

AP Chemistry Unit 6

ADVANCED FRQ PRACTICE

APChemistryRescue.com

Thermodynamics

Difficulty: Challenging | Time: 150 minutes (15 min/question)

Master Thermodynamics: From Enthalpy to Entropy to Gibbs Free Energy!

Reference Information & Key Equations

- ▶ **First Law:** $\Delta E = q + w$ (or $\Delta U = q + w$)
- ▶ **Enthalpy:** $\Delta H = \Delta E + P\Delta V$ (at constant P : $\Delta H = q_p$)
- ▶ **Calorimetry:** $q = mc\Delta T$ or $q = C\Delta T$
- ▶ **Hess's Law:** $\Delta H_{rxn} = \sum \Delta H_f^\circ \text{ (products)} - \sum \Delta H_f^\circ \text{ (reactants)}$
- ▶ **Bond Energy:** $\Delta H_{rxn} = \sum \text{(bonds broken)} - \sum \text{(bonds formed)}$
- ▶ **Gibbs Free Energy:** $\Delta G = \Delta H - T\Delta S$
- ▶ **Standard Conditions:** $\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ$
- ▶ **Spontaneity:** $\Delta G < 0$ (spontaneous), $\Delta G > 0$ (nonspontaneous), $\Delta G = 0$ (equilibrium)
- ▶ **Free Energy & Equilibrium:** $\Delta G^\circ = -RT \ln K$
- ▶ **Constants:** $R = 8.314 \text{ J/(mol}\cdot\text{K)} = 0.08314 \text{ L}\cdot\text{bar/(mol}\cdot\text{K)}$

⚡ Unit 6 Success Tips: Always identify system vs surroundings, use correct sign conventions (exo: $\Delta H < 0$, endo: $\Delta H > 0$), convert temperatures to Kelvin, watch units (kJ vs J), predict spontaneity using $\Delta G = \Delta H - T\Delta S$ analysis, and remember entropy increases with disorder!

1

Calorimetry & Heat Transfer

A student performs a calorimetry experiment to determine the specific heat capacity of an unknown metal.

Experimental Data:

- Mass of metal sample: 45.0 g
- Initial temperature of metal: 98.5°C
- Mass of water in calorimeter: 100.0 g
- Initial temperature of water: 22.0°C
- Final temperature of system: 25.8°C
- Specific heat capacity of water: 4.18 J/(g·°C)
- Heat capacity of calorimeter: 15.0 J/°C

(a) Calculate the heat gained by the water. Show all work with proper units.

(2 points)

(b) Calculate the heat gained by the calorimeter. **(2 points)**

(c) Calculate the total heat gained by the water and calorimeter. **(1 point)**

(d) Using conservation of energy, calculate the heat lost by the metal.

Explain the sign of this value. **(2 points)**

(e) Calculate the specific heat capacity of the metal. Show all work with proper units. **(3 points)**

(f) The metal is either aluminum ($c = 0.897 \text{ J}/(\text{g} \cdot \text{°C})$), iron ($c = 0.449 \text{ J}/(\text{g} \cdot \text{°C})$), or copper ($c = 0.385 \text{ J}/(\text{g} \cdot \text{°C})$). Identify the metal and calculate the percent error. **(2 points)**

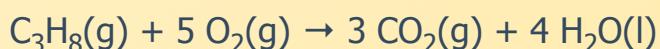
(g) List two specific experimental errors that could cause the calculated specific heat to be lower than the actual value. Explain how each error would affect the result. **(3 points)**

2

Hess's Law & Enthalpy of Formation

Use the following thermochemical equations to determine the enthalpy of formation of methane (CH_4):

Given equations:


(a) Write the target equation for the formation of methane from its elements in their standard states. **(1 point)**

(b) Using Hess's Law, manipulate equations (1), (2), and (3) to obtain the target equation. Show all steps, including how you reverse or multiply equations. **(4 points)**

(c) Calculate ΔH_f° for $\text{CH}_4(\text{g})$. Show your work. **(2 points)**

(d) Is the formation of methane from its elements exothermic or endothermic? What does this tell you about the stability of methane relative to its elements? **(2 points)**

