrium (M)	$1.00 - x$	$1.00 - x$	$2x$

(a) Explain why the Change row shows $-x$ for H_2 and I_2 , but $+2x$ for HI .

Work Space:

(b) Write the equilibrium expression K_c in terms of the equilibrium concentrations from the ICE table.

Work Space:

(c) Substitute the equilibrium expressions into $K_c = 50.0$ and set up the equation to solve for x . (You do NOT need to solve it yet.)

Work Space:

(d) Simplify the equation by taking the square root of both sides (since it's a perfect square setup). Then solve for x .

Hint:

$$\$ \$ \sqrt{50.0} = \sqrt{\frac{(2x)^2}{(1-x)^2}} = \frac{2x}{1-x} \$ \$$$

Work Space:

Question 5: ICE Table with Small K Approximation (9 points)

For reactions with very small K ($K \ll 1$), we can use the **small K approximation**: $[A]_0 - x \approx [A]_0$ (if x is negligible).

Initially, $[\text{NO}_2]_0 = 0.500 \text{ M}$, $[\text{NO}]_0 = 0 \text{ M}$, $[\text{O}_2]_0 = 0 \text{ M}$.

(a) Set up an ICE table for this reaction. Use variable x .

ICE Table (draw your own or use the template below):

	$2\text{NO}_2(\text{g})$	$2\text{NO}(\text{g})$	$\text{O}_2(\text{g})$
Initial (M)			
Change (M)			
Equilibrium (M)			

(b) Write the K_c expression in terms of equilibrium concentrations from your ICE table.

Work Space:

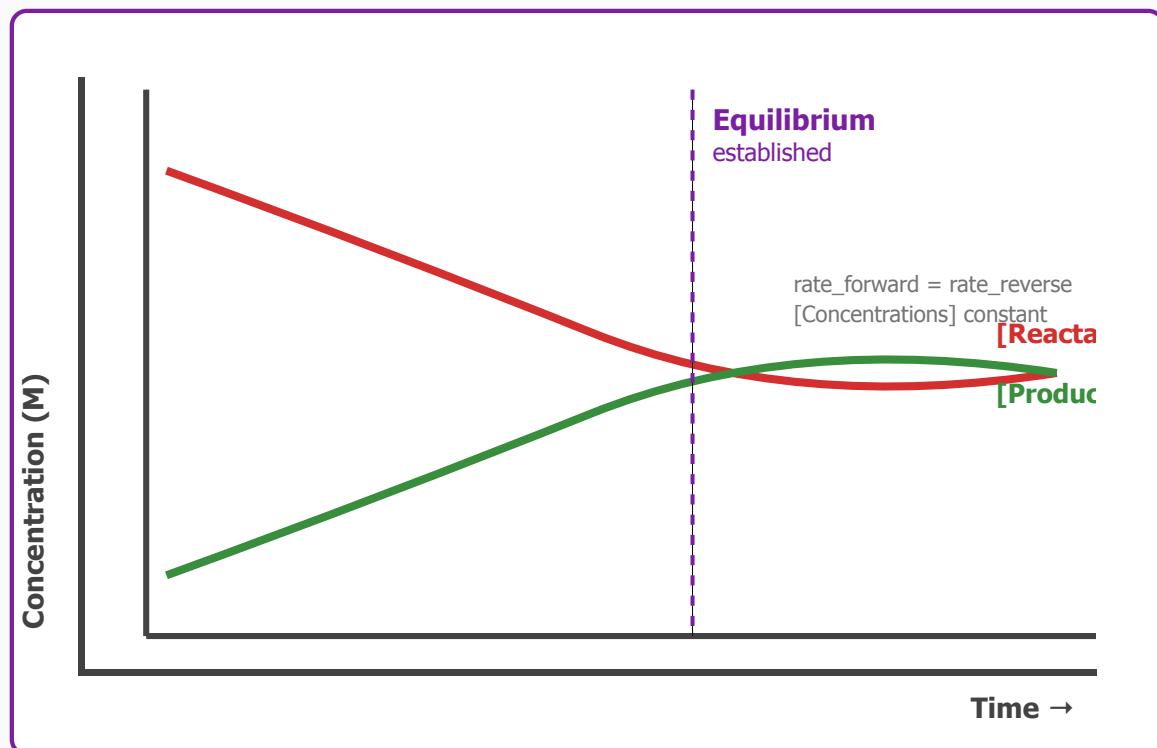
(c) Apply the small K approximation: assume $0.500 - 2x \approx 0.500$ (because K is very small, x will be tiny). Solve for x.

