

Unit 1: Atomic Structure & Properties

Accessible Practice Set - Building Foundations

✓ Easier Level

⌚ 60-90 minutes

📊 10 Questions

About This Practice Set:

- **Purpose:** Build confidence with foundational Unit 1 concepts
- **Difficulty:** Easier than typical AP exam questions (scaffolded learning)
- **Focus Areas:** Moles, isotopes, electron configuration, PES, mass spectrometry
- **Question Types:** Step-by-step calculations, diagram interpretation, conceptual explanations
- **Total Points:** 60 points (designed for partial credit opportunities)
- **Materials Needed:** Calculator, periodic table

Success Tips for Unit 1:

- **Electron Configuration:** Follow aufbau diagram: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p...
- **Isotope Notation:** Mass number (top) = protons + neutrons; Atomic number (bottom) = protons
- **Mole Conversions:** Use Avogadro's number (6.022×10^{23}) and molar mass
- **PES Graphs:** Each peak = one sublevel; peak height = number of electrons
- **Mass Spectrum:** Each peak = one isotope; height = relative abundance
- **Show Your Work:** Partial credit is awarded for correct setup!

Question 1 (5 points) — Mole Calculations

A sample of pure copper (Cu) has a mass of 12.7 grams.

Given Information:

- Mass of copper sample = 12.7 g
- Molar mass of Cu = 63.55 g/mol
- Avogadro's number = 6.022×10^{23} atoms/mol

(a) Calculate the number of moles of copper in the sample. Show your work. (2 points)

Helpful Formula:

$$\text{moles} = \text{mass (g)} / \text{molar mass (g/mol)}$$

Your calculation:

(b) Calculate the number of copper atoms in the sample. Show your work. (2 points)

Helpful Formula:

atoms = moles \times Avogadro's number

Your calculation:

(c) How many electrons are present in the sample? (Copper has 29 electrons per atom.) (1 point)

Your calculation:

Question 2 (6 points) — Isotopes and Atomic Structure

Consider two isotopes of chlorine:

Isotope Notation:

- Chlorine-35: ^{35}Cl (mass number 35)
- Chlorine-37: ^{37}Cl (mass number 37)
- Atomic number of chlorine = 17

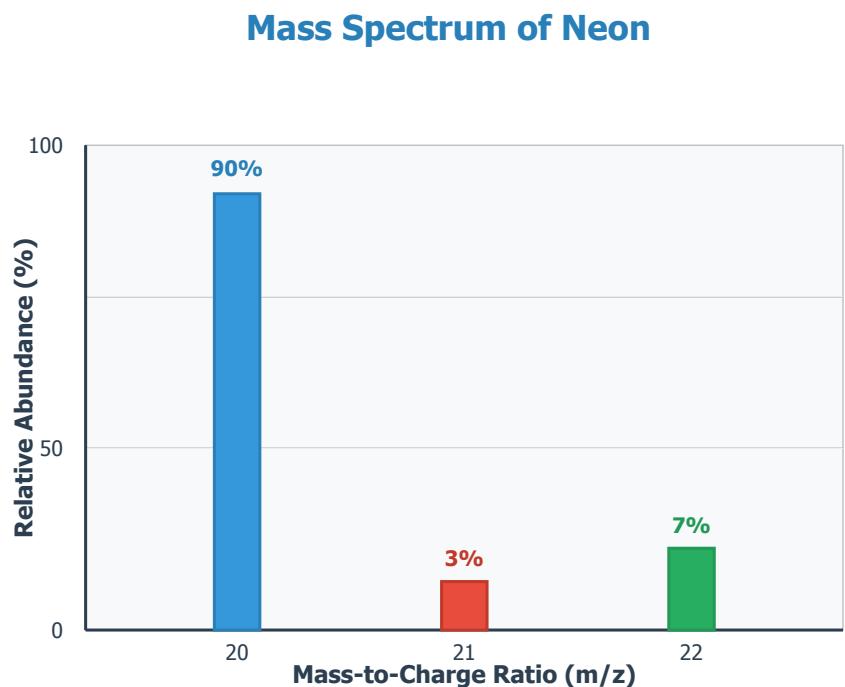
(a) Complete the table below for each isotope: (3 points)