(e) Using standard enthalpies of formation, calculate ΔH° for the combustion of propane:

Given: $\Delta H_f^\circ[\text{C}_3\text{H}_8(\text{g})] = -104 \text{ kJ/mol}$, $\Delta H_f^\circ[\text{CO}_2(\text{g})] = -393.5 \text{ kJ/mol}$, $\Delta H_f^\circ[\text{H}_2\text{O(l)}] = -285.8 \text{ kJ/mol}$ **(4 points)**

3

Entropy & Second Law of Thermodynamics

Consider the following processes at 298 K:

PROCESS	ΔS° (J/(mol·K))
$\text{H}_2\text{O(l)} \rightarrow \text{H}_2\text{O(g)}$	+118.8
$\text{H}_2\text{O(s)} \rightarrow \text{H}_2\text{O(l)}$	+22.0
$2 \text{H}_2\text{(g)} + \text{O}_2\text{(g)} \rightarrow 2 \text{H}_2\text{O(l)}$	-326.8
$\text{N}_2\text{(g)} + 3 \text{H}_2\text{(g)} \rightarrow 2 \text{NH}_3\text{(g)}$	-198.7

(a) Explain at the molecular level why the vaporization of water has a positive entropy change. Use the concepts of molecular disorder and microstates. **(3 points)**

(b) Compare the entropy changes for melting (s→l) and vaporization (l→g) of water. Explain why ΔS_{vap} is significantly larger than ΔS_{fus} . **(3 points)**

(c) Explain why the formation of water from H_2 and O_2 has a negative entropy change, even though it is a spontaneous reaction at 298 K. **(3 points)**

(d) Predict the sign of ΔS° for each of the following processes. Justify each prediction:

- (i) $\text{CaCO}_3\text{(s)} \rightarrow \text{CaO(s)} + \text{CO}_2\text{(g)}$
- (ii) $2 \text{NO}_2\text{(g)} \rightarrow \text{N}_2\text{O}_4\text{(g)}$

(5 points)

(e) State the Second Law of Thermodynamics. Explain how a reaction with negative ΔS_{sys} can still be consistent with the Second Law. **(3 points)**

4

Gibbs Free Energy & Spontaneity

The decomposition of calcium carbonate is represented by:

Thermodynamic data at 298 K:

$$\Delta H^\circ = +178.3 \text{ kJ/mol}$$

$$\Delta S^\circ = +160.6 \text{ J}/(\text{mol}\cdot\text{K})$$

(a) Calculate ΔG° for this reaction at 298 K. Show all work with proper units. **(3 points)**

(b) Is this reaction spontaneous at 298 K? Explain your reasoning based on the value of ΔG° . **(2 points)**

(c) Calculate the temperature at which $\Delta G^\circ = 0$ (the equilibrium temperature). Show all work. **(3 points)**

(d) At what temperature range is this reaction spontaneous? Explain using the relationship between ΔG , ΔH , ΔS , and T . **(3 points)**

(e) Complete the following table predicting the spontaneity of reactions based on the signs of ΔH and ΔS :

ΔH	ΔS	ΔG AT LOW T	ΔG AT HIGH T	SPONTANEITY
-	+	?	?	?
+	-	?	?	?
-	-	?	?	?
+	+	?	?	?

(4 points)

5

Bond Energies & Enthalpy Calculations

Use bond energies to estimate ΔH° for the following reaction:

Average Bond Energies (kJ/mol):

C-H: 413 | O=O: 495 | C=O: 799 | O-H: 463

(a) Draw Lewis structures for all reactants and products, showing all bonds.

(2 points)

(b) Calculate the total energy required to break all bonds in the reactants.