Approximation:

$$\begin{aligned} \text{K}_c &= \frac{[\text{NO}]^2[\text{O}_2]}{[\text{NO}_2]^2} \approx \\ &\approx \frac{(2x)^2(x)}{(0.500)^2} \end{aligned}$$

Work Space:

(d) Check the validity of the approximation by calculating $\frac{2x}{0.500} \times 100\%$. If this is less than 5%, the approximation is valid.


Work Space:

(e) Calculate the equilibrium concentration $[\text{O}_2]_{\text{eq}}$.

Work Space:

Question 6: Concentration vs. Time Graph (6 points)

When a reversible reaction reaches equilibrium, the concentrations of reactants and products become **constant** (but NOT zero).

(a) On the graph, why do both curves (reactants and products) **level off** after a certain time?

Work Space:

(b) Do the [reactants] and [products] need to be **equal** at equilibrium? Explain using the graph.

Work Space:

(c) What does it mean that equilibrium is **dynamic** (not static)?

Work Space:

Question 7: Le Chatelier's Principle (10 points)

Le Chatelier's Principle: If a stress is applied to a system at equilibrium, the system shifts in the direction that relieves the stress.

Consider the reaction: $\text{N}_2(\text{g}) + 3\text{H}_2(\text{g}) \rightleftharpoons 2\text{NH}_3(\text{g}) \Delta\text{H} = -92 \text{ kJ}$
(exothermic)

Stress Applied	Direction of Shift	Effect on $[\text{NH}_3]$
Add $\text{N}_2(\text{g})$		
Remove $\text{H}_2(\text{g})$		
Add $\text{NH}_3(\text{g})$		
Increase pressure (decrease volume)		
Increase temperature		

(a) Complete the table above by predicting the direction of shift and effect on $[\text{NH}_3]$ for each stress.

Work Space (you can fill in the table directly or write explanations here):

(b) Explain why increasing the **pressure** (by decreasing volume) shifts the equilibrium toward NH_3 in this reaction.

Hint:

Count moles of gas on each side of the equation.

Work Space:

(c) Explain why increasing the **temperature** shifts the equilibrium to the **LEFT** (toward reactants) for this exothermic reaction.

Work Space:

(d) Does adding a **catalyst** shift the equilibrium position or change the value of K ? Explain.

Work Space:

Question 8: K_p and K_c Relationship (7 points)

For gas-phase reactions, the equilibrium constant can be expressed using concentrations (K_c) or partial pressures (K_p):

$$K_p = K_c (RT)^{\Delta n}$$

$\Delta n = (\text{moles of gas products}) - (\text{moles of gas reactants})$

$R = 0.0821 \text{ L} \cdot \text{atm} / (\text{mol} \cdot \text{K})$

(a) For the reaction $2\text{SO}_2(\text{g}) + \text{O}_2(\text{g}) \rightleftharpoons 2\text{SO}_3(\text{g})$, calculate Δn .

Work Space:

(b) If $K_c = 1.5 \times 10^2$ at 700 K, calculate K_p . Show all work with units.

Work Space:

(c) For the reaction $\text{H}_2(\text{g}) + \text{I}_2(\text{g}) \rightleftharpoons 2\text{HI}(\text{g})$, what is Δn ? What is the relationship between K_p and K_c for this reaction?

Work Space:

Question 9: Calculating K from Equilibrium Concentrations (6 points)

At equilibrium at 500 K, a reaction mixture contains:

$[\text{CO}] = 0.150 \text{ M}$, $[\text{H}_2] = 0.200 \text{ M}$, $[\text{CH}_3\text{OH}] = 0.0500 \text{ M}$

(a) Write the equilibrium expression K_c .