Isotope	Protons	Neutrons	Electrons
^{35}Cl			
^{37}Cl			

Remember:

Protons = Atomic number; Neutrons = Mass number – Protons; Electrons = Protons (for neutral atoms)

(b) Explain why these two isotopes have different masses but the same chemical properties. (2 points)


Your explanation:

(c) Write the isotope symbol for a chloride ion (Cl^-) with mass number 35. (1 point)

Your answer:

Question 3 (7 points) — Mass Spectrometry Interpretation

The mass spectrum of a sample of neon gas shows the following peaks:

(a) How many isotopes of neon are present in this sample? (1 point)

Your answer:

(b) Which isotope is the most abundant? What is its mass number? (1 point)

Your answer:

(c) Calculate the weighted average atomic mass of neon using the data from the mass spectrum. Show your work. (4 points)

Helpful Formula:

Average atomic mass = $\Sigma(\text{mass} \times \text{abundance as decimal})$

Example:

$$(20 \times 0.90) + (21 \times 0.03) + (22 \times 0.07)$$

Your calculation:

(d) Why does the atomic mass you calculated differ from the mass numbers of individual isotopes? (1 point)

Your explanation:

Question 4 (6 points) — Electron Configuration

Write electron configurations for the following atoms and ions.

Aufbau Principle Reminder:

Order of filling: $1s \rightarrow 2s \rightarrow 2p \rightarrow 3s \rightarrow 3p \rightarrow 4s \rightarrow 3d \rightarrow 4p$
 $\rightarrow \dots$

(a) Write the complete electron configuration for oxygen (O, atomic number 8). (1 point)

Your answer:

(b) Write the complete electron configuration for aluminum (Al, atomic number 13). (2 points)

Your answer:

(c) Write the electron configuration for the oxide ion (O^{2-}). (2 points)

Hint:

O^{2-} means oxygen gained 2 electrons. Start with oxygen's configuration and add 2 electrons.

Your answer:

(d) How many valence electrons does aluminum have? (1 point)

Your answer:

Question 5 (6 points) — Orbital Diagrams and Hund's Rule

Draw orbital diagrams for the valence electrons of the following atoms.

Rules to Remember:

- Each orbital can hold maximum 2 electrons (Pauli Exclusion Principle)
- Electrons fill orbitals singly before pairing (Hund's Rule)
- Use arrows: \uparrow for first electron, \downarrow for second electron

(a) Draw the orbital diagram for the valence electrons of nitrogen (N, atomic number 7). (2 points)

Hint:

Nitrogen's electron configuration is $1s^2 2s^2 2p^3$. Draw

only the 2s and 2p orbitals.

2p:

2s:

Fill in the boxes with arrows (\uparrow or \downarrow) to show electron arrangement

(b) Draw the orbital diagram for the valence electrons of sulfur (S, atomic number 16). (3 points)

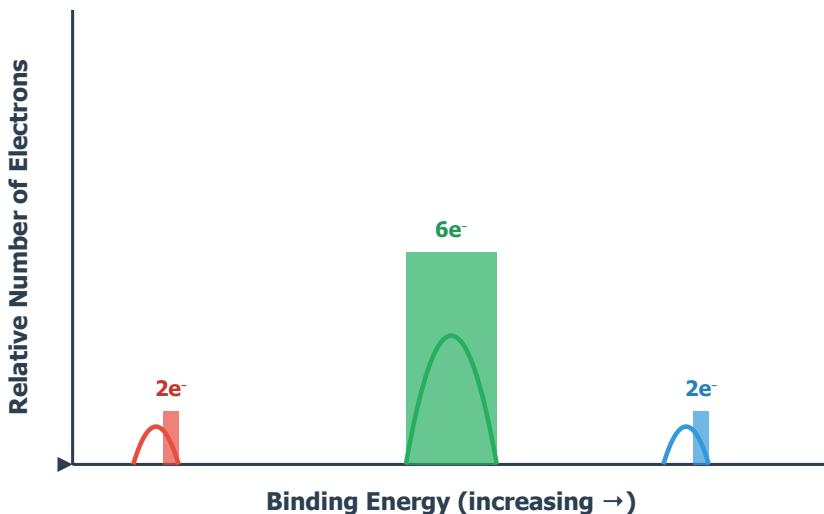
Hint:

Sulfur's configuration is $1s^2 2s^2 2p^6 3s^2 3p^4$. Draw only the 3s and 3p orbitals.

3p:

3s:

(c) Based on your orbital diagram, how many unpaired


electrons does sulfur have? (1 point)

Your answer:

Question 6 (6 points) — Photoelectron Spectroscopy (PES)

The photoelectron spectrum (PES) of an unknown element is shown below:

Photoelectron Spectrum

(a) How many electrons does this element have in total? (1 point)

Hint:

Add up the number of electrons in all three peaks

Your answer:

(b) Identify the element. Explain your reasoning. (2 points)

Your answer:

(c) Which peak (leftmost, middle, or rightmost) represents the valence electrons? Explain. (2 points)

Remember:

Valence electrons are farthest from the nucleus and require the LEAST energy to remove

Your explanation:

(d) Write the electron configuration for this element. (1 point)

Your answer:

Question 7 (6 points) — Coulombic Attraction

Consider the following ions: Na^+ , Mg^{2+} , and Al^{3+} (all have 10 electrons).

Information:

- Na^+ : 11 protons, 10 electrons
- Mg^{2+} : 12 protons, 10 electrons
- Al^{3+} : 13 protons, 10 electrons
- All three ions have the same electron configuration: $1s^2 2s^2 2p^6$

(a) Rank these ions in order of increasing ionic radius (smallest to largest). (2 points)

Your answer:

(b) Explain your ranking using the concept of Coulombic attraction. (3 points)

Hint:

Coulombic attraction = (charge of nucleus) \times (charge of electrons) / distance

More protons = stronger pull on electrons = smaller radius

Your explanation:

(c) All three ions are isoelectronic (same number of electrons). What does this mean for the electron configuration? (1 point)

Your answer:

Question 8 (6 points) — Empirical Formula Determination

A compound contains 40.0% carbon, 6.7% hydrogen, and 53.3% oxygen by mass.

Given:

- Percent composition: 40.0% C, 6.7% H, 53.3% O
- Molar masses: C = 12.01 g/mol; H = 1.008 g/mol; O = 16.00 g/mol

(a) Assume you have 100 g of this compound. Calculate the mass of each element. (1 point)

Your answer:

(b) Calculate the number of moles of each element.
Show your work. (3 points)

Your calculations:

(c) Determine the empirical formula of this compound.
Show your work. (2 points)

Steps:

1) Divide all moles by the smallest number; 2) If needed, multiply all by small integer to get whole numbers

Your work:

Question 9 (6 points) — Quantum Numbers

Answer the following questions about quantum numbers.

Quantum Number Review:

- n (principal): energy level (1, 2, 3, ...)
- l (angular momentum): sublevel ($s=0$, $p=1$, $d=2$, $f=3$)
- m_l (magnetic): orbital orientation ($-l$ to $+l$)
- m_s (spin): electron spin ($+1/2$ or $-1/2$)

(a) What are the possible values of l for $n = 3$? (2 points)

Rule:

l can be 0, 1, 2, ... up to $(n-1)$

Your answer:

(b) How many orbitals are in the 3p sublevel? (1 point)

Your answer:

(c) What is the maximum number of electrons that can occupy the $n = 2$ energy level? (2 points)

Hint:

$n = 2$ has 2s (2 electrons) and 2p (6 electrons) sublevels

Your answer:

(d) Can an electron have the quantum numbers $n = 2$, $l = 2$, $m_l = 0$, $m_s = +\frac{1}{2}$? Explain why or why not. (1 point)

Your explanation:

Question 10 (6 points) — Conceptual Understanding

(a) Explain why noble gases (like neon and argon) are chemically unreactive. (2 points)

Hint:

Think about their electron configurations and valence electron shells

Your explanation:

(b) Why do isotopes of the same element have identical chemical properties but different physical properties? (2 points)

Your explanation:

(c) Explain why the electron configuration $1s^2 2s^2 2p^7$ is impossible. (2 points)

Your explanation:

END OF PRACTICE SET

Review your work before checking answers!

ANSWER KEY & DETAILED SOLUTIONS

Question 1: Mole Calculations - Complete Solution (5 points)

(a) Number of moles (2 points)

moles = mass / molar mass

moles = 12.7 g / 63.55 g/mol

moles = **0.200 mol**

Scoring: 1 pt for correct setup; 1 pt for correct answer

(b) Number of atoms (2 points)

atoms = moles × Avogadro's number

atoms = 0.200 mol × 6.022 × 10²³ atoms/mol

atoms = **1.20 × 10²³ atoms**

(c) Number of electrons (1 point)

electrons = atoms × 29 electrons/atom

electrons = 1.20 × 10²³ × 29

electrons = **3.48 × 10²⁴ electrons**

Questions 2-10: Answer Summary

Q2 (Isotopes): (a) ^{35}Cl : 17p, 18n, 17e; ^{37}Cl : 17p, 20n, 17e;
(b) Same protons/electrons → same chemical properties;
different neutrons → different mass; (c) $^{35}\text{Cl}^-$ or $^{[35]}_{17}\text{Cl}^-$

Q3 (Mass Spectrum): (a) 3 isotopes; (b) ^{20}Ne , 90% abundant; (c) $(20 \times 0.90) + (21 \times 0.03) + (22 \times 0.07) = 18.0 + 0.63 + 1.54 = 20.17$ amu; (d) Average is weighted by abundance, not simple average

Q4 (Electron Config): (a) O: $1s^2 2s^2 2p^4$; (b) Al: $1s^2 2s^2 2p^6 3s^2 3p^1$; (c) O^{2-} : $1s^2 2s^2 2p^6$; (d) 3 valence electrons

Q5 (Orbital Diagrams): (a) N: $2s: \uparrow\downarrow; 2p: \uparrow\uparrow\uparrow$; (b) S: $3s: \uparrow\downarrow; 3p: \uparrow\downarrow\uparrow\uparrow$; (c) 2 unpaired electrons

Q6 (PES): (a) 10 electrons total; (b) Neon (Ne); 10 electrons = 10 protons; (c) Rightmost peak (lowest binding energy); (d) $1s^2 2s^2 2p^6$

Q7 (Coulombic): (a) $\text{Al}^{3+} < \text{Mg}^{2+} < \text{Na}^+$; (b) More protons = stronger attraction = smaller radius; Al^{3+} has most protons (13), pulls electrons closest; (c) Same electron configuration

Q8 (Empirical Formula): (a) 40.0 g C, 6.7 g H, 53.3 g O; (b) C: 3.33 mol; H: 6.65 mol; O: 3.33 mol; (c) Divide by 3.33: $\text{C}_1\text{H}_2\text{O}_1 = \text{CH}_2\text{O}$

Q9 (Quantum Numbers): (a) $l = 0, 1, 2$; (b) 3 orbitals (p_x, p_y, p_z); (c) 8 electrons maximum; (d) No, l cannot equal n (max $l = n-1$)

Q10 (Conceptual): (a) Complete valence shells (8 valence electrons); (b) Electrons determine chemistry; neutrons affect mass only; (c) p sublevel holds max 6 electrons (2 per orbital \times 3 orbitals)