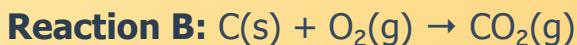
Show your work. **(3 points)**

(c) Calculate the total energy released when forming all bonds in the products. Show your work. **(3 points)**

(d) Calculate the estimated ΔH° for the reaction using: $\Delta H = \Sigma(\text{bonds broken}) - \Sigma(\text{bonds formed})$. **(2 points)**

(e) The experimental value for this reaction is $\Delta H^\circ = -802 \text{ kJ/mol}$. Calculate the percent error of your estimate. **(2 points)**

(f) Explain why bond energy calculations provide only estimates of ΔH rather than exact values. **(2 points)**


6

Coupled Reactions & Free Energy

Consider the following reactions at 298 K:

$$\Delta G^\circ = +471 \text{ kJ}$$

$$\Delta G^\circ = -394 \text{ kJ}$$

(a) Is Reaction A spontaneous at 298 K and standard conditions? Explain.

(2 points)

(b) Write a balanced equation for the reduction of Fe_2O_3 by C in the presence of excess O_2 , obtained by coupling Reactions A and B. **(3 points)**

(c) Calculate ΔG° for the coupled reaction. Is the coupled reaction spontaneous? **(3 points)**

(d) Explain how coupling reactions can be used to drive thermodynamically unfavorable processes. Use this example to illustrate your explanation. **(3 points)**

(e) In biological systems, ATP hydrolysis ($\Delta G^\circ = -30.5 \text{ kJ/mol}$) is often coupled to nonspontaneous reactions. If a biosynthetic reaction has $\Delta G^\circ = +15 \text{ kJ/mol}$, calculate ΔG° for the coupled process. Is it spontaneous? **(3 points)**

7

Phase Changes & Thermodynamics

Water boils at 100°C at 1 atm pressure. The following data are provided:

$$\Delta H_{\text{vap}} = 40.7 \text{ kJ/mol}$$

$$\Delta S_{\text{vap}} = 109 \text{ J/(mol}\cdot\text{K}) \text{ at } 100^\circ\text{C}$$

(a) Calculate ΔG° for the vaporization of water at 100°C (373 K). **(2 points)**

(b) Explain the significance of your answer to part (a). What does $\Delta G = 0$ indicate about a phase transition? **(2 points)**

(c) Calculate ΔG for the vaporization of water at 25°C (298 K), assuming ΔH and ΔS remain constant. **(3 points)**

(d) Based on your answer to part (c), predict whether water will spontaneously vaporize at 25°C and 1 atm. Explain the relationship between your answer and everyday observations. **(3 points)**

(e) Calculate ΔG for the vaporization of water at 125°C (398 K). What does this value tell you about the phase of water at this temperature and 1 atm? **(3 points)**

(f) Explain why ΔS is positive for the vaporization of any substance at the molecular level. **(2 points)**

8

Thermodynamics & Equilibrium

The relationship between Gibbs free energy and the equilibrium constant is given by:

$$\Delta G^\circ = -RT \ln K$$

where $R = 8.314 \text{ J/(mol}\cdot\text{K)}$ and T is in Kelvin

(a) For a reaction at 298 K with $K = 1.5 \times 10^5$, calculate ΔG° . **(3 points)**

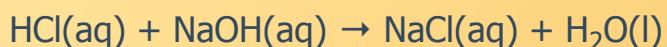
(b) For a reaction at 298 K with $\Delta G^\circ = +12.5 \text{ kJ/mol}$, calculate the equilibrium constant K . **(3 points)**

(c) Explain the relationship between the sign and magnitude of ΔG° and the value of K :

- (i) What does $K > 1$ tell you about ΔG° ?
- (ii) What does $K < 1$ tell you about ΔG° ?
- (iii) What does $K = 1$ tell you about ΔG° ?

(4 points)

(d) For the reaction $\text{N}_2(\text{g}) + 3 \text{H}_2(\text{g}) \rightleftharpoons 2 \text{NH}_3(\text{g})$, $K = 6.8 \times 10^5$ at 298 K.