Work Space:

(b) Calculate K_c . Show all work with proper significant figures.

Work Space:

(c) Is this equilibrium favoring reactants or products? How do you know from the value of K?

Work Space:

Question 10: Conceptual Understanding (8 points)

(a) A student claims: "At equilibrium, the forward and reverse reactions stop." Is this correct? Explain what actually happens at equilibrium.

Work Space:

(b) Explain the difference between the **equilibrium position** shifting and the **equilibrium constant K** changing.

Work Space:

(c) Why can we not include pure solids and liquids in equilibrium expressions? (Hint: Consider their concentration or activity.)

Work Space:

(d) For an exothermic reaction, increasing temperature **decreases**
K. Explain this using Le Chatelier's principle and the relationship
between heat and equilibrium.

Work Space:

END OF PRACTICE SET

Total: 75 points | Answer key begins on next page

COMPLETE ANSWER KEY & SCORING GUIDE

Question 1: Writing Equilibrium Expressions (6 points)

(a) $\text{N}_2 + 3\text{H}_2 \rightleftharpoons 2\text{NH}_3$ (1.5 points):

$$\text{\$\$K_c} = \frac{[\text{NH}_3]^2}{[\text{N}_2][\text{H}_2]^3}\text{\$\$}$$

(1 pt for correct form; 0.5 pt for correct exponents)

(b) $2\text{SO}_2 + \text{O}_2 \rightleftharpoons 2\text{SO}_3$ (1.5 points):

$$\text{\$\$K_c} = \frac{[\text{SO}_3]^2}{[\text{SO}_2]^2[\text{O}_2]}\text{\$\$}$$

(c) $\text{PCl}_5 \rightleftharpoons \text{PCl}_3 + \text{Cl}_2$ (1.5 points):

$$\text{\$\$K_c} = \frac{[\text{PCl}_3][\text{Cl}_2]}{[\text{PCl}_5]}\text{\$\$}$$

(d) Relationship when reversed (1.5 points):

When a reaction is reversed, the new K is the **reciprocal** of the original K.

(1 pt)

$$\text{\$\$K_{reverse}} = \frac{1}{K_{forward}}\text{\$\$}$$

For reaction (a), if $K_{forward} = x$, then $K_{reverse} = 1/x$. (0.5 pt)

Scoring: (a) 1.5 pts; (b) 1.5 pts; (c) 1.5 pts; (d) 1.5 pts

Question 2: Heterogeneous Equilibria (7 points)

(a) $\text{CaCO}_3(s) \rightleftharpoons \text{CaO}(s) + \text{CO}_2(g)$ (2 points):

$$\text{\$\$K_c} = [\text{CO}_2]\text{\$\$}$$

Only $\text{CO}_2(g)$ is included. (1 pt) $\text{CaCO}_3(s)$ and $\text{CaO}(s)$ are pure solids, so they are excluded. (1 pt)

(b) $\text{C}(s) + \text{H}_2\text{O}(g) \rightleftharpoons \text{CO}(g) + \text{H}_2(g)$ (2 points):

$$\text{\$\$K_c} = \frac{[\text{CO}][\text{H}_2]}{[\text{H}_2\text{O}]}\text{\$\$}$$

$\text{C}(s)$ is excluded because it's a pure solid. (2 pts: 1 for expression, 1 for excluding C)

(c) $\text{AgCl}(s) \rightleftharpoons \text{Ag}^+(aq) + \text{Cl}^-(aq)$ (1.5 points):

$$\text{\$\$K_c} = K_{\text{sp}} = [\text{Ag}^+][\text{Cl}^-]\text{\$\$}$$

$\text{AgCl}(s)$ is excluded. (1.5 pts)

(d) Why exclude solids and liquids (1.5 points):

The **concentration** of a pure solid or pure liquid is essentially constant—it doesn't change during the reaction because its density is fixed. (1 pt) In thermodynamic terms, the **activity** of a pure solid or liquid is defined as 1, so including it in the K expression would just multiply by 1 (no effect). Therefore, we exclude them for simplicity and focus only on species whose concentrations can vary (gases and aqueous solutions). (0.5 pt)

Scoring: (a) 2 pts; (b) 2 pts; (c) 1.5 pts; (d) 1.5 pts

Question 3: Q vs. K (8 points)

(a) Expression for Q_c (2 points):

$$Q_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$$

(Same form as K_c, but uses current concentrations.) (2 pts)

(b) Calculate Q_c (3 points):

$$\begin{aligned} Q_c &= \frac{(0.040)^2}{(0.10)(0.20)^3} = \frac{0.0016}{(0.10)(0.008)} \\ &= \frac{0.0016}{0.0008} = 2.0 \end{aligned}$$

(1 pt for substitution; 1 pt for calculation; 1 pt for answer)

(c) Compare Q to K (1 point):

$$Q_c = 2.0, K_c = 0.500$$

Q > K (1 pt)

(d) Direction of shift (2 points):

Because Q > K, the reaction will shift **LEFT** (toward reactants) to reach equilibrium. (1 pt) This means [NH₃] will **decrease** (consumed to form more N₂ and H₂). (1 pt)

Scoring: (a) 2 pts; (b) 3 pts; (c) 1 pt; (d) 2 pts

Question 4: ICE Table Setup (8 points)

(a) Why $-x$ and $+2x$? (2 points):

From the balanced equation $H_2 + I_2 \rightarrow 2HI$, for every 1 mole of H_2 that reacts, 1 mole of I_2 also reacts, and 2 moles of HI are formed. (1 pt) The stoichiometric coefficients dictate the Change row: H_2 and I_2 decrease by x each ($-x$), while HI increases by $2x$ ($+2x$) to maintain the 1:1:2 ratio. (1 pt)

(b) K_c expression (1.5 points):

$$K_c = \frac{[HI]^2}{[H_2][I_2]} = \frac{(2x)^2}{(1.00-x)(1.00-x)}$$

(1.5 pts for correct substitution)

(c) Set up equation (1.5 points):

$$50.0 = \frac{(2x)^2}{(1.00-x)^2} = \frac{4x^2}{(1.00-x)^2}$$

(1.5 pts)

(d) Solve for x (3 points):

Take the square root of both sides:

$$\sqrt{50.0} = \sqrt{2x(1.00-x)}$$

$$7.07 = \sqrt{2x(1.00-x)}$$

$$7.07(1.00-x) = 2x$$

$$7.07 - 7.07x = 2x$$

$$7.07 = 9.07x$$

$$x = \frac{7.07}{9.07} = 0.780$$

(1 pt for taking square root; 1 pt for algebra; 1 pt for final answer)

Equilibrium concentrations: $[H_2] = [I_2] = 1.00 - 0.780 = 0.220 \text{ M}$; $[HI] = 2(0.780) = 1.56 \text{ M}$

Scoring: (a) 2 pts; (b) 1.5 pts; (c) 1.5 pts; (d) 3 pts

Question 5: ICE Table with Small K Approximation (9 points)

(a) ICE table (2 points):

	2NO ₂ (g)	2NO(g)	O ₂ (g)
Initial (M)	0.500	0	0
Change (M)	-2x	+2x	+x
Equilibrium (M)	0.500 - 2x	2x	x

(1 pt for correct Initial; 1 pt for correct Change with stoichiometry)

(b) K_c expression (1.5 points):

$$K_c = \frac{[NO]^2[O_2]}{[NO_2]^2} = \frac{(2x)^2(x)}{(0.500 - 2x)^2}$$

(1.5 pts)

(c) Solve using approximation (3 points):