Calculate ΔG° and determine whether products or reactants are favored at equilibrium. **(3 points)**

(e) Distinguish between ΔG° (standard free energy change) and ΔG (free energy change under non-standard conditions). Under what conditions are they equal? **(3 points)**

9

Coffee Cup Calorimetry

A student performs a neutralization reaction in a coffee cup calorimeter:

Experimental Procedure:

- 50.0 mL of 2.00 M HCl at 22.5°C
- 50.0 mL of 2.00 M NaOH at 22.5°C
- Final temperature after mixing: 35.8°C
- Assume: density of solutions = 1.00 g/mL
- Assume: specific heat capacity = 4.18 J/(g·°C)
- Assume: heat capacity of calorimeter is negligible

(a) Calculate the total mass of the solution after mixing. **(1 point)**

(b) Calculate the temperature change (ΔT) for the solution. **(1 point)**

(c) Calculate the heat absorbed by the solution (q_{solution}). **(2 points)**

(d) Calculate the heat released by the reaction (q_{reaction}). Explain the sign convention. **(2 points)**

(e) Calculate the number of moles of water formed in the neutralization reaction. **(2 points)**

(f) Calculate the molar enthalpy of neutralization ($\Delta H_{\text{neutralization}}$) in kJ/mol.

(3 points)

(g) The accepted value for the neutralization of a strong acid with a strong base is approximately -57 kJ/mol. Compare your result and suggest reasons for any difference. **(3 points)**

10

Integrated Thermodynamics Problem

The Haber process for ammonia synthesis is:

Thermodynamic data at 298 K:

$$\Delta H^\circ = -92.2 \text{ kJ/mol}$$

$$\Delta S^\circ = -198.7 \text{ J/(mol}\cdot\text{K)}$$

$$\Delta G^\circ = -32.9 \text{ kJ/mol}$$

(a) Verify that the given values are consistent with the equation $\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ$ at 298 K. **(2 points)**

(b) Calculate the equilibrium constant K for this reaction at 298 K. **(3 points)**

(c) Is this reaction spontaneous at 298 K under standard conditions? Does a large negative ΔG° guarantee a fast reaction? Explain. **(3 points)**

(d) Calculate ΔG° at 500 K, assuming ΔH° and ΔS° remain constant. **(3**

points)

(e) Explain why the Haber process becomes less favorable (smaller K) at higher temperatures, yet is industrially operated at 400-500°C. Discuss both thermodynamic and kinetic factors. **(4 points)**

(f) Explain why this reaction has a negative ΔS° value. How does this affect the temperature dependence of spontaneity? **(3 points)**

DETAILED ANSWER KEY & SCORING RUBRIC

Complete Solutions with Step-by-Step Explanations

Complete Solutions Summary

Question 1 (Calorimetry): $q_{\text{water}} = 1588 \text{ J}$; $q_{\text{cal}} = 57 \text{ J}$; $q_{\text{total}} = 1645 \text{ J}$; $q_{\text{metal}} = -1645 \text{ J}$; $c_{\text{metal}} = 0.503 \text{ J}/(\text{g}\cdot^\circ\text{C}) \approx \text{iron (0.449)}$; errors include heat loss to surroundings (reduces measured ΔT) or incomplete thermal equilibrium.

Question 2 (Hess's Law): Target: $\text{C(s)} + 2\text{H}_2\text{(g)} \rightarrow \text{CH}_4\text{(g)}$; Manipulate: reverse equation (3), use (1) as is, use $\frac{1}{2}\times(2)$; $\Delta H_f^\circ[\text{CH}_4] = -74.8 \text{ kJ/mol}$ (exothermic formation = stable); Propane combustion: $\Delta H^\circ = -2220 \text{ kJ}$ using $\sum \Delta H_f^\circ(\text{products}) - \sum \Delta H_f^\circ(\text{reactants})$.

Question 3 (Entropy): Vaporization increases disorder (gas $>>$ liquid); $\Delta S_{\text{vap}} >> \Delta S_{\text{fus}}$ due to massive volume/freedom increase; water formation has $-\Delta S$ but $-\Delta H$ dominates making $\Delta G < 0$; CaCO_3 decomp: $+\Delta S$ (gas produced); $2\text{NO}_2 \rightarrow \text{N}_2\text{O}_4$: $-\Delta S$ (2 mol \rightarrow 1 mol); NaCl dissolving: $+\Delta S$ (increased disorder); 2nd Law: $\Delta S_{\text{universe}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}} > 0$.

Question 4 (Gibbs Free Energy): $\Delta G^\circ(298\text{K}) = +130.4 \text{ kJ}$ (nonspontaneous); $T_{\text{eq}} = 1110 \text{ K}$; Spontaneous when $T > 1110 \text{ K}$; Table: $(-, +)$ = always spontaneous; $(+, -)$ = never spontaneous; $(-, -)$ = low T only; $(+, +)$ = high T only.

Question 5 (Bond Energies): Bonds broken: $4(\text{C-H}) + 2(\text{O=O}) = 2642 \text{ kJ}$; Bonds formed: $2(\text{C=O}) + 4(\text{O-H}) = 3450 \text{ kJ}$; $\Delta H = -808 \text{ kJ}$ (exothermic); % error

= 0.7%; Bond energies are averages from many compounds, actual values vary by molecular environment.

Question 6 (Coupled Reactions): Reaction A nonspontaneous ($\Delta G^\circ > 0$);

Coupled: $2\text{Fe}_2\text{O}_3 + 3\text{C} + 3\text{O}_2 \rightarrow 4\text{Fe} + 6\text{CO}_2$; $\Delta G^\circ_{\text{coupled}} = -711 \text{ kJ}$

(spontaneous); Coupling uses energy from favorable reaction to drive unfavorable one; ATP: $\Delta G^\circ = -15.5 \text{ kJ}$ (spontaneous).

Question 7 (Phase Changes): $\Delta G(373\text{K}) = 0$ (equilibrium at BP); $\Delta G(298\text{K}) =$

+8.2 kJ (liquid favored, but evaporation occurs); $\Delta G(398\text{K}) = -2.7 \text{ kJ}$ (gas favored); ΔS positive because gas molecules have vastly more positional freedom than liquid.

Question 8 (Equilibrium): $K = 1.5 \times 10^5$; $\Delta G^\circ = -29.7 \text{ kJ}$; $\Delta G^\circ = +12.5 \text{ kJ}$; $K =$

6.1×10^{-3} ; $K > 1$ means $\Delta G^\circ < 0$ (products favored); $K < 1$ means $\Delta G^\circ > 0$ (reactants favored); $K = 1$ means $\Delta G^\circ = 0$; NH_3 : $\Delta G^\circ = -33.3 \text{ kJ}$ (products strongly favored); ΔG° applies to standard conditions, ΔG to actual conditions; equal when all concentrations = 1 M (or pressures = 1 atm).

Question 9 (Neutralization): Total mass = 100 g; $\Delta T = 13.3^\circ\text{C}$; $q_{\text{solution}} =$

5559 J; $q_{\text{rxn}} = -5559 \text{ J}$ (exothermic); moles $\text{H}_2\text{O} = 0.100 \text{ mol}$; $\Delta H_{\text{neut}} = -55.6 \text{ kJ/mol} \approx -57 \text{ kJ/mol}$ literature value; Differences due to heat loss, calorimeter absorption, or concentration effects.

Question 10 (Haber Process): Verification: $-92.2 - 298(-0.1987) = -32.9 \text{ kJ} \checkmark$;

$K = 5.8 \times 10^5$ at 298K; Spontaneous but kinetically slow (requires catalyst); $\Delta G^\circ(500\text{K}) = +7.2 \text{ kJ}$ (less favorable); High T needed for kinetics despite thermodynamic penalty; catalyst allows lower T operation; $-\Delta S$ because 4 mol gas \rightarrow 2 mol gas (decreased freedom); Negative ΔS means spontaneity decreases as T increases (T ΔS term becomes more positive).

APChemistryRescue.com - Your Ultimate Resource for AP Chemistry Excellence

 Master Unit 6 Thermodynamics | Perfect Energy Calculations | Achieve Your Target Score

Comprehensive practice for all AP Chemistry units including calorimetry, Hess's Law, entropy, Gibbs free energy, spontaneity, bond energies, and thermochemical calculations.

*Visit **APChemistryRescue.com** for complete study resources!*

© 2026 APChemistryRescue.com | Empowering Students to Excel in AP Chemistry