Approximation: $0.500 - 2x \approx 0.500$

$$1.0 \times 10^{-5} = \frac{(2x)^2(x)}{(0.500)^2} = \frac{4x^3}{0.250}$$

$$1.0 \times 10^{-5} = 16x^3$$

$$x^3 = \frac{1.0 \times 10^{-5}}{16} = 6.25 \times 10^{-6}$$

$$x = \sqrt[3]{6.25 \times 10^{-6}} = 8.55 \times 10^{-3}$$

(1 pt for setting up approximation; 1 pt for algebra; 1 pt for solving x)

(d) Check validity (1.5 points):

$$\frac{2x}{0.500} \times 100\% = \frac{2(8.55 \times 10^{-3})}{0.500} \times 100\% = 0.0171 \times 100\% = 3.42\%$$

Since $3.42\% < 5\%$, the approximation is **valid**. (1 pt for calculation; 0.5 pt

for conclusion)

(e) Equilibrium $[O_2]$ (1 point):

$$[[O_2]]_{eq} = x = 8.55 \times 10^{-3} \text{ M}$$

(1 pt)

Scoring: (a) 2 pts; (b) 1.5 pts; (c) 3 pts; (d) 1.5 pts; (e) 1 pt

Question 6: Concentration vs. Time Graph (6 points)

(a) Why curves level off (2 points):

The curves level off because the system has reached **equilibrium**. (1 pt)

At equilibrium, the forward reaction rate equals the reverse reaction rate, so the concentrations of reactants and products remain constant (no net change). (1 pt)

(b) Must $[reactants] = [products]$? (2 points):

No, $[reactants]$ and $[products]$ do NOT need to be equal at equilibrium. (1 pt) The graph shows $[products]$ and $[reactants]$ reaching different constant values. Equilibrium means the **rates** are equal, not the concentrations. The ratio of concentrations is determined by K, which can be large (product-favored) or small (reactant-favored). (1 pt)

(c) Dynamic equilibrium (2 points):

Dynamic equilibrium means the forward and reverse reactions **continue to occur** at the molecular level, but at equal rates. (1 pt) Molecules are constantly reacting in both directions, but because the rates are balanced, the macroscopic concentrations don't change—it's not a "static" or "frozen" state. (1 pt)

Scoring: (a) 2 pts; (b) 2 pts; (c) 2 pts

Question 7: Le Chatelier's Principle (10 points)

(a) Completed table (5 points, 1 pt per row):

Stress Applied	Direction of Shift	Effect on [NH ₃]
Add N ₂ (g)	Shift RIGHT (→)	Increase
Remove H ₂ (g)	Shift LEFT (←)	Decrease
Add NH ₃ (g)	Shift LEFT (←)	Decrease (initially increases, then system consumes some)
Increase pressure (decrease volume)	Shift RIGHT (→)	Increase
Increase temperature	Shift LEFT (←)	Decrease

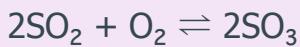
(b) Why pressure increase shifts right (2 points):

The left side has 1 mol N₂ + 3 mol H₂ = **4 moles of gas**. The right side has **2 moles of gas** (NH₃). (1 pt) When pressure increases (volume decreases), the system shifts toward the side with **fewer moles of gas** to reduce pressure—in this case, toward NH₃ (right). (1 pt)

(c) Why temperature increase shifts left (2 points):

The reaction is exothermic ($\Delta H = -92 \text{ kJ}$), meaning heat is a "product": N₂ + 3H₂ ⇌ 2NH₃ + heat. (1 pt) Increasing temperature adds heat (a stress). By Le Chatelier, the system shifts to consume the added heat, which means

shifting LEFT (toward reactants), treating heat as a product to be removed. This also means K **decreases** with increasing T for exothermic reactions. (1 pt)


(d) Catalyst effect (1 point):

Adding a catalyst **does NOT shift the equilibrium position** or change K. (0.5 pt) A catalyst speeds up both forward and reverse reactions equally, so the system reaches equilibrium **faster**, but the final equilibrium concentrations remain the same. (0.5 pt)

Scoring: (a) 5 pts (1 per row); (b) 2 pts; (c) 2 pts; (d) 1 pt

Question 8: K_p and K_c Relationship (7 points)

(a) Calculate Δn (2 points):

Reactants: 2 mol SO_2 + 1 mol O_2 = 3 moles gas

Products: 2 mol SO_3 = 2 moles gas

$$\$ \$ \Delta n = 2 - 3 = -1 \$ \$$$

(1 pt for calculation; 1 pt for correct answer)

(b) Calculate K_p (3 points):

$$\$ \$ K_p = K_c (RT)^{\{\Delta n\}} = (1.5 \times 10^2)(0.0821 \times 700)^{-1} \$ \$$$

$$\$ \$ = (1.5 \times 10^2) \times \frac{1}{(0.0821)(700)} = \frac{150}{57.47} = 2.61 \$ \$$$

(1 pt for formula; 1 pt for substitution; 1 pt for answer)

(c) Δn for $\text{H}_2 + \text{I}_2 \rightleftharpoons 2\text{HI}$ (2 points):

Reactants: 1 mol H_2 + 1 mol I_2 = 2 moles gas

Products: 2 mol HI = 2 moles gas

$$\$ \$ \Delta n = 2 - 2 = 0 \$ \$$$

When $\Delta n = 0$, $K_p = K_c$ (because $(RT)^0 = 1$). (1 pt for Δn ; 1 pt for relationship)

Scoring: (a) 2 pts; (b) 3 pts; (c) 2 pts

Question 9: Calculating K from Equilibrium Concentrations (6 points)

(a) K_c expression (1.5 points):

$$K_c = \frac{[CH_3OH]}{[CO][H_2]^2}$$

(1.5 pts)

(b) Calculate K_c (3 points):

$$K_c = \frac{0.0500}{(0.150)(0.200)^2} = \frac{0.0500}{(0.150)(0.0400)} = \frac{0.0500}{0.00600} = 8.33$$

(1 pt for substitution; 1 pt for calculation; 1 pt for sig figs)

(c) Reactants or products favored? (1.5 points):

K_c = 8.33 is **greater than 1**, so the equilibrium **favors products** (numerator > denominator). (1 pt) When K >> 1, products predominate at equilibrium; when K << 1, reactants predominate. (0.5 pt)

Scoring: (a) 1.5 pts; (b) 3 pts; (c) 1.5 pts

Question 10: Conceptual Understanding (8 points)

(a) Do reactions stop at equilibrium? (2 points):

Incorrect. At equilibrium, the forward and reverse reactions **continue to occur**, but at equal rates. (1 pt) This is called **dynamic equilibrium**—molecules are constantly reacting in both directions, but the concentrations remain constant because the rates balance. The reactions never "stop." (1 pt)

(b) Equilibrium position vs. K changing (2 points):

The **equilibrium position** refers to the specific concentrations (or ratio) of reactants and products at equilibrium, which can shift in response to stresses like concentration changes, pressure, etc. (1 pt) The **equilibrium**

constant K is a numerical value that depends **only on temperature**. K changes only if temperature changes. Other stresses (adding reactants, changing pressure) shift the position but do NOT change K. (1 pt)

(c) Why exclude solids and liquids? (2 points):

The concentration (or activity) of a pure solid or pure liquid is **constant**—it doesn't change during the reaction because the density and amount per unit volume are fixed. (1 pt) Mathematically, their activity is defined as 1, so including them in the K expression would just multiply by 1 (no effect). We exclude them for simplicity, focusing only on species whose concentrations vary: gases (g) and aqueous solutions (aq). (1 pt)

(d) Why increasing T decreases K for exothermic reactions (2 points):

For an exothermic reaction, heat is a "product": $\text{Reactants} \rightleftharpoons \text{Products} + \text{heat}$. (1 pt) Increasing temperature adds heat (a stress). By Le Chatelier's principle, the system shifts to consume the added heat by favoring the reverse reaction (toward reactants), which decreases the $[\text{products}]/[\text{reactants}]$ ratio—thus K decreases. Conversely, for endothermic reactions, increasing T increases K because the system shifts toward products to absorb the added heat. (1 pt)

Scoring: (a) 2 pts; (b) 2 pts; (c) 2 pts; (d) 2 pts